RECOGNISING ACHIEVEMENT

ADVANCED GCE

Additional materials: Answer Booklet (8 pages)

Graph paper
MEI Examination Formulae and Tables (MF2)

INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer all the questions in Section A and one question from Section B.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.

Section A (54 marks)

Answer all the questions

1 (a) Fig. 1 shows the curve with polar equation $r=a(1-\cos 2 \theta)$ for $0 \leqslant \theta \leqslant \pi$, where a is a positive constant.

Fig. 1

Find the area of the region enclosed by the curve.
(b) (i) Given that $\mathrm{f}(x)=\arctan (\sqrt{3}+x)$, find $\mathrm{f}^{\prime}(x)$ and $\mathrm{f}^{\prime \prime}(x)$.
(ii) Hence find the Maclaurin series for $\arctan (\sqrt{3}+x)$, as far as the term in x^{2}.
(iii) Hence show that, if h is small, $\int_{-h}^{h} x \arctan (\sqrt{3}+x) \mathrm{d} x \approx \frac{1}{6} h^{3}$.

2 (a) Find the 4th roots of 16 j , in the form $r \mathrm{e}^{\mathrm{j} \theta}$ where $r>0$ and $-\pi<\theta \leqslant \pi$. Illustrate the 4 th roots on an Argand diagram.
(b) (i) Show that $\left(1-2 \mathrm{e}^{\mathrm{j} \theta}\right)\left(1-2 \mathrm{e}^{-\mathrm{j} \theta}\right)=5-4 \cos \theta$.

Series C and S are defined by

$$
\begin{aligned}
C & =2 \cos \theta+4 \cos 2 \theta+8 \cos 3 \theta+\ldots+2^{n} \cos n \theta \\
S & =2 \sin \theta+4 \sin 2 \theta+8 \sin 3 \theta+\ldots+2^{n} \sin n \theta
\end{aligned}
$$

(ii) Show that $C=\frac{2 \cos \theta-4-2^{n+1} \cos (n+1) \theta+2^{n+2} \cos n \theta}{5-4 \cos \theta}$, and find a similar expression for S.

3 You are given the matrix $\mathbf{M}=\left(\begin{array}{rr}7 & 3 \\ -4 & -1\end{array}\right)$.
(i) Find the eigenvalues, and corresponding eigenvectors, of the matrix \mathbf{M}.
(ii) Write down a matrix \mathbf{P} and a diagonal matrix \mathbf{D} such that $\mathbf{P}^{-1} \mathbf{M P}=\mathbf{D}$.
(iii) Given that $\mathbf{M}^{n}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, show that $a=-\frac{1}{2}+\frac{3}{2} \times 5^{n}$, and find similar expressions for b, c and d.

Section B (18 marks)

Answer one question

Option 1: Hyperbolic functions

4 (i) Given that $k \geqslant 1$ and $\cosh x=k$, show that $x= \pm \ln \left(k+\sqrt{k^{2}-1}\right)$.
(ii) Find $\int_{1}^{2} \frac{1}{\sqrt{4 x^{2}-1}} \mathrm{~d} x$, giving the answer in an exact logarithmic form.
(iii) Solve the equation $6 \sinh x-\sinh 2 x=0$, giving the answers in an exact form, using logarithms where appropriate.
(iv) Show that there is no point on the curve $y=6 \sinh x-\sinh 2 x$ at which the gradient is 5 .

Option 2: Investigation of curves
This question requires the use of a graphical calculator.
5 A curve has parametric equations $x=\frac{t^{2}}{1+t^{2}}, y=t^{3}-\lambda t$, where λ is a constant.
(i) Use your calculator to obtain a sketch of the curve in each of the cases

$$
\lambda=-1, \quad \lambda=0 \quad \text { and } \quad \lambda=1 .
$$

Name any special features of these curves.
(ii) By considering the value of x when t is large, write down the equation of the asymptote.

For the remainder of this question, assume that λ is positive.
(iii) Find, in terms of λ, the coordinates of the point where the curve intersects itself.
(iv) Show that the two points on the curve where the tangent is parallel to the x-axis have coordinates

$$
\begin{equation*}
\left(\frac{\lambda}{3+\lambda}, \pm \sqrt{\frac{4 \lambda^{3}}{27}}\right) \tag{4}
\end{equation*}
$$

Fig. 5 shows a curve which intersects itself at the point $(2,0)$ and has asymptote $x=8$. The stationary points A and B have y-coordinates 2 and -2 .

Fig. 5
(v) For the curve sketched in Fig. 5, find parametric equations of the form $x=\frac{a t^{2}}{1+t^{2}}, y=b\left(t^{3}-\lambda t\right)$, where a, λ and b are to be determined.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

1(a)	$\begin{aligned} \text { Area is } & \int_{0}^{\pi} \frac{1}{2} a^{2}(1-\cos 2 \theta)^{2} \mathrm{~d} \theta \\ & =\int_{0}^{\pi} \frac{1}{2} a^{2}\left(1-2 \cos 2 \theta+\frac{1}{2}(1+\cos 4 \theta)\right) \mathrm{d} \theta \\ & =\frac{1}{2} a^{2}\left[\frac{3}{2} \theta-\sin 2 \theta+\frac{1}{8} \sin 4 \theta\right]_{0}^{\pi} \\ & =\frac{3}{4} \pi a^{2} \end{aligned}$	M1 A1 B1 B1B1B1 ft A1	For $\int(1-\cos 2 \theta)^{2} \mathrm{~d} \theta$ Correct integral expression including limits (may be implied by later work) For $\cos ^{2} 2 \theta=\frac{1}{2}(1+\cos 4 \theta)$ Integrating $a+b \cos 2 \theta+c \cos 4 \theta$ [Max B2 if answer incorrect and no mark has previously been lost]
(b)(i)	$\begin{aligned} & \mathrm{f}^{\prime}(x)=\frac{1}{1+(\sqrt{3}+x)^{2}} \\ & \mathrm{f}^{\prime \prime}(x)=\frac{-2(\sqrt{3}+x)}{\left(1+(\sqrt{3}+x)^{2}\right)^{2}} \end{aligned}$	M1 A1 M1 A1 4	Applying $\begin{aligned} & \lg \frac{\mathrm{d}}{\mathrm{~d} u} \arctan u=\frac{1}{1+u^{2}} \\ & \text { or } \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{\sec ^{2} y} \end{aligned}$ Applying chain (or quotient) rule
(ii)	$\begin{aligned} & \mathrm{f}(0)=\frac{1}{3} \pi \\ & \mathrm{f}^{\prime}(0)=\frac{1}{4}, \quad \mathrm{f}^{\prime \prime}(0)=-\frac{1}{8} \sqrt{3} \\ & \arctan (\sqrt{3}+x)=\frac{1}{3} \pi+\frac{1}{4} x-\frac{1}{16} \sqrt{3} x^{2}+\ldots \end{aligned}$	B1 M1 A1A1 ft 4	Stated; or appearing in series Accept 1.05 Evaluating $\mathrm{f}^{\prime}(0)$ or $\mathrm{f}^{\prime \prime}(0)$ For $\frac{1}{4} x$ and $-\frac{1}{16} \sqrt{3} x^{2}$ ft provided coefficients are non-zero
(iii)	$\begin{aligned} & \int_{-h}^{h}\left(\frac{1}{3} \pi x+\frac{1}{4} x^{2}-\frac{1}{16} \sqrt{3} x^{3}+\ldots\right) \mathrm{d} x \\ & \quad=\left[\frac{1}{6} \pi x^{2}+\frac{1}{12} x^{3}-\frac{1}{64} \sqrt{3} x^{4}+\ldots\right]_{-h}^{h} \\ & \approx\left(\frac{1}{6} \pi h^{2}+\frac{1}{12} h^{3}-\frac{1}{64} \sqrt{3} h^{4}\right) \\ & \quad \quad-\left(\frac{1}{6} \pi h^{2}-\frac{1}{12} h^{3}-\frac{1}{64} \sqrt{3} h^{4}\right) \\ & \quad=\frac{1}{6} h^{3} \quad \end{aligned}$	M1 A1 ft A1 ag	Integrating (award if x is missed) for $\frac{1}{12} x^{3}$ Allow ft from $a+\frac{1}{4} x+c x^{2}$ provided that $a \neq 0$ Condone a proof which neglects h^{4}

2(a)	4th roots of $16 \mathrm{j}=16 \mathrm{e}^{\frac{1}{2} \pi \mathrm{j}}$ are $r \mathrm{e}^{\mathrm{j} \theta}$ where $\begin{aligned} & r=2 \\ & \theta=\frac{1}{8} \pi \\ & \theta=\frac{\pi}{8}+\frac{2 k \pi}{4} \\ & \theta=-\frac{7}{8} \pi, \quad-\frac{3}{8} \pi, \quad \frac{5}{8} \pi \end{aligned}$	B1 B1 M1 A1 M1 A1 6	Accept $16^{\frac{1}{4}}$ Implied by at least two correct (ft) further values or stating $k=-2,-1,(0), 1$ Points at vertices of a square centre O or 3 correct points (ft) or 1 point in each quadrant
(b)(i)	$\begin{aligned} \left(1-2 \mathrm{e}^{\mathrm{j} \theta}\right)\left(1-2 \mathrm{e}^{-\mathrm{j} \theta}\right)= & 1-2 \mathrm{e}^{\mathrm{j} \theta}-2 \mathrm{e}^{-\mathrm{j} \theta}+4 \\ & =5-2\left(\mathrm{e}^{\mathrm{j} \theta}+\mathrm{e}^{-\mathrm{j} \theta}\right) \\ & =5-4 \cos \theta \end{aligned}$	M1 A1 A1 ag 3	For $\mathrm{e}^{\mathrm{j} \theta} \mathrm{e}^{-\mathrm{j} \theta}=1$
	OR $\begin{aligned} &(1-2 \cos \theta-2 \mathrm{j} \sin \theta)(1-2 \cos \theta+2 \mathrm{j} \sin \theta) \\ &=(1-2 \cos \theta)^{2}+4 \sin ^{2} \theta \\ &= 1-4 \cos \theta+4\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\ &= 5-4 \cos \theta \end{aligned}$		
(ii)	$\begin{aligned} & C+\mathrm{j} S=2 \mathrm{e}^{\mathrm{j} \theta}+4 \mathrm{e}^{2 \mathrm{j} \theta}+8 \mathrm{e}^{3 \mathrm{j} \theta}+\ldots+2^{n} \mathrm{e}^{n \mathrm{j} \theta} \\ &=\frac{2 \mathrm{e}^{\mathrm{j} \theta}\left(1-\left(2 \mathrm{e}^{\mathrm{j} \theta}\right)^{n}\right)}{1-2 \mathrm{e}^{\mathrm{j} \theta}} \\ &=\frac{2 \mathrm{e}^{\mathrm{j} \theta}\left(1-2^{n} \mathrm{e}^{n \mathrm{j} \theta}\right)\left(1-2 \mathrm{e}^{-\mathrm{j} \theta}\right)}{\left(1-2 \mathrm{e}^{\mathrm{j} \theta}\right)\left(1-2 \mathrm{e}^{-\mathrm{j} \theta}\right)} \\ &=\frac{2 \mathrm{e}^{\mathrm{j} \theta}-4-2^{n+1} \mathrm{e}^{(n+1) \mathrm{j} \theta}+2^{n+2} \mathrm{e}^{n \mathrm{j} \theta}}{5-4 \cos \theta} \\ & C= \frac{2 \cos \theta-4-2^{n+1} \cos (n+1) \theta+2^{n+2} \cos n \theta}{5-4 \cos \theta} \\ & S=\frac{2 \sin \theta-2^{n+1} \sin (n+1) \theta+2^{n+2} \sin n \theta}{5-4 \cos \theta} \end{aligned}$	M1 M1 A1 M1 A2 M1 A1 ag A1	Obtaining a geometric series Summing (M0 for sum to infinity) Give A1 for two correct terms in numerator Equating real (or imaginary) parts

3 (i)	Characteristic equation is $\begin{aligned} (7-\lambda)(-1-\lambda)+12 & =0 \\ \lambda^{2}-6 \lambda+5 & =0 \\ \lambda & =1,5 \end{aligned}$ When $\lambda=1,\left(\begin{array}{cc}7 & 3 \\ -4 & -1\end{array}\right)\binom{x}{y}=\binom{x}{y}$ $\begin{aligned} & 7 x+3 y=x \\ & -4 x-y=y \end{aligned}$ $y=-2 x$, eigenvector is $\binom{1}{-2}$ When $\lambda=5,\left(\begin{array}{cc}7 & 3 \\ -4 & -1\end{array}\right)\binom{x}{y}=5\binom{x}{y}$ $\begin{aligned} & 7 x+3 y=5 x \\ &-4 x-y=5 y \\ & y=-\frac{2}{3} x, \text { eigenvector is }\binom{3}{-2} \end{aligned}$	M1 A1A1 M1 M1 A1 M1 A1 8	or $\left(\begin{array}{cc}6 & 3 \\ -4 & -2\end{array}\right)\binom{x}{y}=\binom{0}{0}$ can be awarded for either eigenvalue Equation relating x and y or any (non-zero) multiple $S R \quad(\mathbf{M}-\lambda \mathbf{I}) \mathbf{x}=\lambda \mathbf{x}$ can earn M1A1A1M0M1A0M1A0
(ii)	$\begin{aligned} & \mathbf{P}=\left(\begin{array}{cc} 1 & 3 \\ -2 & -2 \end{array}\right) \\ & \mathbf{D}=\left(\begin{array}{ll} 1 & 0 \\ 0 & 5 \end{array}\right) \end{aligned}$	B1 ft B1 ft 2	B0 if \mathbf{P} is singular For B2, the order must be consistent

(iii)	$\begin{aligned} & \mathbf{M}=\mathbf{P} \mathbf{D} \mathbf{P}^{-1} \\ & \mathbf{M}^{n}=\mathbf{P} \mathbf{D}^{n} \mathbf{P}^{-1} \\ &=\mathbf{P}\left(\begin{array}{cc} 1 & 0 \\ 0 & 5^{n} \end{array}\right) \mathbf{P}^{-1} \\ &=\left(\begin{array}{cc} 1 & 3 \\ -2 & -2 \end{array}\right)\left(\begin{array}{cc} 1 & 0 \\ 0 & 5^{n} \end{array}\right) \frac{1}{4}\left(\begin{array}{cc} -2 & -3 \\ 2 & 1 \end{array}\right) \\ &=\left(\begin{array}{cc} 1 & 3 \times 5^{n} \\ -2 & -2 \times 5^{n} \end{array}\right) \frac{1}{4}\left(\begin{array}{cc} -2 & -3 \\ 2 & 1 \end{array}\right) \\ &=\frac{1}{4}\left(\begin{array}{cc} -2+6 \times 5^{n} & -3+3 \times 5^{n} \\ 4-4 \times 5^{n} & 6-2 \times 5^{n} \end{array}\right) \\ & a=-\frac{1}{2}+\frac{3}{2} \times 5^{n} \\ & c=1-5^{n} \quad b=-\frac{3}{4}+\frac{3}{4} \times 5^{n} \\ & d=\frac{3}{2}-\frac{1}{2} \times 5^{n} \end{aligned}$	M1 M1 A1 ft B1 ft M1 A1 ag A2	May be implied Dependent on M1M1 For \mathbf{P}^{-1} or $\left(\begin{array}{cc}1 & 3 \\ -2 & -2\end{array}\right) \frac{1}{4}\left(\begin{array}{cc}-2 & -3 \\ 2 \times 5^{n} & 5^{n}\end{array}\right)$ Obtaining at least one element in a product of three matrices Give A1 for one of b, c, d correct $S R$ If $\mathbf{M}^{n}=\mathbf{P}^{-1} \mathbf{D}^{n} \mathbf{P}$ is used, max marks are M0M1A0B1M1A0A1 (d should be correct) $S R$ If their \mathbf{P} is singular, max marks are M1M1A1B0M0

4 (i)	$\begin{gathered} \frac{1}{2}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)=k \\ \mathrm{e}^{2 x}-2 k \mathrm{e}^{x}+1=0 \\ \mathrm{e}^{x}=\frac{2 k \pm \sqrt{4 k^{2}-4}}{2}=k \pm \sqrt{k^{2}-1} \\ x=\ln \left(k+\sqrt{k^{2}-1}\right) \text { or } \ln \left(k-\sqrt{k^{2}-1}\right) \\ \left(k+\sqrt{k^{2}-1}\right)\left(k-\sqrt{k^{2}-1}\right)=k^{2}-\left(k^{2}-1\right)=1 \\ \ln \left(k-\sqrt{k^{2}-1}\right)=\ln \left(\frac{1}{k+\sqrt{k^{2}-1}}\right)=-\ln \left(k+\sqrt{k^{2}-1}\right) \\ x= \pm \ln \left(k+\sqrt{k^{2}-1}\right) \end{gathered}$	M1 M1 A1 M1 A1 ag 5	or $\cosh x+\sinh x=\mathrm{e}^{x}$ or $k \pm \sqrt{k^{2}-1}=\mathrm{e}^{x}$ One value sufficient or $\cosh x$ is an even function (or equivalent)
(ii)	$\begin{aligned} \int_{1}^{2} \frac{1}{\sqrt{4 x^{2}-1}} \mathrm{~d} x & =\left[\frac{1}{2} \operatorname{arcosh} 2 x\right]_{1}^{2} \\ & =\frac{1}{2}(\operatorname{arcosh} 4-\operatorname{arcosh} 2) \\ & =\frac{1}{2}(\ln (4+\sqrt{15})-\ln (2+\sqrt{3})) \end{aligned}$	M1 A1 A1 M1 A1 5	For arcosh or $\ln \left(\lambda x+\sqrt{\lambda^{2} x^{2}-\ldots}\right)$ or any cosh substitution For arcosh $2 x$ or $2 x=\cosh u$ or $\ln \left(2 x+\sqrt{4 x^{2}-1}\right)$ or $\ln \left(x+\sqrt{x^{2}-\frac{1}{4}}\right)$ For $\frac{1}{2}$ or $\int \frac{1}{2} \mathrm{~d} u$ Exact numerical logarithmic form
(iii)	$\begin{aligned} 6 \sinh x & -2 \sinh x \cosh x=0 \\ \cosh x & =3 \quad(\text { or } \sinh x=0) \\ x & =0 \\ x & = \pm \ln (3+\sqrt{8}) \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Obtaining a value for $\cosh x$ or $x=\ln (3 \pm \sqrt{8})$
	$\begin{array}{\|l} \text { OR } \\ \mathrm{e}^{4 x}-6 \mathrm{e}^{3 x}+6 \mathrm{e}^{x}-1=0 \\ \\ \quad\left(\mathrm{e}^{2 x}-1\right)\left(\mathrm{e}^{2 x}-6 \mathrm{e}^{x}+1\right)=0 \\ \\ x=0 \\ \\ x=\ln (3 \pm \sqrt{8}) \end{array}$		or $\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)\left(\mathrm{e}^{x}+\mathrm{e}^{-x}-6\right)=0$
(iv)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=6 \cosh x-2 \cosh 2 x$ If $\frac{\mathrm{d} y}{\mathrm{~d} x}=5$ then $6 \cosh x-2\left(2 \cosh ^{2} x-1\right)=5$ $4 \cosh ^{2} x-6 \cosh x+3=0$ Discriminant $D=6^{2}-4 \times 4 \times 3=-12$ Since $D<0$ there are no solutions	$\mathrm{B1}$ M1 M1 A1 4	Using $\cosh 2 x=2 \cosh ^{2} x-1$ Considering D, or completing square, or considering turning point

$\left[\begin{array}{cc}\left.\begin{array}{cc}\text { OR Gradient } g=6 \cosh x-2 \cosh 2 x & \text { B1 } \\ g^{\prime}=6 \sinh x-4 \sinh 2 x=2 \sinh x(3-4 \cosh x) \\ =0 \text { when } x=0 \text { (only) } & \text { M1 } \\ g^{\prime \prime}=6 \cosh x-8 \cosh 2 x=-2 \text { when } x=0 & \text { M1 } \\ \text { Max value } g=4 \text { when } x=0 & \text { A1 } \\ \text { So } g \text { is never equal to } 5 & \\ \end{array}\right] \begin{array}{l}\text { Final A1 requires a complete } \\ \text { proof showing this is the only } \\ \text { turning point }\end{array} \\ \hline\end{array}\right.$

5 (i)	$\lambda=-1$ $\lambda=0$ $\lambda=1$ cusp loop	B1B1B1 B1B1	Two different features (cusp, loop, asymptote) correctly identified
(ii)	$x=1$	B1	
(iii)	Intersects itself when $y=0$ $\begin{aligned} & t=(\pm) \sqrt{\lambda} \\ & \left(\frac{\lambda}{1+\lambda}, 0\right) \end{aligned}$	M1 A1 A1 3	
(iv)	$\begin{aligned} \frac{\mathrm{d} y}{\mathrm{~d} t} & =3 t^{2}-\lambda=0 \\ t & = \pm \sqrt{\frac{\lambda}{3}} \\ x & =\frac{\lambda / 3}{1+\lambda / 3}=\frac{\lambda}{3+\lambda} \\ y & = \pm\left(\left(\frac{\lambda}{3}\right)^{\frac{3}{2}}-\lambda\left(\frac{\lambda}{3}\right)^{\frac{1}{2}}\right) \\ & = \pm \lambda^{\frac{3}{2}}\left(\frac{1}{3 \sqrt{3}}-\frac{1}{\sqrt{3}}\right)= \pm \lambda^{\frac{3}{2}}\left(-\frac{2}{3 \sqrt{3}}\right) \\ & = \pm \sqrt{\frac{4 \lambda^{3}}{27}} \end{aligned}$	M1 A1 ag M1 A1 ag	One value sufficient
(v)	From asymptote, $a=8$ From intersection point, $\frac{a \lambda}{1+\lambda}=2$ $\lambda=\frac{1}{3}$ From maximum point, $b \sqrt{\frac{4 \lambda^{3}}{27}}=2$ $b=27$	B1 M1 A1 M1 A1 5	

