

ADVANCED GCE

MATHEMATICS (MEI)

Further Methods for Advanced Mathematics (FP2)

THURSDAY 15 MAY 2008

4756/01

Morning

Time: 1 hour 30 minutes

Additional materials (enclosed): None

Additional materials (required):

Answer Booklet (8 pages) Graph paper MEI Examination Formulae and Tables (MF2)

INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer **all** the questions in Section A and **one** question from Section B.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.

This document consists of **4** printed pages.

© OCR 2008 [H/102/2664]

Section A (54 marks)

Answer all the questions

- 1 (a) A curve has cartesian equation $(x^2 + y^2)^2 = 3xy^2$.
 - (i) Show that the polar equation of the curve is $r = 3 \cos \theta \sin^2 \theta$. [3]
 - (ii) Hence sketch the curve.

(**b**) Find the exact value of
$$\int_0^1 \frac{1}{\sqrt{4-3x^2}} dx.$$
 [5]

(c) (i) Write down the series for $\ln(1 + x)$ and the series for $\ln(1 - x)$, both as far as the term in x^5 . [2]

(ii) Hence find the first three non-zero terms in the series for $\ln\left(\frac{1+x}{1-x}\right)$. [2]

(iii) Use the series in part (ii) to show that
$$\sum_{r=0}^{\infty} \frac{1}{(2r+1)4^r} = \ln 3.$$
 [3]

2 You are given the complex numbers $z = \sqrt{32}(1 + j)$ and $w = 8\left(\cos\frac{7}{12}\pi + j\sin\frac{7}{12}\pi\right)$.

- (i) Find the modulus and argument of each of the complex numbers z, z^*, zw and $\frac{z}{w}$. [7]
- (ii) Express $\frac{z}{w}$ in the form a + bj, giving the exact values of a and b. [2]
- (iii) Find the cube roots of z, in the form $re^{j\theta}$, where r > 0 and $-\pi < \theta \le \pi$. [4]
- (iv) Show that the cube roots of z can be written as

$$k_1 w^*$$
, $k_2 z^*$ and $k_3 j w$,

where k_1, k_2 and k_3 are real numbers. State the values of k_1, k_2 and k_3 . [5]

[3]

(i) Given the matrix $\mathbf{Q} = \begin{pmatrix} 2 & -1 & k \\ 1 & 0 & 1 \\ 3 & 1 & 2 \end{pmatrix}$ (where $k \neq 3$), find \mathbf{Q}^{-1} in terms of k. 3

Show that, when
$$k = 4$$
, $\mathbf{Q}^{-1} = \begin{pmatrix} -1 & 6 & -1 \\ 1 & -8 & 2 \\ 1 & -5 & 1 \end{pmatrix}$. [6]

The matrix **M** has eigenvectors $\begin{pmatrix} 2\\1\\3 \end{pmatrix}$, $\begin{pmatrix} -1\\0\\1 \end{pmatrix}$ and $\begin{pmatrix} 4\\1\\2 \end{pmatrix}$, with corresponding eigenvalues 1, -1 and 3 respectively.

- (ii) Write down a matrix **P** and a diagonal matrix **D** such that $\mathbf{P}^{-1}\mathbf{M}\mathbf{P} = \mathbf{D}$, and hence find the matrix M. [7]
- (iii) Write down the characteristic equation for M, and use the Cayley-Hamilton theorem to find integers a, b and c such that $\mathbf{M}^4 = a\mathbf{M}^2 + b\mathbf{M} + c\mathbf{I}$. [5]

Section B (18 marks)

Answer one question

Option 1: Hyperbolic functions

4 (i) Starting from the definitions of $\sinh x$ and $\cosh x$ in terms of exponentials, prove that

$$\cosh^2 x - \sinh^2 x = 1.$$
 [3]

[4]

- (ii) Solve the equation $4\cosh^2 x + 9\sinh x = 13$, giving the answers in exact logarithmic form. [6]
- (iii) Show that there is only one stationary point on the curve

$$y = 4\cosh^2 x + 9\sinh x,$$

and find the y-coordinate of the stationary point.

(iv) Show that
$$\int_0^{\ln 2} (4\cosh^2 x + 9\sinh x) dx = 2\ln 2 + \frac{33}{8}.$$
 [5]

[Question 5 is printed overleaf.]

Option 2: Investigation of curves

This question requires the use of a graphical calculator.

- 5 A curve has parametric equations $x = \lambda \cos \theta \frac{1}{\lambda} \sin \theta$, $y = \cos \theta + \sin \theta$, where λ is a positive constant.
 - (i) Use your calculator to obtain a sketch of the curve in each of the cases

$$\lambda = 0.5, \quad \lambda = 3 \quad \text{and} \quad \lambda = 5.$$
 [3]

- (ii) Given that the curve is a conic, name the type of conic. [1]
- (iii) Show that y has a maximum value of $\sqrt{2}$ when $\theta = \frac{1}{4}\pi$. [2]
- (iv) Show that $x^2 + y^2 = (1 + \lambda^2) + (\frac{1}{\lambda^2} \lambda^2) \sin^2 \theta$, and deduce that the distance from the origin of any point on the curve is between $\sqrt{1 + \frac{1}{\lambda^2}}$ and $\sqrt{1 + \lambda^2}$. [6]
- (v) For the case $\lambda = 1$, show that the curve is a circle, and find its radius. [2]
- (vi) For the case $\lambda = 2$, draw a sketch of the curve, and label the points A, B, C, D, E, F, G, H on the curve corresponding to $\theta = 0, \frac{1}{4}\pi, \frac{1}{2}\pi, \frac{3}{4}\pi, \pi, \frac{5}{4}\pi, \frac{3}{2}\pi, \frac{7}{4}\pi$ respectively. You should make clear what is special about each of these points. [4]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

4756 (FP2) Further Methods for Advanced Mathematics

1(a)(i)	$x = r\cos\theta, \ y = r\sin\theta$	M1		(M0 for $x = \cos \theta$, $y = \sin \theta$)
	$(r^2 \cos^2 \theta + r^2 \sin^2 \theta)^2 = 3(r \cos \theta)(r \sin \theta)^2$	A1		
	$r^4 = 3r^3\cos\theta\sin^2\theta$			
	$r = 3\cos\theta\sin^2\theta$	A1 ag		
		Ũ	3	
(ii)	\square	B1 B1		Loop in 1st quadrant Loop in 4th quadrant
	\square	B1	3	Fully correct curve Curve may be drawn using continuous or broken lines in any combination
(b)	$\begin{bmatrix} 1 & 1 & \sqrt{3} \\ r \end{bmatrix}^{1}$	M1		For arcsin
	$\int_{0} \frac{1}{\sqrt{4-3x^2}} dx = \left[\frac{1}{\sqrt{3}} \arcsin \frac{\sqrt{3x}}{2} \right]_{0}$	A1A1		For $\frac{1}{\sqrt{3}}$ and $\frac{\sqrt{3}x}{2}$
	$=\frac{1}{\sqrt{3}}\arcsin\frac{\sqrt{3}}{2}$	M1		Exact numerical value
	$=\frac{\pi}{3\sqrt{3}}$	A1	E	(M1A0 for $60/\sqrt{3}$)
				Any since substitution
	Put $\sqrt{3} x = 2 \sin \theta$ A1			Any sine substitution
	$\int_{0}^{1} \frac{1}{\sqrt{4-3x^{2}}} \mathrm{d}x = \int_{0}^{\frac{\pi}{3}} \frac{1}{\sqrt{3}} \mathrm{d}\theta \qquad \qquad A1$			For $\int \frac{1}{\sqrt{3}} d\theta$
	$=\frac{\pi}{3\sqrt{3}}$ M1A1			M1 dependent on first M1
(c)(i)	$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \frac{1}{5}x^5 - \dots$	B1		
	$\ln(1-x) = -x - \frac{1}{2}x^2 - \frac{1}{3}x^3 - \frac{1}{4}x^4 - \frac{1}{5}x^5 - \dots$	B1	2	Accept unsimplified forms
(ii)	$\ln\left(\frac{1+x}{1-x}\right) = \ln(1+x) - \ln(1-x)$	M1		
	$=2x+\frac{2}{3}x^{3}+\frac{2}{5}x^{5}+$	A1	2	Obtained from two correct series <i>Terms need not be added</i> If M0, then B1 for $2x + \frac{2}{3}x^3 + \frac{2}{5}x^5$

(iii)	∞ 1 1 1		
(,	$\sum_{r=0}^{1} \frac{1}{(2r+1)4^r} = 1 + \frac{1}{3\times 4} + \frac{1}{5\times 4^2} + \dots$	B1	Terms need not be added
	$= 2 \times \frac{1}{2} + \frac{2}{3} \times (\frac{1}{2})^3 + \frac{2}{5} \times (\frac{1}{2})^5 + \dots$	B1	For $x = \frac{1}{2}$ seen or implied
	$= \ln\left(\frac{1+\frac{1}{2}}{1-\frac{1}{2}}\right) = \ln 3$	B1 ag 3	Satisfactory completion
2 (i)	$ z = 8$, arg $z = \frac{1}{4}\pi$	B1B1	Must be given separately Remainder may be given in exponential or r cis θ form
	$ z^* = 8$, arg $z^* = -\frac{1}{4}\pi$	B1 ft	(B0 for $\frac{7}{4}\pi$)
	$\left z w \right = 8 \times 8 = 64$	B1 ft	
	$\arg(z w) = \frac{1}{4}\pi + \frac{7}{12}\pi = \frac{5}{6}\pi$	B1 ft	
	$\left \frac{z}{w}\right = \frac{8}{8} = 1$	B1 ft	(B0 if left as 8/8)
	$\arg(\frac{z}{w}) = \frac{1}{4}\pi - \frac{7}{12}\pi = -\frac{1}{3}\pi$	B1 ft 7	
(ii)	$\frac{z}{w} = \cos(-\frac{1}{3}\pi) + j\sin(-\frac{1}{3}\pi)$	M1	
	$=\frac{1}{\sqrt{3}}-\frac{\sqrt{3}}{1}$	A1	If M0, then B1B1 for $\sqrt{2}$
	$2 2 2 3 a = \frac{1}{2}, b = -\frac{1}{2}\sqrt{3}$	2	$\frac{1}{2}$ and $-\frac{\sqrt{3}}{2}$
(iii)	$r = \sqrt[3]{8} = 2$	B1 ft	Accept $\sqrt[3]{8}$
	$\theta = \frac{1}{12} \pi$	B1	
	$\theta = \frac{\pi}{12} + \frac{2k\pi}{3}$	M1	Implied by one further correct
	$\theta = -\frac{7}{12}\pi, \frac{3}{4}\pi$	A1 4	(ft) value Ignore values outside the required range
(iv)	$w^* = 8 e^{-\frac{7}{12}\pi j}$, so $2 e^{-\frac{7}{12}\pi j} = \frac{1}{4} w^*$	B1 ft	Matching w^* to a cube root with argument $-\frac{7}{12}\pi$ and $k_1 = \frac{1}{4}$ or ft
	$\kappa_1 - \frac{1}{4}$		ft is $\frac{r}{8}$
	$z^* = 8 e^{-\frac{1}{4}\pi j} = -8 e^{\frac{3}{4}\pi j}$	M1	Matching z^* to a cube root with argument $\frac{3}{4}\pi$ May be implied
	So $2e^{\frac{3}{4}\pi j} = -\frac{1}{4}z^*$ $k_2 = -\frac{1}{4}$	A1 ft	ft is $-\frac{r}{ z^* }$
		M1	Matching jw to a cube root with argument $\frac{1}{12}\pi$ May be implied
	$(\frac{1}{2}\pi + \frac{7}{2}\pi)i = \frac{13}{2}\pi i$		OR M1 for $\arg(jw) = \frac{1}{2}\pi + \arg w$
	$j w = 8 e^{\sum_{i=1}^{n} \frac{1}{2^{n-i}}} = 8 e^{\sum_{i=1}^{n} \frac{1}{2^{n-i}}}$		(implied by $\frac{13}{12}\pi$ or $-\frac{11}{12}\pi$)
	$=-8 e^{12^{n/3}}$, SO $2 e^{12^{n/3}} = -\frac{1}{4} j w$		ft is $-\frac{7}{8}$
	$k_3 = -\frac{1}{4}$	A1 tt 5	

Mark Scheme

3 (i)	$\mathbf{Q}^{-1} = \frac{1}{k-3} \begin{pmatrix} -1 & k+2 & -1 \\ 1 & 4-3k & k-2 \\ 1 & -5 & 1 \end{pmatrix}$ When $k = 4$, $\mathbf{Q}^{-1} = \begin{pmatrix} -1 & 6 & -1 \\ 1 & -8 & 2 \\ 1 & -5 & 1 \end{pmatrix}$	M1 A1 A1 M1 A1 A1 6	Evaluation of determinant (must involve k) For $(k-3)$ Finding at least four cofactors (including one involving k) Six signed cofactors correct (including one involving k) Transposing and dividing by det Dependent on previous M1M1 Q^{-1} correct (in terms of k) and result for $k = 4$ stated After 0, SC1 for Q^{-1} when $k = 4$ obtained correctly with some working
(ii)	$\mathbf{P} = \begin{pmatrix} 2 & -1 & 4 \\ 1 & 0 & 1 \\ 3 & 1 & 2 \end{pmatrix}, \mathbf{D} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$	B1B1	For B2, order must be consistent
	$\mathbf{M} = \mathbf{P} \mathbf{D} \mathbf{P}^{-1}$ $= \begin{pmatrix} 2 & -1 & 4 \\ 1 & 0 & 1 \\ 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} -1 & 6 & -1 \\ 1 & -8 & 2 \\ 1 & -5 & 1 \end{pmatrix}$ $= \begin{pmatrix} 2 & 1 & 12 \\ 1 & 0 & 3 \\ 3 & -1 & 6 \end{pmatrix} \begin{pmatrix} -1 & 6 & -1 \\ 1 & -8 & 2 \\ 1 & -5 & 1 \end{pmatrix}$ $= \begin{pmatrix} 11 & -56 & 12 \\ 2 & -9 & 2 \\ 2 & -4 & 1 \end{pmatrix}$	B2 M1 A2 7	Give B1 for $\mathbf{M} = \mathbf{P}^{-1} \mathbf{D} \mathbf{P}$ or $\begin{pmatrix} 2 & -1 & 4 \\ 1 & 0 & 1 \\ 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} -1 & 6 & -1 \\ -1 & 8 & -2 \\ 3 & -15 & 3 \end{pmatrix}$ Good attempt at multiplying two matrices (no more than 3 errors), leaving third matrix in correct position Give A1 for five elements correct Correct M implies B2M1A2 5-8 elements correct implies B2M1A1
(iii)	Characteristic equation is $(\lambda - 1)(\lambda + 1)(\lambda - 3) = 0$	B1	In any correct form (Condone omission of =0)
	$\lambda^3 - 3\lambda^2 - \lambda + 3 = 0$	M1 A1	M satisfies the characteristic equation Correct expanded form
	$M^{2} = 3M^{2} + M - 31$		(Condone omission of I)
	$\mathbf{M}^{*} = 3\mathbf{M}^{3} + \mathbf{M}^{2} - 3\mathbf{M}$	M1	
	$= 3(3M + M - 3I) + M^{-} - 3M$ $= 10M^{2} - 9I$	A1 5	
	a = 10, b = 0, c = -9		

Mark Scheme

4 (i)	$\cosh^2 x = \left[\frac{1}{2}(e^x + e^{-x})\right]^2 = \frac{1}{4}(e^{2x} + 2 + e^{-2x})$	B1	
	$\sinh^2 x = \left[\frac{1}{2}(e^x - e^{-x})\right]^2 = \frac{1}{4}(e^{2x} - 2 + e^{-2x})$	B1	
	$\cosh^2 x - \sinh^2 x = \frac{1}{4}(2+2) = 1$	B1 ag 3	For completion
	OR		
	$\cosh x + \sinh x = \frac{1}{2}(e^x + e^{-x}) + \frac{1}{2}(e^x - e^{-x}) = e^x$ B1		
	$\cosh x - \sinh x = \frac{1}{2}(e^x + e^{-x}) - \frac{1}{2}(e^x - e^{-x}) = e^{-x}$ B1		
	$\cosh^2 x - \sinh^2 x = e^x \times e^{-x} = 1$ B1		Completion
(ii)	$4(1+\sinh^2 x)+9\sinh x=13$	M1	(M0 for $1-\sinh^2 x$)
	$4\sinh^2 x + 9\sinh x - 9 = 0$	M1	Obtaining a value for $\sinh x$
	$\sinh x = \frac{3}{4}, -3$	A1A1	
	$x = \ln 2$, $\ln(-3 + \sqrt{10})$	A1A1 ft	Exact logarithmic form Dep on M1M1
		0	Max A1 if any extra values given
	$OR 2e^{4x} + 9e^{3x} - 22e^{2x} - 9e^{x} + 2 = 0$		
	$(2e^{2x}-3e^x-2)(e^{2x}+6e^x-1)=0$ M1		Quadratic and / or linear factors
	$e^x = 2 - 3 \pm \sqrt{10}$ A1A1		Obtaining a value for e ^x
	$x = \ln 2$, $\ln(-3 + \sqrt{10})$ A1A1 ft		Dependent on M1M1
			Max A1 if any extra values given
			Just $x = \ln 2$ earns MOM1A1A0A0A0
	$\frac{dy}{dy} = 8\cosh r \sinh r + 9\cosh r$	B1	Any correct form
(iii)	dx		or $y = (2\sinh x + \frac{9}{4})^2 + \dots (-\frac{17}{16})$
	$= 0 \text{ only when sinh } x = -\frac{9}{2}$	B1	Correctly showing there is only
	$\cosh^2 x = 1 + (-\frac{9}{8})^2 = \frac{145}{64}$	M1	Exact evaluation of y or $\cosh^2 x$
	$y = 4y^{145} + 0y(-9) = -17$		or $\cosh 2x$
	$y = 4 \times \frac{64}{64} + 9 \times (-\frac{8}{8}) = -\frac{16}{16}$	A1	Give B2 (replacing M1A1) for -1.06 or better
	c ln 2		
(iv)	$(2+2\cosh 2x+9\sinh x)\mathrm{d}x$	M1	Expressing in integrable form
	$= \left[2x + \sinh 2x + 9\cosh x \right]_{0}^{\ln 2}$	A2	Give A1 for two terms correct
	$-\left\{2\ln 2 + \frac{1}{4}\begin{pmatrix} 1 \\ 4 \end{pmatrix}, 9\begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}\right\}$		$\sinh(2\ln 2) = \frac{1}{4} \begin{pmatrix} 4 & 1 \end{pmatrix}$
	$= \left\{ 2 \ln 2 + \frac{1}{2} \left(4 - \frac{1}{4} \right) + \frac{1}{2} \left(2 + \frac{1}{2} \right) \right\}^{-9}$	M1	$SIIII(2 III 2) = \frac{1}{2}(4 - \frac{1}{4})$ Must see both terms for M1
	$= 2 \ln 2 + \frac{33}{8}$	A1 ag	<i>Must also see</i> $\cosh(\ln 2) = \frac{1}{2}(2 + \frac{1}{2})$
	0	5	for A1

Mark Scheme

	OR $\int_{0}^{\ln 2} (e^{2x} + 2 + e^{-2x} + \frac{9}{2}(e^{x} - e^{-x})) dx$ M1 = $\left[\frac{1}{2}e^{2x} + 2x - \frac{1}{2}e^{-2x} + \frac{9}{2}e^{x} + \frac{9}{2}e^{-x}\right]_{0}^{\ln 2}$ A2 = $\left(2 + 2\ln 2 - \frac{1}{8} + 9 + \frac{9}{4}\right) - \left(\frac{1}{2} - \frac{1}{2} + \frac{9}{2} + \frac{9}{2}\right)$ M1 = $2\ln 2 + \frac{33}{8}$ A1 ag		Expanded exponential form (M0 if the 2 is omitted) Give A1 for three terms correct $e^{2\ln 2} = 4$ and $e^{-2\ln 2} = \frac{1}{4}$ both seen Must also see $e^{\ln 2} = 2$ and $e^{-\ln 2} = \frac{1}{2}$ for A1
5 (i)	$\lambda = 0.5$ $\lambda = 3$ $\lambda = 5$		
		B1B1B1 3	
(ii)	Ellipse	B1	
		1	
(iii)	$y = \sqrt{2}\cos(\theta - \frac{1}{4}\pi)$	M1	or $\sqrt{2}\sin(\theta + \frac{1}{4}\pi)$
	Maximum $y = \sqrt{2}$ when $\theta = \frac{1}{4}\pi$	A1 ag	
		2	
	OR $\frac{dy}{dt} = -\sin\theta + \cos\theta = 0$ when $\theta = \frac{1}{4}\pi$ M1		
	$d\theta \qquad \qquad$		
	$y - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} - \sqrt{2}$		
(iv)	$x^{2} + y^{2} = \lambda^{2} \cos^{2} \theta - 2 \cos \theta \sin \theta + \frac{1}{r^{2}} \sin^{2} \theta$		
	λ^2		
	$+\cos\theta + 2\cos\theta\sin\theta + \sin\theta$	IVIT	
	$= (\lambda^2 + 1)(1 - \sin^2 \theta) + (\frac{1}{\lambda^2} + 1)\sin^2 \theta$	M1	Using $\cos^2 \theta = 1 - \sin^2 \theta$
	$=1+\lambda^2+(\frac{1}{\lambda^2}-\lambda^2)\sin^2\theta$		
	When $\sin^2 \theta = 0$, $r^2 + v^2 - 1 + v^2$	A1 ag	
	When $\sin^2 a = 1 + 2 + 2 + 1$	M1	
	$v_{11} = 1, x^{-} + y^{-} = 1 + \frac{1}{\lambda^{2}}$	M1	
	Since $0 \le \sin^2 \theta \le 1$, distance from O,		
	$\sqrt{x^2 + y^2}$, is between $\sqrt{1 + \frac{1}{z^2}}$ and $\sqrt{1 + \lambda^2}$	A1 aq	
	v z	6	
(v)	When $\lambda = 1$, $x^2 + y^2 = 2$	M1	
	Curve is a circle (centre O) with radius $\sqrt{2}$	A1	
		2	

