RECOGNISING ACHIEVEMENT

ADVANCED GCE

Answer Booklet (8 pages)
Graph paper
MEI Examination Formulae and Tables (MF2)

INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer all the questions in Section A and one question from Section B.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.

Section A (54 marks)

Answer all the questions

1 (a) A curve has cartesian equation $\left(x^{2}+y^{2}\right)^{2}=3 x y^{2}$.
(i) Show that the polar equation of the curve is $r=3 \cos \theta \sin ^{2} \theta$.
(ii) Hence sketch the curve.
(b) Find the exact value of $\int_{0}^{1} \frac{1}{\sqrt{4-3 x^{2}}} \mathrm{~d} x$.
(c) (i) Write down the series for $\ln (1+x)$ and the series for $\ln (1-x)$, both as far as the term in x^{5}.
(ii) Hence find the first three non-zero terms in the series for $\ln \left(\frac{1+x}{1-x}\right)$.
(iii) Use the series in part (ii) to show that $\sum_{r=0}^{\infty} \frac{1}{(2 r+1) 4^{r}}=\ln 3$.

2 You are given the complex numbers $z=\sqrt{32}(1+\mathrm{j})$ and $w=8\left(\cos \frac{7}{12} \pi+\mathrm{j} \sin \frac{7}{12} \pi\right)$.
(i) Find the modulus and argument of each of the complex numbers $z, z^{*}, z w$ and $\frac{z}{w}$.
(ii) Express $\frac{z}{w}$ in the form $a+b \mathrm{j}$, giving the exact values of a and b.
(iii) Find the cube roots of z, in the form $r \mathrm{e}^{\mathrm{j} \theta}$, where $r>0$ and $-\pi<\theta \leqslant \pi$.
(iv) Show that the cube roots of z can be written as

$$
\begin{equation*}
k_{1} w^{*}, \quad k_{2} z^{*} \quad \text { and } \quad k_{3} \mathrm{j} w, \tag{5}
\end{equation*}
$$

where k_{1}, k_{2} and k_{3} are real numbers. State the values of k_{1}, k_{2} and k_{3}.

3 (i) Given the matrix $\mathbf{Q}=\left(\begin{array}{rrr}2 & -1 & k \\ 1 & 0 & 1 \\ 3 & 1 & 2\end{array}\right)$ (where $k \neq 3$), find \mathbf{Q}^{-1} in terms of k.
Show that, when $k=4, \mathbf{Q}^{-1}=\left(\begin{array}{rrr}-1 & 6 & -1 \\ 1 & -8 & 2 \\ 1 & -5 & 1\end{array}\right)$.
The matrix \mathbf{M} has eigenvectors $\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right),\left(\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}4 \\ 1 \\ 2\end{array}\right)$, with corresponding eigenvalues $1,-1$ and 3 respectively.
(ii) Write down a matrix \mathbf{P} and a diagonal matrix \mathbf{D} such that $\mathbf{P}^{-1} \mathbf{M P}=\mathbf{D}$, and hence find the matrix \mathbf{M}.
(iii) Write down the characteristic equation for \mathbf{M}, and use the Cayley-Hamilton theorem to find integers a, b and c such that $\mathbf{M}^{4}=a \mathbf{M}^{2}+b \mathbf{M}+c \mathbf{I}$.

Section B (18 marks)

Answer one question

Option 1: Hyperbolic functions
4 (i) Starting from the definitions of $\sinh x$ and $\cosh x$ in terms of exponentials, prove that

$$
\begin{equation*}
\cosh ^{2} x-\sinh ^{2} x=1 \tag{3}
\end{equation*}
$$

(ii) Solve the equation $4 \cosh ^{2} x+9 \sinh x=13$, giving the answers in exact logarithmic form.
(iii) Show that there is only one stationary point on the curve

$$
y=4 \cosh ^{2} x+9 \sinh x,
$$

and find the y-coordinate of the stationary point.
(iv) Show that $\int_{0}^{\ln 2}\left(4 \cosh ^{2} x+9 \sinh x\right) \mathrm{d} x=2 \ln 2+\frac{33}{8}$.

Option 2: Investigation of curves
This question requires the use of a graphical calculator.
5 A curve has parametric equations $x=\lambda \cos \theta-\frac{1}{\lambda} \sin \theta, y=\cos \theta+\sin \theta$, where λ is a positive constant.
(i) Use your calculator to obtain a sketch of the curve in each of the cases

$$
\begin{equation*}
\lambda=0.5, \quad \lambda=3 \quad \text { and } \quad \lambda=5 . \tag{3}
\end{equation*}
$$

(ii) Given that the curve is a conic, name the type of conic.
(iii) Show that y has a maximum value of $\sqrt{2}$ when $\theta=\frac{1}{4} \pi$.
(iv) Show that $x^{2}+y^{2}=\left(1+\lambda^{2}\right)+\left(\frac{1}{\lambda^{2}}-\lambda^{2}\right) \sin ^{2} \theta$, and deduce that the distance from the origin of any point on the curve is between $\sqrt{1+\frac{1}{\lambda^{2}}}$ and $\sqrt{1+\lambda^{2}}$.
(v) For the case $\lambda=1$, show that the curve is a circle, and find its radius.
(vi) For the case $\lambda=2$, draw a sketch of the curve, and label the points A, B, C, D, E, F, G, H on the curve corresponding to $\theta=0, \frac{1}{4} \pi, \frac{1}{2} \pi, \frac{3}{4} \pi, \pi, \frac{5}{4} \pi, \frac{3}{2} \pi, \frac{7}{4} \pi$ respectively. You should make clear what is special about each of these points.

4756 (FP2) Further Methods for Advanced Mathematics

1(a)(i)	$\begin{aligned} & x=r \cos \theta, y=r \sin \theta \\ &\left(r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta\right)^{2}=3(r \cos \theta)(r \sin \theta)^{2} \\ & r^{4}=3 r^{3} \cos \theta \sin ^{2} \theta \\ & r=3 \cos \theta \sin ^{2} \theta \end{aligned}$	M1 A1 A1 ag 3	(M0 for $x=\cos \theta, y=\sin \theta$)
(ii)		B1 B1 B1 3	Loop in 1st quadrant Loop in 4th quadrant Fully correct curve Curve may be drawn using continuous or broken lines in any combination
(b)	$\begin{aligned} \int_{0}^{1} \frac{1}{\sqrt{4-3 x^{2}}} \mathrm{~d} x & =\left[\frac{1}{\sqrt{3}} \arcsin \frac{\sqrt{3} x}{2}\right]_{0}^{1} \\ & =\frac{1}{\sqrt{3}} \arcsin \frac{\sqrt{3}}{2} \\ & =\frac{\pi}{3 \sqrt{3}} \end{aligned}$	M1 A1A1 M1 A1 5	For arcsin For $\frac{1}{\sqrt{3}}$ and $\frac{\sqrt{3} x}{2}$ Exact numerical value Dependent on first M1 (M1A0 for $60 / \sqrt{3}$)
	OR M1 Put $\sqrt{3} x=2 \sin \theta$ $\begin{array}{r} \int_{0}^{1} \frac{1}{\sqrt{4-3 x^{2}}} \mathrm{~d} x=\int_{0}^{\frac{\pi}{3}} \frac{1}{\sqrt{3}} \mathrm{~d} \theta \\ =\frac{\pi}{3 \sqrt{3}} \end{array}$ M1A1		Any sine substitution For $\int \frac{1}{\sqrt{3}} \mathrm{~d} \theta$ M1 dependent on first M1
(c)(i)	$\begin{aligned} & \ln (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\frac{1}{4} x^{4}+\frac{1}{5} x^{5}-\ldots \\ & \ln (1-x)=-x-\frac{1}{2} x^{2}-\frac{1}{3} x^{3}-\frac{1}{4} x^{4}-\frac{1}{5} x^{5}-\ldots \end{aligned}$	B1 B1 2	Accept unsimplified forms
(ii)	$\begin{aligned} \ln \left(\frac{1+x}{1-x}\right) & =\ln (1+x)-\ln (1-x) \\ & =2 x+\frac{2}{3} x^{3}+\frac{2}{5} x^{5}+\ldots \end{aligned}$	M1 A1 2	Obtained from two correct series Terms need not be added If M0, then B1 for $2 x+\frac{2}{3} x^{3}+\frac{2}{5} x^{5}$

(iii)	$\begin{aligned} \sum_{r=0}^{\infty} \frac{1}{(2 r+1) 4^{r}} & =1+\frac{1}{3 \times 4}+\frac{1}{5 \times 4^{2}}+\ldots \\ & =2 \times \frac{1}{2}+\frac{2}{3} \times\left(\frac{1}{2}\right)^{3}+\frac{2}{5} \times\left(\frac{1}{2}\right)^{5}+\ldots \\ & =\ln \left(\frac{1+1 / 2}{1-1 / 2}\right)=\ln 3 \end{aligned}$	B1 B1 B1 ag 3	Terms need not be added For $x=\frac{1}{2}$ seen or implied Satisfactory completion
2 (i)	$\begin{aligned} & \|z\|=8, \quad \arg z=\frac{1}{4} \pi \\ & \left\|z^{*}\right\|=8, \quad \arg z^{*}=-\frac{1}{4} \pi \\ & \|z w\|=8 \times 8=64 \\ & \arg (z w)=\frac{1}{4} \pi+\frac{7}{12} \pi=\frac{5}{6} \pi \\ & \left\|\frac{z}{w}\right\|=\frac{8}{8}=1 \\ & \arg \left(\frac{z}{w}\right)=\frac{1}{4} \pi-\frac{7}{12} \pi=-\frac{1}{3} \pi \end{aligned}$	B1B1 B1 ft	Must be given separately Remainder may be given in exponential or $r \operatorname{cjs} \theta$ form (B0 for $\frac{7}{4} \pi$) (B0 if left as $8 / 8$)
(ii)	$\begin{aligned} \frac{z}{w} & =\cos \left(-\frac{1}{3} \pi\right)+\mathrm{j} \sin \left(-\frac{1}{3} \pi\right) \\ & =\frac{1}{2}-\frac{\sqrt{3}}{2} \mathrm{j} \\ a & =\frac{1}{2}, \quad b=-\frac{1}{2} \sqrt{3} \end{aligned}$	$\begin{array}{\|ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	If M0, then B1B1 for $\frac{1}{2}$ and $-\frac{\sqrt{3}}{2}$
(iii)	$\begin{aligned} & r=\sqrt[3]{8}=2 \\ & \theta=\frac{1}{12} \pi \\ & \theta=\frac{\pi}{12}+\frac{2 k \pi}{3} \\ & \theta=-\frac{7}{12} \pi, \quad \frac{3}{4} \pi \end{aligned}$	B1 ft B1 M1 A1 4	Accept $\sqrt[3]{8}$ Implied by one further correct (ft) value Ignore values outside the required range
(iv)	$\begin{aligned} & w^{*}=8 \mathrm{e}^{-\frac{7}{12} \pi \mathrm{j}}, \text { so } 2 \mathrm{e}^{-\frac{7}{12} \pi \mathrm{j}}=\frac{1}{4} w^{*} \\ & k_{1}=\frac{1}{4} \\ & z^{*}=8 \mathrm{e}^{-\frac{1}{4} \pi \mathrm{j}}=-8 \mathrm{e}^{\frac{3}{4} \pi \mathrm{j}} \end{aligned}$ So 2 $\begin{aligned} 2 \mathrm{e}^{\frac{3}{4} \pi \mathrm{j}} & =-\frac{1}{4} z^{*} \\ k_{2} & =-\frac{1}{4} \end{aligned}$ $\begin{aligned} & \mathrm{j} w=8 \mathrm{e}^{\left(\frac{1}{2} \pi+\frac{7}{12} \pi\right) \mathrm{j}}=8 \mathrm{e}^{\frac{13}{12} \pi \mathrm{j}} \\ & =-8 \mathrm{e}^{\frac{1}{12} \pi \mathrm{j}}, \quad \text { so } 2 \mathrm{e}^{\frac{1}{12} \pi \mathrm{j}}=-\frac{1}{4} \mathrm{j} w \\ & k_{3}=-\frac{1}{4} \end{aligned}$	B1 ft M1 A1 ft M1 A1 ft	Matching w^{*} to a cube root with argument $-\frac{7}{12} \pi$ and $k_{1}=\frac{1}{4}$ or ft ft is $\frac{r}{8}$ Matching z^{*} to a cube root with argument $\frac{3}{4} \pi$ May be implied ft is $-\frac{r}{\left\|z^{*}\right\|}$ Matching jw to a cube root with argument $\frac{1}{12} \pi$ May be implied OR M1 for $\arg (\mathrm{j} w)=\frac{1}{2} \pi+\arg w$ (implied by $\frac{13}{12} \pi$ or $-\frac{11}{12} \pi$) ft is $-\frac{r}{8}$

3 (i)	$\mathbf{Q}^{-1}=\frac{1}{k-3}\left(\begin{array}{ccc} -1 & k+2 & -1 \\ 1 & 4-3 k & k-2 \\ 1 & -5 & 1 \end{array}\right)$ When $k=4, \mathbf{Q}^{-1}=\left(\begin{array}{ccc}-1 & 6 & -1 \\ 1 & -8 & 2 \\ 1 & -5 & 1\end{array}\right)$	M1 A1 M1 A1 M1 A1	Evaluation of determinant (must involve k) For ($k-3$) Finding at least four cofactors (including one involving k) Six signed cofactors correct (including one involving k) Transposing and dividing by det Dependent on previous M1M1 \mathbf{Q}^{-1} correct (in terms of k) and result for $k=4$ stated After 0, SC1 for \mathbf{Q}^{-1} when $k=4$ obtained correctly with some working
(ii)	$\begin{aligned} \mathbf{P} & =\left(\begin{array}{ccc} 2 & -1 & 4 \\ 1 & 0 & 1 \\ 3 & 1 & 2 \end{array}\right), \quad \mathbf{D}=\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{array}\right) \\ \mathbf{M} & =\mathbf{P} \mathbf{~} \mathbf{P}^{-1} \\ & =\left(\begin{array}{ccc} 2 & -1 & 4 \\ 1 & 0 & 1 \\ 3 & 1 & 2 \end{array}\right)\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{array}\right)\left(\begin{array}{ccc} -1 & 6 & -1 \\ 1 & -8 & 2 \\ 1 & -5 & 1 \end{array}\right) \\ & =\left(\begin{array}{ccc} 2 & 1 & 12 \\ 1 & 0 & 3 \\ 3 & -1 & 6 \end{array}\right)\left(\begin{array}{ccc} -1 & 6 & -1 \\ 1 & -8 & 2 \\ 1 & -5 & 1 \end{array}\right) \\ & =\left(\begin{array}{ccc} 11 & -56 & 12 \\ 2 & -9 & 2 \\ 2 & -4 & 1 \end{array}\right) \end{aligned}$	B1B1 B2 M1 A2	For B2, order must be consistent Give B1 for $\mathbf{M}=\mathbf{P}^{-1} \mathbf{D} \mathbf{P}$ $\text { or }\left(\begin{array}{ccc} 2 & -1 & 4 \\ 1 & 0 & 1 \\ 3 & 1 & 2 \end{array}\right)\left(\begin{array}{ccc} -1 & 6 & -1 \\ -1 & 8 & -2 \\ 3 & -15 & 3 \end{array}\right)$ Good attempt at multiplying two matrices (no more than 3 errors), leaving third matrix in correct position Give A1 for five elements correct Correct M implies B2M1A2 5-8 elements correct implies B2M1A1
(iii)	Characteristic equation is $\begin{aligned} & (\lambda-1)(\lambda+1)(\lambda-3)=0 \\ & \begin{array}{l} \lambda^{3}-3 \lambda^{2}-\lambda+3=0 \\ \mathbf{M}^{3}=3 \mathbf{M}^{2}+\mathbf{M}-3 \mathbf{I} \\ \begin{aligned} \mathbf{M}^{4} & =3 \mathbf{M}^{3}+\mathbf{M}^{2}-3 \mathbf{M} \\ & =3\left(3 \mathbf{M}^{2}+\mathbf{M}-3 \mathbf{I}\right)+\mathbf{M}^{2}-3 \mathbf{M} \\ \quad & =10 \mathbf{M}^{2}-9 \mathbf{I} \end{aligned} \\ a=10, b=0, c=-9 \end{array} \end{aligned}$	$\begin{array}{\|ll} \hline \text { B1 } \\ \text { M1 } & \\ \text { A1 } & \\ \\ \text { M1 } & \\ \text { A1 } & 5 \end{array}$	In any correct form (Condone omission of $=0$) M satisfies the characteristic equation Correct expanded form (Condone omission of I)

4 (i)	$\begin{aligned} & \cosh ^{2} x=\left[\frac{1}{2}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)\right]^{2}=\frac{1}{4}\left(\mathrm{e}^{2 x}+2+\mathrm{e}^{-2 x}\right) \\ & \sinh ^{2} x=\left[\frac{1}{2}\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)\right]^{2}=\frac{1}{4}\left(\mathrm{e}^{2 x}-2+\mathrm{e}^{-2 x}\right) \\ & \cosh ^{2} x-\sinh ^{2} x=\frac{1}{4}(2+2)=1 \end{aligned}$	B1 B1 B1 ag 3	For completion
	OR $\begin{array}{\|ll\|} \cosh x+\sinh x=\frac{1}{2}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)+\frac{1}{2}\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)=\mathrm{e}^{x} & \mathrm{~B} 1 \tag{B1}\\ \cosh x-\sinh x=\frac{1}{2}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)-\frac{1}{2}\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)=\mathrm{e}^{-x} & \mathrm{~B} 1 \\ \cosh ^{2} x-\sinh ^{2} x=\mathrm{e}^{x} \times \mathrm{e}^{-x}=1 & \mathrm{~B} 1 \end{array}$		Completion
(ii)	$\begin{aligned} 4\left(1+\sinh ^{2} x\right) & +9 \sinh x=13 \\ 4 \sinh ^{2} x & +9 \sinh x-9=0 \\ \sinh x & =\frac{3}{4},-3 \\ x & =\ln 2, \ln (-3+\sqrt{10}) \end{aligned}$	M1 M1 A1A1 A1A1 ft 6	(M0 for $1-\sinh ^{2} x$) Obtaining a value for $\sinh x$ Exact logarithmic form Dep on M1M1 Max A1 if any extra values given
	$\begin{aligned} \text { OR } & 2 \mathrm{e}^{4 x}+9 \mathrm{e}^{3 x}-22 \mathrm{e}^{2 x}-9 \mathrm{e}^{x}+2=0 \\ & \left(2 \mathrm{e}^{2 x}-3 \mathrm{e}^{x}-2\right)\left(\mathrm{e}^{2 x}+6 \mathrm{e}^{x}-1\right)=0 \\ & \mathrm{e}^{x}=2,-3+\sqrt{10} \\ & x=\ln 2, \ln (-3+\sqrt{10}) \end{aligned}$ M1 M1 A1A1		Quadratic and / or linear factors Obtaining a value for e^{x} Ignore extra values Dependent on M1M1 Max A1 if any extra values given Just $x=\ln 2$ earns MOM1A1A0A0A0
(iii)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=8 \cosh x \sinh x+9 \cosh x \\ &=\cosh x(8 \sinh x+9) \\ &=0 \text { only when } \sinh x=-\frac{9}{8} \\ & \cosh ^{2} x=1+\left(-\frac{9}{8}\right)^{2}=\frac{145}{64} \\ & y=4 \times \frac{145}{64}+9 \times\left(-\frac{9}{8}\right)=-\frac{17}{16} \end{aligned}$	B1 B1 M1 A1	Any correct form or $y=\left(2 \sinh x+\frac{9}{4}\right)^{2}+\ldots\left(-\frac{17}{16}\right)$ Correctly showing there is only one solution Exact evaluation of y or $\cosh ^{2} x$ or $\cosh 2 x$ Give B2 (replacing M1A1) for -1.06 or better
(iv)	$\begin{aligned} \int_{0}^{\ln 2} & (2+2 \cosh 2 x+9 \sinh x) \mathrm{d} x \\ & =[2 x+\sinh 2 x+9 \cosh x]_{0}^{\ln 2} \\ & =\left\{2 \ln 2+\frac{1}{2}\left(4-\frac{1}{4}\right)+\frac{9}{2}\left(2+\frac{1}{2}\right)\right\}-9 \\ & =2 \ln 2+\frac{33}{8} \end{aligned}$	M1 A2 M1 A1 ag	Expressing in integrable form Give A1 for two terms correct $\sinh (2 \ln 2)=\frac{1}{2}\left(4-\frac{1}{4}\right)$ Must see both terms for M1 Must also see $\cosh (\ln 2)=\frac{1}{2}\left(2+\frac{1}{2}\right)$ for A1

	$\begin{array}{rr} \text { OR } \int_{0}^{\ln 2}\left(\mathrm{e}^{2 x}+2+\mathrm{e}^{-2 x}+\frac{9}{2}\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)\right) \mathrm{d} x & \mathrm{M} 1 \\ =\left[\frac{1}{2} \mathrm{e}^{2 x}+2 x-\frac{1}{2} \mathrm{e}^{-2 x}+\frac{9}{2} \mathrm{e}^{x}+\frac{9}{2} \mathrm{e}^{-x}\right]_{0}^{\ln 2} & \text { A2 } \tag{A2}\\ =\left(2+2 \ln 2-\frac{1}{8}+9+\frac{9}{4}\right)-\left(\frac{1}{2}-\frac{1}{2}+\frac{9}{2}+\frac{9}{2}\right) \mathrm{M} 1 \\ & =2 \ln 2+\frac{33}{8} \end{array}$		Expanded exponential form (M0 if the 2 is omitted) Give A1 for three terms correct $\mathrm{e}^{2 \ln 2}=4 \text { and } \mathrm{e}^{-2 \ln 2}=\frac{1}{4} \text { both seen }$ Must also see $\mathrm{e}^{\ln 2}=2 \text { and } \mathrm{e}^{-\ln 2}=\frac{1}{2}$ for A1
5 (i)		B_{3}	
(ii)	Ellipse		
(iii)	$\begin{aligned} & y=\sqrt{2} \cos \left(\theta-\frac{1}{4} \pi\right) \\ & \text { Maximum } y=\sqrt{2} \text { when } \theta=\frac{1}{4} \pi \end{aligned}$	M1 A1 ag	or $\sqrt{2} \sin \left(\theta+\frac{1}{4} \pi\right)$
	$\begin{array}{cc} \text { OR } \frac{\mathrm{d} y}{\mathrm{~d} \theta}=-\sin \theta+\cos \theta=0 \text { when } \theta=\frac{1}{4} \pi & \mathrm{M} 1 \\ y=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\sqrt{2} & \text { A1 } \end{array}$		
(iv)	$\begin{aligned} x^{2}+y^{2}= & \lambda^{2} \cos ^{2} \theta-2 \cos \theta \sin \theta+\frac{1}{\lambda^{2}} \sin ^{2} \theta \\ & +\cos ^{2} \theta+2 \cos \theta \sin \theta+\sin ^{2} \theta \\ = & \left(\lambda^{2}+1\right)\left(1-\sin ^{2} \theta\right)+\left(\frac{1}{\lambda^{2}}+1\right) \sin ^{2} \theta \\ = & 1+\lambda^{2}+\left(\frac{1}{\lambda^{2}}-\lambda^{2}\right) \sin ^{2} \theta \end{aligned}$ When $\sin ^{2} \theta=0, x^{2}+y^{2}=1+\lambda^{2}$ When $\sin ^{2} \theta=1, x^{2}+y^{2}=1+\frac{1}{\lambda^{2}}$ Since $0 \leq \sin ^{2} \theta \leq 1$, distance from O , $\sqrt{x^{2}+y^{2}}$, is between $\sqrt{1+\frac{1}{\lambda^{2}}}$ and $\sqrt{1+\lambda^{2}}$	M1 M1 A1 ag M1 M1 A1 ag	Using $\cos ^{2} \theta=1-\sin ^{2} \theta$
(v)	When $\lambda=1, x^{2}+y^{2}=2$ Curve is a circle (centre O) with radius $\sqrt{2}$	$\begin{array}{\|ll} \hline \text { M1 } & \\ \text { A1 } & 2 \end{array}$	

(vi)

