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Section A (36 marks)

1 Show that the equation has a root in the interval 

Use the bisection method to obtain an estimate of the root with maximum possible error 0.025.

Determine how many additional iterations of the bisection process would be required to reduce the
maximum possible error to less than 0.005. [8]

2 For the integral find the values given by the trapezium rule and the mid-point rule,

taking in each case.

Hence show that the Simpson’s rule estimate with is 0.493 801.

You are now given that the Simpson’s rule estimate with is 0.493 952. Use extrapolation
to determine the value of the integral as accurately as you can. [8]

3 A triangle has sides a, 3 and 4. The angle opposite side a is , where is small. See Fig. 3.

Fig. 3

Use the cosine rule to calculate a when 

The approximation 

with is now used in the cosine rule to find an approximate value for a.

Find the absolute and relative errors in this approximate value of a. [5]
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4 The number x is represented in a computer program by the approximation X. You are given that
where r is small.

(i) State what r represents. [1]

(ii) Use the first two terms in a binomial expansion to show that the relative error in as an
approximation to is approximately [2]

(iii) A lazy programmer has approximated by Find the relative error in this approximation.

Use the result in part (ii) to write down the approximate relative errors in the values of and

when is taken as [5]

5 The function has the values shown in the table.

Use Lagrange’s interpolation method to obtain the quadratic function that fits the three data points.

Hence estimate the value of x for which takes its minimum value. [7]

Section B (36 marks)

6 (i) Explain, with the aid of a sketch, the principle underlying the Newton-Raphson method for
the solution of the equation [3]

(ii) Draw a sketch of the function for Mark on
your sketch the non-zero root, , of the equation . Show by means of your
sketch that, for some starting values, the Newton-Raphson method will fail to converge to 
Identify two distinct cases that can arise. [6]

(iii) Given that the derivative of is , show that the Newton-Raphson iteration for the
solution of the equation is 

Use this iteration with to determine correct to 4 decimal places.

Show carefully that this iteration is faster than first order. [9]

[Question 7 is printed overleaf.]

ax0 � 1.2

xr�1 � xr � 
(tan xr � 2xr

)
(tan2xr � 1) .

tan x � 2x � 0
1 � tan2 xtan x

a .
tan x � 2x � 0a

0 � x � 1
2 p  (x in radians) .f(x) � tan x � 2x

f(x) � 0.

f(x)

x –1 0 4

f(x) 3 2 9

f(x)

22
7 .pp

p 2

22
7  .p

nr.xn
X n

X � x(1 � r)

3

© OCR 2007 4776/01 June 07



7 The function has the values shown in the table.

(i) Draw up a difference table for as far as second differences. State with a reason whether
or not is quadratic. [5]

(ii) Draw up another difference table, based this time on Use Newton’s forward
difference formula to find the quadratic approximation to based on these three points.
Simplify the coefficients of this quadratic. [8]

(iii) Find the absolute and relative errors when this quadratic is used to estimate and 
[5]

g(4).g(2)

g(x)
x � 1, 3, 5.

g(x)
g(x)

x g(x)

1 2.87

2 4.73

3 6.23

4 7.36

5 8.05
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1 x f(x)        
 1 2.414214 < 3       
 1.4 3.509193 > 3 change of sign hence root in (1, 1.4)  [M1A1] 
          
 1.2 2.92324 < 3 root in (1.2, 1.4) est 1.3 mpe 0.1   
  1.3 3.206575 > 3 root in (1.2, 1.3) est 1.25 mpe 0.05   
 1.25 3.0625 > 3 root in (1.2, 1.25) est 1.225 mpe 0.025 [M1A1A1] 
       mpe [A1] 
 mpe reduces by a factor of 2, 4, 8, …      
 Better than a factor of 5 after 3 more iterations    [M1A1] 
                  [TOTAL 8] 
          
2 x 1/(1+x^4)     values: [A1] 
 0 1  M = 0.498054    [A1] 
 0.25 0.996109  T = 0.485294    [A1] 
 0.5 0.941176  S = (2M + T) / 3 = 0.493801   [M1] 
          
 h S ΔS       
 0.5 0.493801        
 0.25 0.493952 0.000151   / one term enough  [M1] 
 Extrapolating: 0.493952 + 0.000151 (1/16 + 1/162 +...) = 0.493962  [M1A1] 
 0.49396 appears reliable. (Accept 0.493962)    [A1] 
                  [TOTAL 8] 
          
3 Cosine rule: 5.204972     [M1A1] 
 Approx formula:  5.205228     [A1] 
 Absolute error: 0.000255     [B1] 
 Relative error: 0.000049     [B1] 
          

[TOTAL 5] 
4(i) r represents the relative error in X     [E1] 
          
(ii) Xn = xn(1 + r)n  ≈  xn(1 + nr) for small r     [A1E1] 

 hence relative error is nr       
          
(iii) pi =  3.141593  (abs error: 0.001264 )   [M1] 
 22/7 = 3.142857  rel error: 0.000402    [A1] 
          
 approx relative error in π2 (multiply by 2):  0.000805 (0.0008)   
 approx relative error in sqrt(π) (multiply by 0.5): 0.000201 (0.0002)  [M1M1A1] 
          
                  [TOTAL 8] 
5 x f(x)        
 -1 3  f(x) = 3 x (x-4) / (-1)(-5) +   [M1A1] 
 0 2   2 (x+1)(x-4) / (1)(-4) +  [A1] 
 4 9   9 (x+1) x / (5)(4)   [A1] 
          
    f(x) = 0.55 x2 - 0.45 x + 2   [A1] 
          
    f '(x) = 1.1 x - 0.45   [B1] 
    Hence minimum at x = 0.45 / 1.1 = 0.41  [A1] 
                  [TOTAL 7] 
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6(i) Sketch showing curve, root, initial estimate, tangent, intersection of tangent  
 with x-axis as improved estimate     [E1E1E1] 

 
 
        [subtotal 3] 

(ii) 0 0        
 0.35 -0.33497    Sketch showing root, α [G2] 
 0.7 -0.55771        
 1.05 -0.35668    E.g. starting values just to the  
 1.4 2.997884    left of the root can produce an [M1] 
      x1 that is the wrong side of the  
      asymptote  [E1] 

          
      E.g. starting values further left [M1] 
      can converge to zero. [E1] 
          
          
        [subtotal 6] 
          
(iii) Convincing algebra to obtain the N-R formula    [M1A1] 
          
 r 0 1 2 3 4    
 xr 1.2 1.169346 1.165609 1.165561 1.165561  [M1A1A1] 
  root is 1.1656 to 4 dp     [A1] 
          
 differences from root -0.03065 -0.00374 -4.8E-05 Accept diffs of successive terms 
 ratio of differences  0.1219 0.012877   [M1A1] 
 ratio of differences is decreasing (by a large factor), so faster than first order [E1] 
         [subtotal 9] 

 [TOTAL 18] 
7    
(i) x g(x) Δg Δ2g      
 1 2.87        
 2 4.73 1.86       
 3 6.23 1.50 -0.36      

 4 7.36 1.13 -0.37      
 5 8.05 0.69 -0.44     [M1A1A1] 
          

 Not quadratic       [E1] 
 Because second differences not constant     [E1] 
         [subtotal 5] 
          
(ii) x g(x) Δg Δ2g      
 1 2.87        
 3 6.23 3.36       
 5 8.05 1.82 -1.54     [B1] 
          
 Q(x) = 2.87 + 3.36 (x - 1)/2 - 1.54 (x - 1)(x - 3)/8   [M1A1A1A1] 
 =  0.6125 + 2.45 x - 0.1925 x2     [A1A1A1] 
         [subtotal 8] 
          
(iii) x Q(x) g(x) error rel error  Q: [A1A1] 
 2 4.7425 4.73 0.0125 0.002643  errors: [A1] 
 4 7.3325 7.36 -0.0275 -0.00374  rel errors: [M1A1] 
         [subtotal 5] 
                [TOTAL 18]   
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4776: Numerical Methods  
 
General Comments 
 
Though there were some very good scripts, a substantial number of candidates seemed ill 
prepared for this exam. Some very fundamental ideas – maximum possible error, relative error – 
seemed unfamiliar; some standard techniques – Newton-Raphson, Lagrange interpolation– 
were not accurately understood. There was a lot of poor algebra, and a significant minority of 
candidates worked their solutions with too small a number of significant figures, losing accuracy 
and losing marks. Over all, there was a sense that some candidates were insufficiently 
experienced on Numerical Methods papers. 
 
 
Comments on Individual Questions 
 
1 Bisection 
  

The bisection method was well understood, but the layout of solutions was often poor. 
Here, as elsewhere in numerical work, a tabular layout is best. Many candidates did not 
understand maximum possible error. Two inappropriate approaches were seen: some 
took the value of the function as the maximum possible error; others simply iterated 
many times more than required in the hope that they would have gone far enough. 

   
2 Numerical integration 
  

The first half of the question was frequently done well, though some candidates still do 
not appreciate the relationship between the mid-point rule, the trapezium rule and 
Simpson’s rule. The point here is that the weighted average of M and T with h = 0.5 
gives S with h = 0.25. Extrapolation was often not done well, though some candidates 
showed confidence with one of the several approaches possible. Full marks were 
available for full extrapolation or for just finding the next term in the sequence of 
Simpson’s rule estimates as the convergence is so rapid. 

   
3 Cosine rule, errors 
  

The basic elements of this question often let candidates down. Some got the cosine 
rule wrong even though it is GCSE work and in the formula book. Some had their 
calculators in radian mode even though the question is very clearly set in degrees. 
Some forgot to take the square root to find a. Some, not reading the question carefully, 
found the errors in the approximation for the cosine rather than the approximation for a. 

   
4 Relative errors, π 
  

Most candidates were unable to identify r in the formula X = x(1 + r) as the relative 
error. The binomial expansion was beyond many; though with the result given most 
could then go on to gain the marks for part (iii). There were no marks for calculating the 
relative errors from first principles in this part. 
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5 Lagrange interpolation 
  

As usual, there were candidates who confused the x and f(x) values in Lagrange’s 
formula, and those who could not handle the algebra. Some whose working was 
otherwise correct multiplied the expression for f(x) by 20 in order to eliminate decimal 
fractions. This question was, nevertheless, often done well.   

   
6 Newton-Raphson method 
  

(i) 
 
In part (i), a good, detailed, clearly labelled sketch of the Newton-Raphson 
method was sufficient to get full marks, though candidates often helped their case 
if they offered a short written explanation. The major error here was to give 
another method altogether, such as fixed-point iteration. 

   
 (ii) In part (ii), some candidates sketched tanx and 2x as separate graphs, making it 

impossible to gain any of the marks. Good solutions identified starting points that 
would give convergence to the root at zero, or difficulties starting at the turning 
point or beyond the asymptote. 

   
 (iii) In part (iii), there was some fudging of the derivative of f(x), some work in 

degrees, and some inaccurate use of calculators. However, there were also many 
correct solutions. Showing that the iteration is faster than first order defeated 
quite a few. Many showed that the ratios of differences are not constant. This 
demonstrates that the process is not first order. Observing that the ratios 
decrease shows that the process is faster than first order. 

   
7 Difference table, Newton’s method 
  

(i) 
 
The difference table in part (i) was generally done well, though there were some 
sign errors. The function is not quadratic because the second differences are not 
equal. Candidates who answered that the function was almost quadratic because 
the second differences were almost equal were given the credit as they were 
judged to have understood the point. Those who said that the function was 
quadratic because the differences were approximately equal did not receive full 
credit. (Some candidates seemed to believe that the function would be quadratic 
if the second differences were within 10% of one another.) 

   
 (ii) In part (ii), the method was generally well understood but the algebra defeated 

some. 
   
 (iii) The final part was, for most, a routine application of the approximating quadratic 

just found. Those who had made a substantial error in part (ii) frequently had 
quadratics that gave absurdly large errors. This should have been a clear sign of 
an earlier mistake. 
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