RECOGNISING ACHIEVEMENT

ADVANCED SUBSIDIARY GCE

Additional materials: Answer Booklet (8 pages)
MEI Examination Formulae and Tables (MF2)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer all the questions.
- You are not permitted to use a calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.

 WARNING
 You are not allowed to use a calculator in this paper.

Section A (36 marks)

1 Make v the subject of the formula $E=\frac{1}{2} m v^{2}$.

2 Factorise and hence simplify $\frac{3 x^{2}-7 x+4}{x^{2}-1}$.

3 (i) Write down the value of $\left(\frac{1}{4}\right)^{0}$.
(ii) Find the value of $16^{-\frac{3}{2}}$.

4 Find, algebraically, the coordinates of the point of intersection of the lines $y=2 x-5$ and $6 x+2 y=7$.

5 (i) Find the gradient of the line $4 x+5 y=24$.
(ii) A line parallel to $4 x+5 y=24$ passes through the point $(0,12)$. Find the coordinates of its point of intersection with the x-axis.

6 When $x^{3}+k x+7$ is divided by $(x-2)$, the remainder is 3 . Find the value of k.

7 (i) Find the value of ${ }^{8} \mathrm{C}_{3}$.
(ii) Find the coefficient of x^{3} in the binomial expansion of $\left(1-\frac{1}{2} x\right)^{8}$.

8 (i) Write $\sqrt{48}+\sqrt{3}$ in the form $a \sqrt{b}$, where a and b are integers and b is as small as possible.
(ii) Simplify $\frac{1}{5+\sqrt{2}}+\frac{1}{5-\sqrt{2}}$.

9 (i) Prove that 12 is a factor of $3 n^{2}+6 n$ for all even positive integers n.
(ii) Determine whether 12 is a factor of $3 n^{2}+6 n$ for all positive integers n.

Section B (36 marks)
10 (i)

Fig. 10

Fig. 10 shows a sketch of the graph of $y=\frac{1}{x}$.
Sketch the graph of $y=\frac{1}{x-2}$, showing clearly the coordinates of any points where it crosses the axes.
(ii) Find the value of x for which $\frac{1}{x-2}=5$.
(iii) Find the x-coordinates of the points of intersection of the graphs of $y=x$ and $y=\frac{1}{x-2}$. Give your answers in the form $a \pm \sqrt{b}$.

Show the position of these points on your graph in part (i).

11 (i) Write $x^{2}-5 x+8$ in the form $(x-a)^{2}+b$ and hence show that $x^{2}-5 x+8>0$ for all values of x.
(ii) Sketch the graph of $y=x^{2}-5 x+8$, showing the coordinates of the turning point.
(iii) Find the set of values of x for which $x^{2}-5 x+8>14$.
(iv) If $\mathrm{f}(x)=x^{2}-5 x+8$, does the graph of $y=\mathrm{f}(x)-10$ cross the x-axis? Show how you decide.

12 A circle has equation $x^{2}+y^{2}-8 x-4 y=9$.
(i) Show that the centre of this circle is $\mathrm{C}(4,2)$ and find the radius of the circle.
(ii) Show that the origin lies inside the circle.
(iii) Show that AB is a diameter of the circle, where A has coordinates $(2,7)$ and B has coordinates $(6,-3)$.
(iv) Find the equation of the tangent to the circle at A. Give your answer in the form $y=m x+c$.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge

4751 (C1) Introduction to Advanced Mathematics

Section A

1	$[v=][\pm] \sqrt{\frac{2 E}{m}} \mathrm{www}$	3	M2 for $v^{2}=\frac{2 E}{m}$ or for $[v=][\pm] \sqrt{\frac{E}{\frac{1}{2} m}}$ or M1 for a correct constructive first step and M 1 for $v=[\pm] \sqrt{k} \mathrm{ft}$ their $v^{2}=k$; if M0 then SC1 for $\sqrt{ } E / 1 / 2 m$ or $\sqrt{ } 2 E / m$ etc	3
2	$\frac{3 x-4}{x+1}$ or $3-\frac{7}{x+1}$ www as final answer	3	$\begin{aligned} & \text { M1 for }(3 x-4)(x-1) \\ & \text { and M1 for }(x+1)(x-1) \end{aligned}$	3
3	(i) 1 (ii) $1 / 64 \mathrm{www}$	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	M1 for dealing correctly with each of reciprocal, square root and cubing (allow 3 only for $1 / 64$) eg M2 for 64 or -64 or $1 / \sqrt{ } 4096$ or $1 / 4^{3}$ or M1 for $1 / 16^{3 / 2}$ or 4^{3} or -4^{3} or 4^{-3} etc	4
4	$\begin{aligned} & 6 x+2(2 x-5)=7 \\ & 10 x=17 \\ & \\ & x=1.7 \text { o.e. isw } \\ & y=-1.6 \text { o.e .isw } \end{aligned}$	M1 M1 A1 A1	for subst or multn of eqns so one pair of coeffts equal (condone one error) simplification (condone one error) or appropriate addn/subtn to eliminate variable allow as separate or coordinates as requested graphical soln: M0	4
5	(i) $-4 / 5$ or -0.8 o.e. (ii) $(15,0)$ or 15 found www	2 3	M1 for $4 / 5$ or $4 /-5$ or 0.8 or $-4.8 / 6$ or correct method using two points on the line (at least one correct) (may be graphical) or for $-0.8 \times$ o.e. M1 for $y=$ their (i) $x+12$ o.e. or $4 x+5 y$ $=k$ and $(0,12)$ subst and M1 for using y $=0$ eg $-12=-0.8 x$ or $f t$ their eqn or M1 for given line goes through (0 , 4.8) and $(6,0)$ and M1 for $6 \times 12 / 4.8$ graphical soln: allow M1 for correct required line drawn and M1 for answer within 2 mm of $(15,0)$	5

6	$\mathrm{f}(2)$ used $\begin{aligned} & 2^{3}+2 k+7=3 \\ & k=-6 \end{aligned}$	M1 M1 A1	or division by $x-2$ as far as $x^{2}+2 x$ obtained correctly or remainder $3=2(4+k)+7$ o.e. 2 nd M1 dep on first	3
7	(i) 56 (ii) -7 or ft from -their (i)/8	2 2	M1 for $\frac{8 \times 7 \times 6}{3 \times 2 \times 1}$ or more simplified M1 for 7 or ft their (i)/8 or for $56 \times(-1 / 2)^{3}$ o.e. or ft ; condone x^{3} in answer or in M1 expression; 0 in qn for just Pascal's triangle seen	4
8	(i) $5 \sqrt{ } 3$ (ii) common denominator $=$ $\begin{aligned} & (5-\sqrt{ } 2)(5+\sqrt{ } 2) \\ & =23 \\ & \text { numerator }=10 \end{aligned}$	2 M1 A1 B1	M1 for $\sqrt{ } 48=4 \sqrt{ } 3$ allow M1A1 for $\frac{5-\sqrt{2}}{23}+\frac{5+\sqrt{2}}{23}$ allow 3 only for 10/23	5
9	(i) $n=2 m$ $\begin{aligned} & 3 n^{2}+6 n=12 m^{2}+12 m \text { or } \\ & =12 m(m+1) \end{aligned}$ (ii) showing false when n is odd e.g. $3 n^{2}+6 n=\text { odd }+ \text { even }=\text { odd }$	M1 M2 B2	or any attempt at generalising; M0 for just trying numbers or M 1 for $3 n^{2}+6 n=3 n(n+2)=3 \times$ even \times even and $M 1$ for explaining that 4 is a factor of even \times even or M1 for 12 is a factor of $6 n$ when n is even and M1 for 4 is a factor of n^{2} so 12 is a factor of $3 n^{2}$ or $3 n(n+2)=3 \times$ odd \times odd $=$ odd or counterexample showing not always true; M1 for false with partial explanation or incorrect calculation	5

Section B

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 10 \& ii \& \begin{tabular}{l}
correct graph with clear asymptote \(x=2\) (though need not be marked) \\
(\(0,-1 / 2\)) shown \\
\(11 / 5\) or 2.2 o.e. isw
\[
x=\frac{1}{x-2}
\] \\
\(x(x-2)=1\) o.e. \\
\(x^{2}-2 x-1\) [\(\left.=0\right]\); ft their equiv eqn attempt at quadratic formula \(1 \pm \sqrt{2}\) cao position of points shown
\end{tabular} \& \begin{tabular}{l}
G2 \\
G1 \\
2 \\
M1 \\
M1 \\
M1 \\
M1 \\
A1 \\
B1
\end{tabular} \& \begin{tabular}{l}
G1 for one branch correct; condone (\(0,-1 / 2\)) not shown SC1 for both sections of graph shifted two to left allow seen calculated M1 for correct first step or equivs with \(y s\) \\
or \((x-1)^{2}-1=1\) o.e. or \((x-1)= \pm \sqrt{ } 2\) (condone one error) \\
on their curve with \(y=x\) (line drawn or \(y=x\) indicated by both coords); condone intent of diagonal line with gradient approx 1through origin as \(y\) \(=x\) if unlabelled
\end{tabular} \& 3
2

6 \& 11

\hline 11 \& ii \& | $\begin{aligned} & (x-2.5)^{2} \text { o.e. } \\ & -2.5^{2}+8 \\ & (x-2.5)^{2}+7 / 4 \text { o.e. } \end{aligned}$ |
| :--- |
| $\min y=7 / 4$ o.e. [so above x axis] or commenting $(x-2.5)^{2} \geq 0$ |
| correct symmetrical quadratic shape |
| 8 marked as intercept on y axis tp ($5 / 2,7 / 4$) o.e. or ft from (i) |
| $x^{2}-5 x-6$ seen or used -1 and 6 obtained $x<-1$ and $x>6$ isw or ft their solns |
| $\min =(2.5,-8.25)$ or ft from (i) so yes, crosses | \& | M1 |
| :--- |
| M1 |
| A1 |
| B1 |
| G1 |
| G1 |
| G1 |
| M1 |
| M1 |
| M1 |
| M1 |
| A1 | \& | for clear attempt at -2.5^{2} |
| :--- |
| allow M2A0 for $(x-2.5)+7 / 4$ o.e. with no $(x-2.5)^{2}$ seen |
| ft , dep on $(x-a)^{2}+b$ with b positive; condone starting again, showing $b^{2}-$ $4 a c<0$ or using calculus |
| or $(0,8)$ seen in table |
| or $(x-2.5)^{2}$ [$>$ or $\left.=\right] 12.25$ or ft $14-b$ also implies first M1 |
| if M0, allow B1 for one of $x<-1$ and $x>6$ |
| or M1 for other clear comment re translated 10 down and A1 for referring to min in (i) or graph in (ii); or M1 for correct method for solving $x^{2}-5 x-2=0$ or using $b^{2}-4 a c$ with this and A1 for showing real solns eg $b^{2}-4 a c=33$; allow M1A0 for valid comment but error in -8.25 ft ; allow M1 for showing y can be neg eg (0 , -2) found and A1 for correct | \& 4

3
3
3

2 \& 12

\hline
\end{tabular}

