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Section A 

 

1  
/6

/6

0
0

1
cos3 d sin 3

3
x x x


       

                               =  1
sin 0

3 2


  

                          = 1/3 

 
M1 
 
B1 
 
A1cao 
[3] 
 

 
k sin 3x, k > 0, k  3 
 
k = ()1/3 
 
0.33 or better 

 

or M1 for u = 3x  1
cos d

3
u u  condone 90 in limit 

or M1 for  1
sin

3
u 

  
 

so:  sin 3x : M1B0, sin 3x: M0B0,  
      3sin 3x: M0B0, 1/3 sin 3x: M0B1 

2 fg( ) 1x x               g f( ) 1x x   

 
 
 
 

B1 B1 
 
 
B1 
B1 
 
[4] 
 

soi from correctly-shaped graphs (i.e. 
without intercepts) 
 
graph of 1x   only 

graph of 1x    

 

but must indicate which is which 
bod gf if negative x values are missing 
 
‘V’ shape with (1, 0) and (0, 1) labelled 
‘V’ shape with (0, 1) labelled  (0, 1)  

 
3(i)   2 1/2(1 3 )y x 

 2 1/21
/ (1 3 ) .  

-1 

1 

1 

6
2

dy dx x x 

                      = 3x(1 + 3x2)–1/2 

 
 
 
M1 
B1 
A1 
[3] 
 

 
 
 
chain rule 
½ u–1/2 

o.e., but must be ‘3’ 
 

 
 
 
 
 
can isw here 

 
(ii)   2 1/2(1 3 )y x x 

 2 1/2

2

3
/ . 1.(1 3 )  

1 3
dy dx x x

x
  



x

  
2 2

2

3 1 3

1 3

x x
x

 



 

  
2

2

1 6
*

1 3

x
x





 

 

 
 
 
M1 
A1ft 
 
M1 
 
E1 
[4] 

 
 
 
product rule 
ft their dy/dx from (i) 
 
common denominator or factoring 
(1+3x2)1/2 
www 

 
 
 
 
 
 
must show this step for M1 E1 

 1
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4 p = 100/x = 100 x–1 
 dp/dx = –100x–2  = – 100/x2 
 
 dp/dt = dp/dx × dx/dt 
 dx/dt = 10 
When x = 50, dp/dx =(–100/502) 
 dp/dt = 10  0.04 = –0.4 
 

 
 
M1 
A1 
M1 
B1 
M1dep 
A1cao 
 [6] 

 
 
attempt to differentiate 
–100x–2  o.e. 
o.e. soi 
soi 
substituting x = 50 into their dp/dx dep 2nd M1 
o.e. e.g. decreasing at 0.4 
 

 
 
 
condone poor notation if chain rule correct  
or x = 50 + 10 t  B1 
 P  = 100/x = 100/(50 + 10 t)  
 dP/dt = 100(50 + 10 t)2  10 = 1000/(50 + 10t)2 M1 
A1 
When t = 0, dP/dt = 1000/502 = 0.4  A1 

 
5   y3 = xy – x2 
 3y2 dy/dx = x dy/dx + y – 2x 
 
 3y2 dy/dx – x dy/dx =  y – 2x 
 (3y2 – x) dy/dx = y – 2x 
 dy/dx = (y – 2x)/(3y2 – x) * 
 
 TP when dy/dx = 0  y – 2x = 0 
 y = 2x 
 (2x)3  = x.2x – x2 
 8x3 = x2 
 x = 1/8 *(or 0) 
 

 
 
B1 
B1 
 
M1 
E1 
 
 
M1 
M1 

 

E1 
 [7] 

 
 
3y2dy/dx 
x dy/dx + y – 2x 
 
collecting terms in dy/dx only 
 
 
 
 
or x = 1/8 and dy/dx = 0  y = ¼ 
or (1/4)3 = (1/8)(1/4) (1/8)2 
or verifying e.g. 1/64 = 1/64  

  
 
 
must show ‘x dy/dx + y’ on one side 
 
 
 
 
 
 
or x = 1/8  y3 = (1/8)y  1/64  M1 
verifying that y = ¼ is a solution (must show evidence*) M1 
 dy/dx = (¼  2(1/8))/(…) = 0 E1  
*just stating that y = ¼ is M1 M0 E0 
 
 

 

6 f(x) = 1 + 2 sin 3x = y  x  y 
 x = 1 + 2 sin 3y 
 sin 3y = (x – 1)/2 
 3y = arcsin [(x – 1)/2] 

 1 1
arcsin

3 2

xy     
 so 1 1 1

f ( ) arcsin
3 2

xx     
 

 Range of f is  1 to 3 
 –1 ≤ x ≤ 3 

 
 
M1 
A1 
A1 
 
A1 
 
M1 
A1 
 [6] 
 

 

 
attempt to invert 
 
 
 
must be y = … or f1(x) = … 
 
or  –1 ≤ (x – 1)/2 ≤ 1 
must be ‘x’, not y or f(x) 

 

 
at least one step attempted, or reasonable attempt at flow chart 
inversion 
 
 
(or any other variable provided same used on each side) 
 
condone <’s for M1 
allow unsupported correct answers; 1 to 3 is M1 A0 
 

7 (A) True , (B) True , (C) False 
 Counterexample, e.g. 2 + (–2) = 0 
 

B2,1,0 
B1 
[3] 

  

 2
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8(i)  When x = 1, y = 3 ln 1 + 1 – 12 
                                  = 0 

 
E1 
[1] 
 

  

(ii)  3
1 2

dy x
dx x

    

 At R,  3
0 1 2

dy x
dx x

     

 3 + x – 2x2 = 0 
 (3 – 2x)(1 + x) = 0 
 x = 1.5, (or –1) 
 y = 3 ln 1.5 + 1.5 – 1.52 
             = 0.466 (3 s.f.) 

 
2

2 2

3
2

d y
dx x

    

 When x = 1.5, d2y/dx2 (= 10/3)  < 0  max 

M1 
A1cao 
 
 
M1 
M1 
A1 
M1 
A1cao 
 
B1ft 
 
E1 
[9] 

d/dx (ln x) = 1/x 
 
 
 
re-arranging into a quadratic = 0 
factorising or formula or completing 
square 
substituting their x  
 
 
ft their dy/dx on equivalent work 
 
www – don’t need to calculate 10/3 

 
 
 
 
SC1 for x = 1.5 unsupported, SC3 if verified 
 
 
 
 
 
 
 
but condone rounding errors on 0.466 
 

 
(iii)  Let u = ln x, du/dx = 1/x 
 dv/dx = 1, v = x   

 1
ln ln .xdx x x x dx

x
    

            ln 1.x x dx    

            = x ln x – x + c 
 
 2.05 2

1
(3ln )A x x x d   x  

              
2.05

2 3

1

1 1
3 ln 3

2 3
x x x x x      

 

              = –2.5057 + 2.833.. 
              = 0.33 (2 s.f.) 

 
 
M1 
 
A1 
 
A1 

 

B1 
 
B1ft 
 
M1dep 
A1 cao 
[7] 

 
 
parts 
 
 
 
condone no c 
 

correct integral and limits (soi) 
 

2 31 1
3 t heir ' ln '

2 3
x x x x x      

 

substituting correct limits dep 1st B1 

 
 
 
 
 
 
allow correct result to be quoted (SC3) 
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 4

 9(i)  (0, ½ ) 
 

B1 
[1] 

allow y = ½ , but not (x =) ½ or ( ½ ,0)  
nor P = 1/2 

 

 (ii)  
2 2 2 2

2 2

(1 e )2e e .2e

(1 e )

x x x x

x

dy
dx

 



 

     
2

2 2

2e

(1 e )

x

x


 

 When x = 0, dy/dx = 2e0/(1+e0)2  = ½  
 

 
M1 
A1 
A1 
 
B1ft 
 [4] 

 
Quotient or product rule 
correct expression – condone missing 
bracket 
cao – mark final answer 
 
follow through their derivative 

 

product rule: 2 2 2 2 2 2 1e .2e ( 1)(1 e ) 2e (1 e )x x x x xdy
dx

       

2

2 2

2e

(1 e )

x

x


 from (udv  vdu)/v2 SC1 

(iii) A = 
21

20

e
d

1 e

x

x x
  

              
1

2

0

1
ln(1 e )

2
x    

 

or   let u = 1 + e2x, du/dx = 2 e2x 

 A = 
21 e

2

1/ 2
du

u


    = 
21 e

2

1
ln

2
u


 
  

 

    21 1
ln(1 e ) ln 2

2 2
    

  
21 1 e

ln *
2 2

 
  

 
 

B1 
 
M1 
A1 
 
M1 
 
A1 
 
M1 
 
E1 
[5] 

correct integral and limits (soi) 
 
k ln(1 + e2x) 
k = ½  
 
or v = e2x, dv/dx = 2e2x o.e. 
 
[½ ln u] or [½ ln (v + 1)] 
 
substituting correct limits 
 
www 

 
condone no dx 
 
 
 
 
 
 
 
 
 
allow missing dx’s or incompatible limits, but penalise 
missing brackets 

(iv) 1 e e
g( )

2 e e

x x

x xx




 
    

1 e e
g( )

2 e e

x x

x x x




 
     

 

 Rotational symmetry of order 2 about O 
 

M1 
E1 
 
B1 
[3] 

substituting x for x in g(x) 
completion www – taking out ve must 
be clear 
must have ‘rotational’ ‘about O’, ‘order 
2’ (oe) 

 
not  g(x)  g(x). Condone use of f for g. 

(v)(A) 1 1 e e 1
( ) .

2 2 e e 2

x x

x xg x





  


1 e e e e

.( )
2 e e

x x x x

x x

 



  



 

                                                   1 2e
.( )

2 e e

x

x x


 

                    
2

2

e .e e
f( )

e (e e ) e 1

x x x

x x x x x    
 

     (B) Translation  0

1/ 2

 
 
 

     (C) Rotational symmetry [of order 2]about P 
  

 
M1 
 
A1 
 
 
E1 
M1 
A1 

B1 
[6] 

 
combining fractions (correctly) 
 
 
 
 
 
translation in y direction 
up ½ unit dep ‘translation’ used 
o.e. condone omission of 180/order 2 

 
 
 
 
 
 
 
allow ‘shift’, ‘move’ in correct direction for M1. 

0 

 alone is SC1.  

1/ 2



 
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