

4768/01

ADVANCED GCE MATHEMATICS (MEI)

Statistics 3

TUESDAY 15 JANUARY 2008

Morning Time: 1 hour 30 minutes

Additional materials: Answer Booklet (8 pages) Graph paper MEI Examination Formulae and Tables (MF2)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer **all** the questions.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.

This document consists of **4** printed pages.

- 1 (a) The time (in milliseconds) taken by my computer to perform a particular task is modelled by the random variable *T*. The probability that it takes more than *t* milliseconds to perform this task is given by the expression $P(T > t) = \frac{k}{t^2}$ for $t \ge 1$, where *k* is a constant.
 - (i) Write down the cumulative distribution function of T and hence show that k = 1. [3]
 - (ii) Find the probability density function of T. [2]
 - (iii) Find the mean time for the task.
 - (b) For a different task, the times (in milliseconds) taken by my computer on 10 randomly chosen occasions were as follows.
 - 6.4 5.9 5.0 6.2 6.8 6.0 5.2 6.5 5.7 5.3

From past experience it is thought that the median time for this task is 5.4 milliseconds. Carry out a test at the 5% level of significance to investigate this, stating your hypotheses carefully.

[10]

[3]

2 In the vegetable section of a local supermarket, leeks are on sale either loose (and unprepared) or prepared in packs of 4.

The weights of unprepared leeks are modelled by the random variable X which has the Normal distribution with mean 260 grams and standard deviation 24 grams. The prepared leeks have had 40% of their weight removed, so that their weights, Y, are modelled by Y = 0.6X.

- (i) Find the probability that a randomly chosen unprepared leek weighs less than 300 grams. [3]
- (ii) Find the probability that a randomly chosen prepared leek weighs more than 175 grams. [3]
- (iii) Find the probability that the total weight of 4 randomly chosen prepared leeks in a pack is less than 600 grams. [3]
- (iv) What total weight of prepared leeks in a randomly chosen pack of 4 is exceeded with probability 0.975? [3]
- (v) Sandie is making soup. She uses 3 unprepared leeks and 2 onions. The weights of onions are modelled by the Normal distribution with mean 150 grams and standard deviation 18 grams. Find the probability that the total weight of her ingredients is more than 1000 grams. [3]
- (vi) A large consignment of unprepared leeks is delivered to the supermarket. A random sample of 100 of them is taken. Their weights have sample mean 252.4 grams and sample standard deviation 24.6 grams. Find a 99% confidence interval for the true mean weight of the leeks in this consignment.
 [3]

3 Engineers in charge of a chemical plant need to monitor the temperature inside a reaction chamber. Past experience has shown that when functioning correctly the temperature inside the chamber can be modelled by a Normal distribution with mean 380 °C. The engineers are concerned that the mean operating temperature may have fallen. They decide to test the mean using the following random sample of 12 recent temperature readings.

374.0	378.1	363.0	357.0	377.9	388.4
379.6	372.4	362.4	377.3	385.2	370.6

- (i) Give three reasons why a *t* test would be appropriate. [3]
- (ii) Carry out the test using a 5% significance level. State your hypotheses and conclusion carefully. [9]
- (iii) Find a 95% confidence interval for the true mean temperature in the reaction chamber. [4]
- (iv) Describe briefly one advantage and one disadvantage of having a 99% confidence interval instead of a 95% confidence interval.
- 4 (a) In Germany, towards the end of the nineteenth century, a study was undertaken into the distribution of the sexes in families of various sizes. The table shows some data about the numbers of girls in 500 families, each with 5 children. It is thought that the binomial distribution B(5, p) should model these data.

Number of girls	Number of families
0	32
1	110
2	154
3	125
4	63
5	16

- (i) Use this information to calculate an estimate for the mean number of girls per family of 5 children. Hence show that 0.45 can be taken as an estimate of *p*.
 [3]
- (ii) Investigate at a 5% significance level whether the binomial model with p estimated as 0.45 fits the data. Comment on your findings and also on the extent to which the conditions for a binomial model are likely to be met. [12]
- (b) A researcher wishes to select 50 families from the 500 in part (a) for further study. Suggest what sort of sample she might choose and describe how she should go about choosing it. [3]

4

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Q1 (a)	$P(T > t) = \frac{k}{t^2}$, <i>t</i> ≥1,					
(i)	F(t) = P(T <		T > t)		M1	Use of 1 – P().	-
(-)			,				
	$\therefore \mathbf{F}(t) = 1 - \frac{k}{t^2}$	_					
	F(1) = 0				M1		
	$\therefore 1 - \frac{k}{1^2} = 0$						
	$\therefore k = 1$				A1	Beware: answer given.	3
(ii)		(<i>t</i>)					5
(")	$f(t) = \frac{d F(t)}{d}$	<u>()</u>			M1	Attempt to differentiate c's cdf.	
		ı					0
	$=\frac{2}{t^3}$				A1	(For $t \ge 1$, but condone absence of this.) Ft c's cdf provided	2
						answer sensible.	
(iii)	ر در کار [∞] ا	r∞ 2 .			M1	Correct form of integral for the	
	$\mu = \int_{1}^{\infty} t \mathbf{f}(t) \mathrm{d}t$	$f = \int_{1} \frac{1}{t^2} dt$				mean, with correct limits. Ft c's	
						pdf.	
	$=\left[\frac{-2}{t}\right]^{\infty}$				A1	Correctly integrated. Ft c's pdf.	
	$\begin{bmatrix} t \end{bmatrix}_1$						
	= 0 - (-2)	= 2			A1	Correct use of limits leading to	3
						correct value. Ft c's pdf provided	
(h)	H ₀ : <i>m</i> = 5.4				B1	answer sensible. Both hypotheses. Hypotheses in	
(b)	$\Pi_0. m = 5.4$ $\Pi_1: m \neq 5.4$					words only must include	
	where <i>m</i> is the population median time for the task.		B1	"population".			
					For adequate verbal definition.		
			1				
	Times	- 5.4	Rank of diff				
	6.4	1.0	8				
	5.9	0.5	5				
	5.0	-0.4	4]			
	6.2	0.8	7		N 4 4	for outtracting 5.4	
	6.8	1.4	10		M1	for subtracting 5.4.	
	6.0 5.2	0.6	6 2	-	M1	for ranks.	
	5.2 6.5	<u>-0.2</u> 1.1	9	-	A1	FT if ranks wrong.	
	5.7	0.3	3	-			
	5.3	-0.1	1				
	$W_{-} = 1 + 2 + 4 = 7$ (or $W_{+} = 3+5+6+7+8+9+10 = 48$)		B1				
	Refer to tables of Wilcoxon single sample (/paired) statistic for $n = 10$.			e sample	M1	No ft from here if wrong.	
				le-tailed	A1	i.e. a 2-tail test. No ft from here if	
	Lower (or upper if 48 used) double-tailed 5% point is 8 (or 47 if 48 used).					wrong.	
	Result is sig	•	,		A1	ft only c's test statistic.	
	Seems that		n time is n	o longer as	A1	ft only c's test statistic.	10
	previously t	hought.					

_

Q2	<i>X</i> ~ N(260, <i>σ</i> = 24)		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.	
(i)	P (X <300) = P ($Z < \frac{300 - 260}{24} = 1.6667$) = 0.9522	M1 A1 A1	For standardising. Award once, here or elsewhere.	3
(ii)	$Y \sim N(260 \times 0.6 = 156,$ $24^2 \times 0.6^2 = 207.36$ $P(Y > 175) = P(Z > \frac{175 - 156}{14.4} = 1.3194)$	B1 B1	Mean. Variance. Accept sd (= 14.4).	
	= 1 - 0.9063 = 0.0937	A1	C.a.o.	3
(iii)	$Y_1 + Y_2 + Y_3 + Y_4 \sim N(624, 829.44)$	B1 B1	Mean. Ft mean of (ii). Variance. Accept sd (= 28.8). Ft variance of (ii).	
	P (this < 600) = P(Z < $\frac{600 - 624}{28.8}$ = -0.8333)			
	= 1 - 0.7976 = 0.2024	A1	C.a.o.	3
(iv)	Require <i>w</i> such that	M1	Formulation of requirement.	
	$0.975 = P(above > w) = P\left(Z > \frac{w - 624}{28.8}\right)$	B1	- 1.96	
	= P(Z > -1.96) ∴ w - 624 = 28.8 × -1.96 ⇒ w = 567.5(52)	A1	Ft parameters of (iii).	3
(v)	$On \sim N(150, \sigma = 18)$ $X_1 + X_2 + X_3 + On_1 + On_2 \sim N(1080,$ $P(\text{this} > 1000) = P(Z > \frac{1000 - 1080}{48.744} = -1.6412)$	B1 B1	Mean. Variance. Accept sd (= 48.744).	
	48.744	A1	c.a.o.	3
(vi)	Given $\bar{x} = 252.4 s_{n-1} = 24.6$			
	Cl is given by $252.4 \pm 2.576 \times \frac{24.6}{\sqrt{100}}$	M1	Correct use of 252.4 and $24.6/\sqrt{100}$.	
	= 252.4 ± 6.33(6) = (246.0(63), 258.7(36))	B1 A1	For 2.576. c.a.o. Must be expressed as an interval.	3
				18

55

Q3		1		
(i)	A <i>t</i> test should be used because			
()	the sample is small,	E1		
	the population variance is unknown,	E1		
		E1		3
(ii)		B1	Both hypotheses. Hypotheses in	
• •	A f test should be used because the sample is small, the background population variance is unknown, the background population is NormalE1H; $\mu = 380$ H; $\mu < 380$ B1Both hypotheses. Hypo words only must includ "population".where μ is the mean temperature in the chamber.B1B1 $\overline{x} = 373.825$ $s_{n-1} = 9.368$ B1 $\overline{x} = 368^{0.9}$ $\overline{0.107}$ here or in construction statistic, but FT from th or $1.796) \times \frac{9.368}{\sqrt{12}}$ (= 375.1 subsequent compariso (Or $\overline{x} - (c's - 1.796) \times$ ($= 378.681)$ for compari $380.$) $\overline{x} = -2.283(359).$ A1 $\overline{x} = -2.283(359).$ A1 $\overline{x} = 373.825 \pm 2.2231$ $\sqrt{12}$ M1No ft from here i if wrong. Use of $380 - \overline{x}$ score but ft.No ft from here in the chamber has fallen.M1 $\overline{x} = 373.825 \pm 5.952 = (367.87(3), 379.77(7))$ A1 $\overline{x} = 373.825 \pm 5.952 = (367.87(3), 379.77(7))$ A1 $\overline{x} = 373.825 \pm 5.952 = (367.87(3), 379.77(7))$ A1 $\overline{x} = 373.825 \pm 5.952 = (367.87(3), 379.77(7))$ A1 $\overline{x} = 373.825 \pm 5.952 = (367.87(3), 379.77(7))$ A1 $\overline{x} = 373.825 \pm 5.952 = (367.87(3), 379.77(7))$ A1 $\overline{x} = 373.825 \pm 5.952 = (367.87(3), 379.77(7))$ A1 $\overline{x} = 373.825 \pm 5.952 = (367.87(3), 379.77(7))$ A1 </td <td>words only must include</td> <td></td>	words only must include		
			•	
	where μ is the mean temperature in the	B1	For adequate verbal definition.	
			Allow absence of "population" if	
			correct notation μ is used, but do	
			NOT allow " $\overline{X} = \dots$ " or similar	
			unless \overline{X} is clearly and explicitly	
			stated to be a population mean.	
	$\overline{x} = 273,825$ s = 0.368	B1	s = 8.969 but do NOT allow this	
	$x = 3/3.823$ $S_{n-1} = 9.508$	ы		
	Test statistic is $373.825 - 380$	M1		
	9.368			
	$\sqrt{12}$			
			v-=	
			subsequent comparison with \overline{x} .	
			(Or \bar{x} – (c's –1.796) × $\frac{9.368}{\sqrt{12}}$	
			(= 378.681) for comparison with	
	- 2,282(250)	A 4		
	= -2.283(359).	AI	•	
			-	
			0	
	Single-talled 5% point is -1.796.	AT		
			•	
			•	
	Significant.	A1		
				9
				Ľ
(iii)				
		B1		
	$\times \frac{9.368}{\sqrt{2}}$	M1		
		Λ1	cao Musthe expressed as an	4
	$- 313.023 \pm 3.932 = (301.87(3), 319.17(7))$			4
			ZERO/4 if not same distribution	
			as test. Same wrong distribution	
			scores maximum M1B0M1A0.	
(iv)	Advantage: greater certainty.	E1	-	
. /	Disadvantage: less precision.	E1		2
				18

Q4									
(a) (i)	$\overline{x} = \frac{1125}{500} = 2.25$ For binomial E(X) = $n \times p$ $\therefore \hat{p} = \frac{2.25}{5} = 0.45$			B1 M1 A1	Use of mean of binomial distribution. May be implicit. Beware: answer given.			3	
/::\	3					Dewa		given.	5
(ii)	$\frac{f_o}{f_e \text{ (calc)}}$ $\frac{f_e \text{ (tables)}}{f_e \text{ (tables)}}$	32 25.164 25.15	110 102.944 102.95	154 168.455 168.45	137	.827	63 56.384 56.35	16 9.226 9.25	
	$X^2 = 1.8571 - 0.7763 + 2$ = 10.52(49	4.9737	+ 1.2404 +	1.1938 +	 M1 Calculation of expected frequencies. A1 All correct. M1 Or using tables: 1.8657 + 0.4828 + 1.2396 + 1.1978 + 0.7848 + 4.9257 A1 c.a.o. Or using tables: 10.49(64) 				
	Refer to χ_4^2 . Upper 5% poir Significant. Suggests bino			t fit.	M1 A1 A1 A1	Allow correct df (= cells – 2) from wrongly grouped or ungrouped table, and FT. Otherwise, no FT if wrong. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic.			
	The model app middle and to The biggest di	underesti	mate at the	e tails.	E1 Accept also any other sensible comment e.g. at 2.5%E1 significance, the result would NOT have been significant.				
	A binomial model assumes all trials are independent with a constant probability of "success". It seems unlikely that there will be independence within families and/or that p will be the same for all families.			E2	(E2, 1, 0) Any sensible comment which addresses independence and constant <i>p</i> .			12	
(b)	She should try to choose a simple random sample which would involve establishing a sampling frame and using some form of random number generator.			E1 E1 E1	Allow sensible discussion of practical limitations of choosing a random sample. Allow other sensible suggestions. E.g systematic sample - choosing every tenth family; stratified sample - by the number of girls in a family.		3		