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Section A (36 marks)

1 You are given the matrix 

(i) Find the inverse of M. [2]

(ii) A triangle of area 2 square units undergoes the transformation represented by the matrix M.
Find the area of the image of the triangle following this transformation. [1]

2 Write down the equation of the locus represented by the circle in the Argand diagram shown in Fig. 2.
[3]

Fig. 2

3 Find the values of the constants A, B, C and D in the identity

[5]

4 Two complex numbers, a and b, are given by and 

(i) Represent b  and its complex conjugate b* on an Argand diagram. [2]

(ii) Express a b in the form [2]

(iii) Express in the form [3]

5 The roots of the cubic equation are a , b and g. Find the cubic equation
whose roots are 3a , 3b and 3g , expressing your answer in a form with integer coefficients. [6]

x3 � 3x 2 � 7x � 1 � 0

a � bj .
a � b

b

a � bj .

b � �2 � j .a � 1 � 2j

x3 � 4 �  (x � 1) (Ax2 � Bx � C) � D.
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4 3
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6 (i) Show that [2]

(ii) Hence use the method of differences to find [4]

7 Prove by induction that [6]

Section B (36 marks)

8 A curve has equation 

(i) Write down the coordinates of the points where the curve crosses the axes. [3]

(ii) Write down the equations of the three vertical asymptotes and the one horizontal asymptote.
[4]

(iii) Determine whether the curve approaches the horizontal asymptote from above or below for

(A) large positive values of x,

(B) large negative values of x. [3]

(iv) Sketch the curve. [4]

9 The cubic equation where A and B are real numbers, has a root

(i) Write down the other complex root. [1]

(ii) Explain why the equation must have a real root. [1]

(iii) Find the value of the real root and the values of A and B. [9]

[Question 10 is printed overleaf.]

x � 1 � 2j.
x3 � Ax2 � Bx � 15 � 0,

y �
x2 � 4

(x � 3) (x � 1) (x � 1) 
.

� 
n

r�1
3r�1

�
3n

�1
2

.

1
3 � 4

�
1

4 � 5
�

1
5 � 6

� … �
1

52 � 53
.

1
r � 2

 � 
1

r � 3
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1
(r � 2) (r � 3) .
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10 You are given that and and that AB is of the

form 

(i) Find the value of n. [2]

(ii) Write down the inverse matrix A–1 and state the condition on k for this inverse to exist. [4]

(iii) Using the result from part (ii), or otherwise, solve the following simultaneous equations.

[5]
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Section A 

 
1(i) 

 
 
1(ii) 

1 3 11
4 210

− ⎛ ⎞
= ⎜ ⎟−⎝ ⎠

M  

 
20 square units 

M1 
A1  
[2] 

 
B1 
[1] 

Attempt to find determinant 
 
 
 
2× their determinant 

 
2 

 
 

 

 
(3 2 j) 2z − − =  

 
 

 
B1 
B1 
B1 
[3] 

 

( )3 2jz ± −  seen 
radius = 2 seen 
Correct use of modulus 
 

3 ( )( )
( ) ( )3

3 2

3 24

4 1

x

x x Ax Bx C D

Ax B A x C B x C D⇒ − =

− = − + + +

+ − + − − +
 

 
1, 1, 1, 3A B C D⇒ = = = = −  

 
M1 

 
B1 

 
B1 
B1 
B1 
[5] 

 
Attempt at equating coefficients or 
long division (may be implied) 
For A = 1 
 
B1 for each of B, C and D 
 

 
4(i) 

 
 

 
 
 
 
 
 
 
4(ii) 

 
 
 

4(iii) 
 

 
 

 

 

 
 
 

( )( )1 2j 2 j 4 3jαβ = − − − = − +  
 
 

( ) * * *

* *

5j 5 j 1
5

α β βα β αβ ββ
β ββ ββ

++ +
= = = =

+
+

 
 
 
 

B1 
B1 

 

[2] 
 
 

 
 

M1 
A1 
[2] 

 
M1 

 
A1 

 
A1 
[3] 

 
 
 
 
One for each correctly shown. 
s.c. B1 if not labelled correctly but 
position correct 
 
 
 
 
Attempt to multiply 
 
 
 
Appropriate attempt to use 
conjugate, or other valid method 
5 in denominator or correct working 
consistent with their method 
All correct 
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5 Scheme A 

3
3

x
w

w x ⇒ ==  

 
3 2

3 2

3 7 1
3 3 3

9 63 27 0

w w w

w ww

⇒ + 0− + =

⇒ + − + =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠  

 
 

OR 
 

 
 

B1 
 
 

M1 
 

A3 
 
 

A1 
[6] 

 
Substitution. For substitution 3x w=  
give B0 but then follow through for a 
maximum of 3 marks 
 
Substitute into cubic 
 
Correct coefficients consistent with  

3x  coefficient, minus 1 each error 
 

Correct cubic equation c.a.o. 
 

 Scheme B 

7
1

3α β γ

αβ αγ βγ

αβγ

+ + = −

+ + = −

= −

 

 
Let new roots be k, l, m then 

( )

( )

3 2

3 9

9 6

27 27

9 63 27 0

B
k l m

A

kl km lm

D
klm

A

C
A

α β γ

αβ αγ βγ

αβγ

ω ω ω

−
+ + = + + − =

+ + = + + = − =

−
= = − =

⇒ + − + =

=

3
 

 
 

M1 
 

 
 
 

M1 
 
 
 
 

A3 
 
 

A1 
[6] 

 
 
Attempt to find sums and products of 
roots (at least two of three) 
 
 
 
Attempt to use sums and products of 
roots of original equation to find 
sums and products of roots in related 
equation 
 
Correct coefficients consistent with  

3x  coefficient, minus 1 each error 
 

Correct cubic equation c.a.o. 
 

6(i) 
 
 
 

6(ii) 

( )
( )( ) ( )( )

3 21 1 1
2 3 2 3 2 3

r r
r r r r r r

+ − +
− = =

+ + + + + +
 

 
 

( )( )
50 50

1 1

1 1
2 3 2 3

1 1 1 1 1 1
.....

3 4 4 5 5 6
1 1 1 1
51 52 52 53

1 1 50
3 53 159

r rr r r r= =

= −
+ + + +

= − + − + − +

+ − + −

= − =

⎡ ⎤
⎢ ⎥⎣ ⎦

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ 1

 

M1 
A1 
[2] 

 
 

M1 
 
 

M1, 
 

M1 
 
 

A1 
 

[4] 

Attempt at common denominator 
 
 
 
 
Correct use of part (i) (may be 
implied) 
 
First two terms in full 
 
Last two terms in full (allow in terms 
of n) 
 
Give B4 for correct without working  
Allow 0.314 (3s.f.) 
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7 

1

1

2

3 1
3

nn

r

r

=

− −
=∑  

n = 1, LHS = RHS = 1 
Assume true for n = k 
Next term is 3  k

Add to both sides 

1

3 1RHS 3
2

3 1 2 3
2

3 3 1
2

3 1
2

k
k

k k

k

k +

−
= +

− + ×
=

× −
=

−
=

 

But this is the given result with k + 1 replacing 
k.  Therefore if it is true for k it is true for k + 1.  
Since it is true for k = 1, it is true for k = 1, 2, 3 
and so true for all positive integers. 

 
 

 
B1 
E1 
M1 

 
 
 
 
 
 

 
 

 
A1 

 
E1 

 
 

E1 
 

[6] 

 
 
 
 
Assuming true for k 
Attempt to add  to RHS 3k

 
 
 
 
 
 
 
 
 
c.a.o. with correct simplification 
 
Dependent on previous E1 and 
immediately previous A1 
 
Dependent on B1 and both previous 
E marks  
 

Section A Total:  36 
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Section B 

 
8(i) 

 
 

8(ii) 
 
 
 

8(iii) 
 
 
 
 
 
 
 

8(iv) 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

( )2,  0 , ( ) , 2,  0−
4

0,  
3

−⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
 
x = 3,  1,  1, 0x x y= − = =
 
 
 
Large positive x, , approach from above 0y +→
(e.g. consider ) 100x =
Large negative x, , approach from below 0y −→
(e.g. consider ) 100x = −
 
Curve 
 4 branches correct 
 Asymptotes correct and  labelled 
 Intercepts labelled 

 

 

 
B1 
B1 
B1 
[3] 
B4 
[4] 

B1 
 

B1 
 

M1 
[3] 

 

B2 
B1 
B1 

 
[4] 
 
 
 
 
 
 
 
 
 

 

 
1 mark for each 

s.c. B2 for 
4

2,  2,  
3

−
−  

 

Minus 1 for each error 
 
 
 
Direction of approach must be clear 
for each B mark 
 
Evidence of method required 
 
 
Minus 1 each error, min 0 
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9(i) 

 
 

9(ii) 
 
 
 
 
9(iii) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
1 2 jx = −  

 
Complex roots occur in conjugate pairs. A cubic 
has three roots, so one must be real.  Or, valid 
argument involving graph of a cubic or 
behaviour for large positive and large negative 
x. 
 
 
Scheme A 
 
( )( )
( )( )

2

2 3 2

1 2 j 1 2 j 2 5

2 5 1

comparing constant term:
5 15 3

x x x x

x x x x Ax Bxα 5

α α

− − − + = − +

− − + = + + +

− = ⇒ = −

 

 
So real root is  3x = −
 
( )( )2 3 2

3 2 3 2

3 2 5

15 15
1, 1

x x x x Ax Bx

x x x x Ax Bx
A B

+ − + = + + +

⇒ + − + = + + +
⇒ = = −

15

5

 

OR 
Scheme B 
 
Product of roots  =  15−
 
( ) ( )1 2j 1 2j 5+ − =  
 

5 1
3

α

α

⇒ = −

⇒ = −
 

Sum of roots  = -A 
1 2 1 2 3 1 1A j j A⇒ − = + + − − = − ⇒ =  

 
Substitute root x =  –3 into cubic 
( ) ( )3 23 3 3 15 0B B− + − − + = ⇒ = −1  
A = 1 and B = -1 
 
OR 
 
Scheme C 
 

3α = −  
 
 
( ) ( ) ( )3 21 2 j 1 2 j 1 2j 15 0

( 3 4j) (1 2 j) 4 2 j 0
3 4 0 and 4 2 2

1 and 1

A B

A B
A B A B

A B

+ + + + + + =

⇒ − + + + + − =

⇒ − + + = + − =

⇒ = = −

0
 

 
 
 
 

 
B1 
[1] 

 
 

E1 
 

[1] 
 
 
 

 
M1 
A1 

A1(ft) 
M1 
M1 

 
A1(ft) 

 
 

M1 
M1 
A1 
[9] 

 
 

M1 
A1 
M1 
A1 
A1 

 

A1 
 

M1 
 

M1 
 

 
A1 
[9] 

 
 
 
 

6 
 
 

M1 
 

M1 
 
 

A1 
[9] 

 
 
 
 
 
 
 
 
 
 
 
Attempt to use factor theorem 
Correct factors 
Correct quadratic(using their factors) 
Use of factor involving real root 
Comparing constant term 
 
From their quadratic 
 
 
Expand LHS 
Compare coefficients 
1 mark for both values 
 
 
 
 
Attempt to use product of roots 
Product is –15 
Multiplying complex roots 
 
 
c.a.o. 
 
Attempt to use sum of roots 
 
Attempt to substitute, or to use sum  
 
 
c.a.o.  
 
 
 
 
 
As scheme A, or other valid method 
 
 
Attempt to substitute root 
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Attempt to equate real and imaginary 
parts, or equivalent. 

c.a.o. 
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Section B (continued) 
10(i) 

 
 
 
 
 
 
 
 
 
 
 
 

10(ii) 
 
 
 
 
 
 
 
 
 

10 
(iii) 

1 2 5 2 2 4
2 1 2 8 1 3 2 2
3 2 1 1 8 5

21 0 0
0 21 0
0 0 21

k k
k k

k
k

k

− − − + − −

= − −

− −

−

= −

−

⎛ ⎞⎛
⎜ ⎟⎜
⎜ ⎟⎜⎜ ⎟⎜
⎝ ⎠⎝

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

AB
k

− +
⎞
⎟
⎟⎟
⎠  

 
n = 21 
 
 
 

1

5 2 2 4
1

8 1 3 2 2
21

1 8 5

k k
k k

k
−

− − + − −

= − − −
−

−

⎛
⎜
⎜⎜
⎝ ⎠

A +
⎞
⎟
⎟⎟

 

 
21k ≠   

 
 
 
Scheme A 

5 0 5 1 20 1
1 1

8 4 0 12 40 2
20 20

1 8 5 3 80 4

1,  2,  4x y z

− − −

− = −
− −

− −

= = =

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

=
⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
OR 
 
Scheme B 
 
Attempt to eliminate 2 variables 
Substitute in their value to attempt to find others 

1,  2,  4x y z= = =  
 
 

M1 
 
 
 
 
 
 
 
 

A1 
[2] 

 
 

M1 
M1 
A1 

 
 

A1  
 

[4] 
 
 
 

M1 
M1 

 
 

 
A3 
[5] 

 
 
 
 

M1 
M1 
A3 
[5] 

 

Attempt to multiply matrices 
(can be implied) 
 
 
 
 
 
 
 
 
 
 
 
 
Use of B 
Attempt to use their answer to (i) 
Correct inverse 
 
 
Accept n in place of 21 for full 
marks 
 
 
 
 
Attempt to use inverse 
Their inverse with k = 1 
 
 
 
One for each correct (ft) 
 
 
 
 
 
 
 
 
 
s.c. award 2 marks only for 

1,  2,  4x y z= = =  with no working. 
Section B Total:  36  

Total:  72  
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2 2×

≤

4755: Further Concepts for Advanced Mathematics (FP1) 
 
General Comments 
 
This paper was of an appropriate standard, with some questions that almost all candidates could 
make a good attempt at and others that provided a challenge for the most able. It may, however, 
have been a little long; some strong candidates seemed to have run out of time. 
 
The paper appeared to be slightly easier than recent papers for weaker candidates but a little 
harder for strong ones. 
 
By far the majority of candidates were clearly well prepared for the examination. 
 
 
Comments on Individual Questions 
 
1 Properties of a matrix    

 
In this question candidates were asked to find the inverse of the given  matrix, and 
the effect of the matrix on the area of a figure which was transformed by the matrix. 
Almost all candidates answered the first part correctly but a significant minority were 
unable to do the second part. 
 

2 Locus on argand diagram  
 
While there were many correct answers to this question from strong candidates, there 
were also plenty of mistakes. The commonest of these were sign errors, missing or 
incorrectly used modulus brackets, using  instead of =, and attempting to give the 
cartesian equation of the circle. 
 

3 Identity  
 
By far the majority of candidates got this question right. The errors that did occur mostly 
resulted from careless mistakes involving signs. 
 

4 Complex numbers  
 
Many candidates scored full marks on this question. There were, however, many poorly 
labelled Argand diagrams in part (i), careless mistakes in multiplying out αβ  in part (ii) 
and in dividing one complex number by another in part (iii).  All but the weakest 
candidates knew what to do, but a significant proportion made simple slips. 
 

5 
 
 
 
 

Roots of an equation   
 
Almost all candidates knew how to do this question and there were many correct 
answers. Most of the mistakes that occurred were careless errors in the manipulation, 
often involving signs. Both of the alternative methods were commonly used, but the 
substitution method was more efficient and resulted in fewer errors, though some failed 
to multiply the constant by 27. 
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( )( )

6 
 
 

Method of differences  
 
This question was generally well answered. In part (i) a few candidates invalidated their 
establishment of the given result with sign errors when removing brackets.  

( )( )
3 2 1
2 3 2 3

r r
r r r r

+ − + =
+ + + +

 was seen quite often. The commonest mistake in part (ii) 

was to leave the answer as
1 1
3 3n

−
+

50n =

12 3 3 1k k k +− + × = −
2 3 6k k× =

, failing to substitute .  

 
7 Proof by induction 

 
This was by far the least well answered question in Section A. Most candidates knew 
what they were trying to achieve but many failed to show that3 1 . 
There seemed to be a widespread belief that .   
 

8 Curve sketching  
 
This question was well answered. Many candidates scored full marks on it, or very 
nearly so.  
 

 (i) Candidates were asked for the points where the curve cuts the axes.  Most 
scored full marks.  
 

 (ii) Candidates were asked for the vertical and horizontal asymptotes.  The most 
common error was failing to recognise y = 0 as the horizontal asymptote. 
 

 (iii) Candidates were asked about approaches to the horizontal asymptote.  A 
significant proportion failed to show any workings. 
 

 (iv) Candidates were asked to sketch the curve.  Common errors were failing to 
label intercepts and asymptotes and incorrect approaches to the asymptotes. 
 

9 Cubic equation with two complex roots 
 
This question was often done well, but parts (ii) and (iii) differentiated well. 
 

 (i) Almost all candidates knew that if 1 + 2j was a root of the cubic, then 1 - 2j must 
also be a root. 
 

 (ii) Candidates were asked to explain why the third root must be real; they were 
expected to say that complex roots come in conjugate pairs and that because a 
cubic has three roots, the third must therefore be real. Many candidates omitted 
the word “conjugate”.  Many produced entirely spurious arguments and a 
significant proportion failed to attempt an answer.  A few gave alternative valid 
arguments, which were given full credit. 
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22 j 2 j 2 j× =

3× 3

3 3×
21n = − 21n =

3 3×

3 3×

 (iii) Part (iii) was an unstructured question for 9 marks to find the real root and the 
values of missing coefficients. Some candidates found efficient approaches to 
the work and took only a few lines to obtain the right answers. Others, by 
contrast, submitted several pages of work; in some cases there was nothing 
mathematically wrong but it was just not going anywhere useful. However, many 
candidates compounded a poor strategy with sign errors.  The most efficient 
method was to consider the sums and products of the roots, but the majority 
used the factor theorem, which was more complicated and so prone to error.  

 was seen too often. 
 

10 Inverse of a  matrix  
 
This question was rather low scoring.   Time pressure may have been a factor for some. 
 
Many did not see the structure of the question, failing to see the connection between 
parts (i) and (ii), and (ii) and (iii).  
 

 (i)  Candidates were asked to find the value of a constant when multiplying two 
matrices.  Most candidates did this correctly but a common mistake was to 

write  instead of .  
 

 (ii) Candidates were asked to write down the inverse of a  matrix and state the 
condition on a constant for this inverse to exist.  This all followed from (i).  A 
mark of zero on this part of the question was quite common. Some candidates 
did, however, see what was happening and obtained the correct answer.  The 
very best did seem to simply right it down, which was possible if they could see 
the connection with part (i).  Many started again from scratch.  A few earned 
some of the marks, but most were not successful. 
 

 (iii) Candidates were asked to solve a system of 3 simultaneous linear equations.  
Candidates were given the option of following the logic of the question, using the 
inverse  matrix to solve the equations, or of using another method. Many 
candidates chose Gaussian elimination and right answers obtained by this 
method were common. There were also some right answers using the matrix 
method, which followed easily from (ii).  Incorrect inverse matrices were followed 
through from (ii), so most candidates who got this far earned at least some of 
the marks. 
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