

ADVANCED SUBSIDIARY GCE MATHEMATICS (MEI)

4751/01

Introduction to Advanced Mathematics (C1)

WEDNESDAY 9 JANUARY 2008

Afternoon Time: 1 hour 30 minutes

Additional materials: Answer Booklet (8 pages) MEI Examination Formulae and Tables (MF2)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer **all** the questions.
- You are **not** permitted to use a calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.

WARNING

You are not allowed to use a calculator in this paper.

This document consists of **4** printed pages.

Section A (36 marks)

[3]

- 1 Make v the subject of the formula $E = \frac{1}{2}mv^2$.
- 2 Factorise and hence simplify $\frac{3x^2 7x + 4}{x^2 1}$. [3]
- 3 (i) Write down the value of $\left(\frac{1}{4}\right)^0$. [1]

(ii) Find the value of
$$16^{-\frac{3}{2}}$$
. [3]

4 Find, algebraically, the coordinates of the point of intersection of the lines y = 2x - 5 and 6x + 2y = 7. [4]

- 5 (i) Find the gradient of the line 4x + 5y = 24. [2]
 - (ii) A line parallel to 4x + 5y = 24 passes through the point (0, 12). Find the coordinates of its point of intersection with the *x*-axis. [3]
- 6 When $x^3 + kx + 7$ is divided by (x 2), the remainder is 3. Find the value of k. [3]
- 7 (i) Find the value of ${}^{8}C_{3}$. [2]
 - (ii) Find the coefficient of x^3 in the binomial expansion of $\left(1 \frac{1}{2}x\right)^8$. [2]

8 (i) Write $\sqrt{48} + \sqrt{3}$ in the form $a\sqrt{b}$, where a and b are integers and b is as small as possible. [2]

(ii) Simplify
$$\frac{1}{5+\sqrt{2}} + \frac{1}{5-\sqrt{2}}$$
. [3]

- 9 (i) Prove that 12 is a factor of $3n^2 + 6n$ for all even positive integers *n*. [3]
 - (ii) Determine whether 12 is a factor of $3n^2 + 6n$ for all positive integers *n*. [2]

Fig. 10 shows a sketch of the graph of $y = \frac{1}{r}$.

Sketch the graph of $y = \frac{1}{x-2}$, showing clearly the coordinates of any points where it crosses the axes. [3]

(ii) Find the value of x for which
$$\frac{1}{x-2} = 5$$
. [2]

(iii) Find the *x*-coordinates of the points of intersection of the graphs of y = x and $y = \frac{1}{x-2}$. Give your answers in the form $a \pm \sqrt{b}$.

Show the position of these points on your graph in part (i). [6]

11 (i) Write $x^2 - 5x + 8$ in the form $(x - a)^2 + b$ and hence show that $x^2 - 5x + 8 > 0$ for all values of x. [4]

- (ii) Sketch the graph of $y = x^2 5x + 8$, showing the coordinates of the turning point. [3]
- (iii) Find the set of values of x for which $x^2 5x + 8 > 14$. [3]
- (iv) If $f(x) = x^2 5x + 8$, does the graph of y = f(x) 10 cross the x-axis? Show how you decide. [2]

[Question 12 is printed overleaf.]

Section B (36 marks)

10

(i)

- 12 A circle has equation $x^2 + y^2 8x 4y = 9$.
 - (i) Show that the centre of this circle is C(4, 2) and find the radius of the circle. [3]

[2]

- (ii) Show that the origin lies inside the circle.
- (iii) Show that AB is a diameter of the circle, where A has coordinates (2, 7) and B has coordinates (6, -3). [4]
- (iv) Find the equation of the tangent to the circle at A. Give your answer in the form y = mx + c. [4]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

4751 (C1) Introduction to Advanced Mathematics

Section A

1		3		
	$[v=][\pm]\sqrt{\frac{2E}{m}}$ www	0	M2 for $v^2 = \frac{2E}{m}$ or for $[v=][\pm]\sqrt{\frac{E}{\frac{1}{2}m}}$ or	
			M1 for a correct constructive first step	
			and M1 for $v = [\pm]\sqrt{k}$ ft their $v^2 = k$;	
			if M0 then SC1 for $\sqrt{E}/\frac{1}{2}m$ or $\sqrt{2E/m}$	3
			etc	
2	$\frac{3x-4}{2}$ or $3-\frac{7}{2}$ where as final		M1 for $(3x - 4)(x - 1)$	
	x+1 $x+1$ $x+1$	3	and M1 for $(x + 1)(x - 1)$	з
	answer			5
3	(i) 1	1		
	(ii) 1/64 www	3	M1 for dealing correctly with each of	
			reciprocal, square root and cubing	
			(allow 3 only for 1/64)	
			or M1 for $1/16^{3/2}$ or 4^3 or -4^3 or 4^{-3} etc	4
				-
4	6x + 2(2x - 5) = 7	M1	for subst or multn of eqns so one pair of	
	10x = 17	М1	coefficients equal (condone one error)	
		1011	appropriate addn/subtn to eliminate	
			variable	
	x = 1.7 o.e. isw	A1	allow as separate or coordinates as	
	y = -1.6 o.e .isw	A1	requested	4
				т
5	(i) -4/5 or -0.8 o.e.	2	M1 for 4/5 or 4/-5 or 0.8 or -4.8/6 or	
			correct method using two points on the	
			line (at least one correct) (may be graphical) or for -0.8x o e	
	(ii) (15, 0) or 15 found www	3	M1 for $y =$ their (i) $x + 12$ o.e. or $4x + 5y$	
			= k and (0, 12) subst and M1 for using y	
			= 0 eg - 12 = -0.8x or ft their eqn	
			or M1 for given line goes through (0,	
			4.8) and (6, 0) and M1 for 6 × 12/4.8	
			graphical soln: allow M1 for correct	
			within 2mm of (15, 0)	5
				Ŭ

19

17

6	f(2) used	M1	or division by $x - 2$ as far as $x^2 + 2x$	
			obtained correctly	
	$2^3 + 2k + 7 = 3$	M1	or remainder $3 = 2(4 + k) + 7$ o.e. 2nd	
		Δ1	Mi dep on first	
	k = -6			3
-		0		
1	(1) 56	2	M1 for $\frac{8 \times 7 \times 6}{3 \times 2 \times 1}$ or more simplified	
	(ii) −7 or ft from −their (i)/8	2	M1 for 7 or ft their (i)/8 or for $56 \times (-1/2)^3$ o.e. or ft; condone x^3 in answer or in M1 expression; 0 in qn for just Pascal's triangle seen	4
8	(i) 5√3	2	M1 for $\sqrt{48} = 4\sqrt{3}$	
	(ii) common denominator = $(5 - \sqrt{2})(5 + \sqrt{2})$ =23 numerator = 10	M1 A1 B1	allow M1A1 for $\frac{5-\sqrt{2}}{23} + \frac{5+\sqrt{2}}{23}$ allow 3 only for 10/23	5
9	(i) $n = 2m$	M1	or any attempt at generalising; M0 for just trying numbers	
	$3n^2 + 6n = 12m^2 + 12m$ or = $12m(m + 1)$	M2	<u>or</u> M1 for $3n^2 + 6n = 3n (n + 2) = 3 \times$ even × even <u>and</u> M1 for explaining that 4 is a factor of even × even <u>or</u> M1 for 12 is a factor of 6 <i>n</i> when <i>n</i> is even <u>and</u> M1 for 4 is a factor of n^2 so 12 is a factor of $3n^2$	
	(ii) showing false when <i>n</i> is odd e.g. $3n^2 + 6n = odd + even = odd$	B2	or $3n(n + 2) = 3 \times \text{odd} \times \text{odd} = \text{odd}$ or counterexample showing not always true; M1 for false with partial explanation or incorrect calculation	5

Section B

40		correct graph with clear	00	C1 for one branch correct, condene		1
10	I	correct graph with clear 2 (though need not	GZ	G = 10 one branch correct, condone		
		asymptote $x = 2$ (though need not		$(0, -\frac{7}{2})$ field showin		
		be marked)		SCT for both sections of graph		
				shinted two to left		
			C1		2	
		(0, -1/) shown	GI	allow seen calculated	3	
		$(0, -\frac{1}{2})$ Shown			2	
		11/5 01 2.2 0.e. ISW	2	M1 for correct first step	2	
		1	N/1	or oquive with ve		
	111	$x = \frac{1}{2}$		or equive with ye		
		x-2	N/1			
		x(x-2) = 1 o.e.		or $(x - 1)^2 - 1 = 1 \circ e$		
		$x^2 - 2x - 1$ [= 0]; ft their equiv		or $(x - 1) = \pm \sqrt{2}$ (condone one error)		
		eqn		or $(x + 1) = \pm \sqrt{2}$ (condone one error)		
		attempt at quadratic formula	B1	on their curve with $y = x$ (line drawn		
		1 ±√2 cao		or $y = x$ indicated by both coords).		
		position of points shown		condone intent of diagonal line with		
				gradient approx 1through origin as v		
				= x if unlabelled	6	11
					Ŭ	
11	i	$(r-2.5)^2 0.6$	M1			
••	-	$-25^2 + 8$	M1	for clear attempt at -2.5^2		
		$(x - 25)^2 + 7/4 = 2$	A1	allow M2A0 for $(x - 2.5) + 7/4$ o.e.		
		(x-2.5) + 7/4 o.e.		with no $(x - 2.5)^2$ seen		
			B1	ft. dep on $(x - a)^2 + b$ with b positive:		
		min $y = 7/4$ o.e. [so above x axis]		condone starting again. showing b^2 –		
		or commenting $(x - 2.5)^2 \ge 0$		4ac < 0 or using calculus	4	
				C C		
	ii	correct symmetrical quadratic	G1			
		shape				
		8 marked as intercept on y axis	G1	or (0, 8) seen in table		
		tp (5/2, 7/4) o.e. or ft from (i)	G1		3	
	iii	$x^2 - 5x - 6$ seen or used	M1	or $(x - 2.5)^2$ [> or =] 12.25 or ft 14 - b		
		-1 and 6 obtained	M1	also implies first M1		
		x < -1 and $x > 6$ isw or ft their	M1	if M0, allow B1 for one of $x < -1$ and		
		solns		<i>x</i> > 6	3	
	iv	min = (2.5, - 8.25) or ft from (i)	M1	or M1 for other clear comment re		
		so yes, crosses	A1	translated 10 down and A1 for		
				referring to min in (i) or graph in (ii);		
				or M1 for correct method for solving		
				$x^{2} - 5x - 2 = 0$ or using $b^{2} - 4ac$ with		
				this and A1 for showing real solns eg		
				$b^2 - 4ac = 33$; allow M1A0 for valid		
				comment but error in −8.25 ft; allow		
				M1 for showing <i>y</i> can be neg eg (0,		
				−2) found and A1 for correct	2	40
				conclusion		12

Mark Scheme

12	i	$(x-4)^2 - 16 + (y-2)^2 - 4 = 9$ o.e. rad = $\sqrt{29}$	M2 B1	M1 for one completing square or for $(x - 4)^2$ or $(y - 2)^2$ expanded correctly or starting with $(x - 4)^2 + (y - 2)^2 = r^2$: M1 for correct expn of at least one bracket and M1 for $9 + 20 = r^2$ o.e. or using $x^2 - 2gx + y^2 - 2fy + c = 0$ M1 for using centre is (g, f) [must be quoted] and M1 for $r^2 = g^2 + f^2 - c$	3	
	ii	$4^2 + 2^2$ o.e = 20 which is less than 29	M1 A1	allow 2 for showing circle crosses x axis at -1 and 9 or equiv for y (or showing one positive; one negative); 0 for graphical solutions (often using A and B from (iii) to draw circle)	2	
	iii	showing midpt of AB = (4, 2) and showing AB = $2\sqrt{29}$ or showing AC or BC = $\sqrt{29}$ or that A or B lie on circle <u>or</u> showing both A and B lie on circle (or AC = BC = $\sqrt{29}$), and showing AB = $2\sqrt{29}$ or that C is midpt of AB or that C is on AB or that gradients of AB and AC are the same or equiv. <u>or</u> showing C is on AB	2 2 2 2 2	in each method, two things need to be established. Allow M1 for the concept of what should be shown and A1 for correct completion with method shown allow M1A0 for AB just shown as $\sqrt{116}$ not $2\sqrt{29}$ allow M1A0 for stating mid point of AB = (4,2) without working/method shown NB showing AB = $2\sqrt{29}$ and C lies on AB is not sufficient – earns 2 marks only		
	iv	and showing both A and B are on circle or AC = BC = $\sqrt{29}$ grad AC or AB or BC = -5/2 o.e. grad tgt = -1/their grad AC tgt is y - 7 = their m (x - 2) o.e.	2 M1 M1 M1	if M0, allow SC2 for accurate graph of circle drawn with compasses and AB joined with ruled line through C. may be seen in (iii) but only allow this M1 if they go on to use in this part allow for m_1m_2 =-1 used eg y = their mx + c then (2, 7) subst; M0 if grad AC used	4	
		<i>y</i> = 2/5 <i>x</i> + 31/5 o.e.	A1	condone $y = 2/5x + c$ and $c = 31/5$ o.e.	4	