

4776/01

ADVANCED SUBSIDIARY GCE MATHEMATICS (MEI)

Numerical Methods

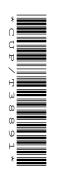
MONDAY 16 JUNE 2008

Afternoon

Time: 1 hour 30 minutes

Additional materials: Answer Booklet (8 pages) Graph paper

MEI Examination Formulae and Tables (MF2)


INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer **all** the questions.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks for each question is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is **72**.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.

This document consists of 4 printed pages.							
SP (KN) T38891/4	© OCR 2008 [M/102/2666]	OCR is an exempt Charity	[Turn over				

Section A (36 marks)

1 The equation f(x) = 0 is known to have a single root in the interval (3, 3.5). Given that f(3) = 0.5 and f(3.5) = -0.8, estimate the root using linear interpolation.

State the maximum possible error in this estimate.

2 The function f(x) has the values shown in the table. The value of k is to be determined.

x	1	3	5	7	9
f(<i>x</i>)	2	1	5	k	2

Use a difference table to obtain the value of k, assuming that f(x) is a cubic.

3 The function $f(x) = \sqrt{1 + 3^x}$ is to be differentiated numerically.

Use the central difference method with h = 0.2 to estimate the derivative at x = 2. Obtain further estimates with h = 0.1 and h = 0.05.

By considering the differences between successive estimates, find the value of the derivative to an accuracy of 3 decimal places. [8]

4 Show that a Newton-Raphson iteration to find the cube root of 25 is

$$x_{r+1} = x_r - \frac{x_r^3 - 25}{3x_r^2}.$$

Perform three steps of this iteration, beginning with $x_0 = 4$. Show, by considering the differences between successive iterates, that the convergence is faster than first order. [8]

- 5 (i) Find $\sin 86^\circ \sin 85^\circ$ to the accuracy given by your calculator.
 - (ii) A simple spreadsheet works to an accuracy of 6 significant figures. All intermediate answers used in calculations are rounded to 6 significant figures.

Write down the values of $\sin 86^{\circ}$ and $\sin 85^{\circ}$ as given by this spreadsheet. Hence find the value the spreadsheet gives for $\sin 86^{\circ} - \sin 85^{\circ}$. [3]

- (iii) You are now given that $\sin 86^\circ \sin 85^\circ = 2 \cos 85.5^\circ \sin 0.5^\circ$. Find the value the spreadsheet gives for this expression. [2]
- (iv) Use your working from parts (ii) and (iii) to explain how two expressions that are mathematically identical can nevertheless evaluate differently.

© OCR 2008

[1]

[6]

[6]

Section B (36 marks)

- 6 The integral $\int_{1}^{3} \sqrt{1 + \sin x} \, dx$, where x is in radians, is to be evaluated numerically.
 - (i) Copy and complete the following table.

h	Mid-point rule estimate	Trapezium rule estimate
2	$M_1 = 2.763\ 547$	$T_1 =$
1	<i>M</i> ₂ =	<i>T</i> ₂ =
0.5	$M_4 =$	$T_4 =$

(ii) Show that the differences between successive mid-point rule estimates reduce by a factor of about 4.

State a result about the differences between successive trapezium rule estimates. [4]

- (iii) Now let $S_1 = \frac{1}{3}(2M_1 + T_1)$, with S_2 and S_4 defined similarly. Calculate S_1 , S_2 , S_4 and the differences $S_2 - S_1$, $S_4 - S_2$. By considering these differences, give the value of the integral to the accuracy that appears justified. [7]
- 7 The equation $x^2 = 4 + \frac{1}{x}$ has three roots.
 - (i) Show graphically that the equation has exactly one root for x > 0. Find the integer *a* such that this positive root lies in the interval (a, a + 1).

Use the fixed-point iteration

$$x_{r+1} = \sqrt{\left(4 + \frac{1}{x_r}\right)}$$
 (*)

to determine the positive root correct to 4 decimal places.

(ii) The equation also has two negative roots. Without doing any calculations, explain why the iteration
(*) cannot be used to find these negative roots.

Use the fixed-point iteration

$$x_{r+1} = -\sqrt{\left(4 + \frac{1}{x_r}\right)}$$
 (**)

to find a negative root near to x = -2 correct to 4 decimal places. [5]

(iii) The third root of the equation lies in the interval (-1, 0). Show that the iteration (**) used in part (ii) will not converge to this third root. Use another fixed point iteration to find the third root correct to 4 decimal places.

[7]

[7]

4

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

4776 Numerical Methods

1	x f(x)	3 0.5	3.5 -0.8			x (-0.8) - 3.5 x 0.5 .192308 (3.19		[M1A1A1] [A1]
				(-) mpe is	3.5 - 3.192	2308 = 0.307602	(0.308, 0.31)	[M1A1]
								[TOTAL 6]
2	1 3	2 1	1					
	3 5	5	-1 4	5				
	7	k		k-9	k-14			
	9	2	2-k	7-2k	16-3k			[M1A1A1A1]
		16-3k = k-	14 h	ience k = 7	.5			[M1A1] [TOTAL 6]
3	h 0.2	f(2+h) .494507	f(2-h) .867869		f '(2) .566594			derivatives [M1A1A1A1]
	0.2	.323418	.010586		.564163	-0.00243		differences
	0.05	.241636	.085281		.563555	-0.00061		[M1A1]
		s reducing ure to 3 dp.		4 so next	estimate at	oout 1.56340.		[M1] [B1] [TOTAL 8]
4	$f(x) = x^3 - 2x^3 - 2$	5 (x _r ³ -25)/3x _r ²	f '(x) = 3x ²	2 (a.g.)				[M1A1A1]
		0	1	2	3			
	r x _r	4	3.1875	ے 945197.	2.92417			[M1A1]
	diffs		-0.8125	-0.2423	-0.02103			[B1]
	ratios		010120	.298219	.086783			[B1]
		s reducing	at an incre			ter than first orde	r)	[E1] [TOTAL 8]
5 (i)	0.001 369	352	(accept 0.	.001 369 4))			[B1]
(ii)	sin 86° = (564).997		sin 85° = 195	0.996			[B1B1]
		in 86 [°] = 0.0	01 369	100				[A1]
(iii)	2 x 0.0784 = 0.00136	1591 x 0.00 935	8 726 54					[M1] [A1]
(iv)	•				•	<i>(may be implied)</i> nbers and so lose		[E1] [E1]
								[TOTAL 8]

[M1A1A1] [M1A1A1A 1] [subtotal 7]	mid-point: trapezium:				2.594393	M 2.763547 2.677635 2.656743	1	6 (i)
[M1A1E1]	lied)	(may be imp	by a factor 4 $_{0}$	reducing b	diffs -0.08591 -0.02089	2.763547 2.677635 2.656743	M:	(ii)
[B1] [subtotal 4]			ctor 4, too	ice by a fa	es in T redu	Differenc		
[M1] [A1A1] [A1]	S values: diffs		-0.0008903 -0.0000543		T 2.425240 2.594393 2.636014	M 2.763547 2.677635 2.656743		(iii)
[E1] [E1] [A1] [subtotal 7]	ut) 16 r about 2.649830		•	answer, e it -0.00000	leads to an	How this Next diffe		
[TOTAL 18]								
[G2] [B1]		ntersection	ing single ir a = 2		4 + 1/x for > nd interval (7 (i)
[M1A1A1] [A1] [subtotal 7]	5 2.114907	4 2.11491	3 2.114859		1 2.097618 ecure to 4 d		r X _r	
[E1]				es only.	oositive valu	tion gives p	The itera	(ii)
[M1A1A1] [A1] [subtotal 5]	5 -1.86081	4 -1.86081	3 -1.86087		1 -1.87083 ecure to 4 dp	-2	r x _r	
[M1A1]			2 -1.81463 (converging		0 -0.5 erging to red	r xr not conve	Eg	(iii)
[M1]					$(x_r^2 - 4)$	x _{r+1} = 1 /	Eg	
[M1A1] [A1] [subtotal 6]	5 -0.2541	4 -0.2541	3 -0.25412		1	0 -0.5	r Xr	
[TOTAL 18]								