ADVANCED GCE UNIT
 MATHEMATICS (MEI)
 Decision Mathematics Computation
 MONDAY 18 JUNE 2007

Additional materials:
Answer booklet (8 pages)
Graph paper
MEI Examination Formulae and Tables (MF2)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.
- Additional sheets, including computer print-outs, should be fastened securely to the answer booklet.

COMPUTING RESOURCES

- Candidates will require access to a computer with a spreadsheet program, a linear programming package and suitable printing facilities throughout the examination.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- In each of the questions you are required to write spreadsheet or other routines to carry out various processes.
- For each question you attempt, you should submit print-outs showing the routine you have written and the output it generates.
- You are not expected to print out and submit everything your routine produces, but you are required to submit sufficient evidence to convince the examiner that a correct procedure has been used.
- \quad The total number of marks for this paper is 72 .

1 The number of branches on a tree in a particular year is modelled as the number of branches that were on the tree in the previous year plus new growth of p times the number that were on the tree the year before that, $0<p<1$.
(i) Let u_{n} be the number of branches on the tree in year n. Write down a recurrence relation for u_{n+2} in terms of u_{n+1}, u_{n} and p.
(ii) The tree was bought $(n=0)$ with 20 branches. It had 25 branches after one year $(n=1)$. Given that $p=0.11$, solve your recurrence relation.
(iii) Construct a spreadsheet to model your recurrence relation, and use it to check your answer to part (ii).

Add to your spreadsheet to show the number of branches each year as the nearest integer to that given by applying the recurrence relation to the previous two integers. Print out your spreadsheet for n from 0 to 20. Print out the formulae which you used. (Just one example of each formula will suffice.)

To control the growth of the tree it is pruned each year, after the new growth has taken place. New growth is not pruned, but a proportion, $r(0<r<1)$, of old branches is removed. Let v_{n} be the number of branches on the tree in year n, after pruning.
(iv) Modify your answer to part (i) to produce a recurrence relation for v_{n+2} in terms of v_{n+1}, v_{n}, p and r.
(v) Modify your spreadsheet to allow for pruning and find a value of r which will lead to about 100 branches after 20 years (using $v_{0}=20, v_{1}=25$ and $p=0.11$).

2 Six trees are to be planted, two pines, one eucalyptus, one mimosa, one jacaranda and one acacia. There are 7 locations available, at each of which one tree can be planted. The table shows which trees can be planted in each of the locations.

Location	1	2	3	4	5	6	7
Trees	pine eucalyptus	eucalyptus jacaranda	mimosa acacia	pine jacaranda	pine mimosa	mimosa acacia	acacia

(i) Draw a bipartite graph to represent this information.

The gardener decides that he does not wish to use location number 2 . He starts placing trees by locations prior to planting.
(ii) Show that there is no solution if location 2 is not used.

The gardener now decides to reject location 7 instead of location 2 . He starts by placing the eucalyptus by location 1, the jacaranda by location 2, the acacia by location 3, the first pine by location 4 and the mimosa by location 5 . He then realises that he has nowhere to put the second pine.
(iii) Represent the gardener's incomplete matching on a second bipartite graph.
(iv) Give an alternating path, starting at the second pine and ending at location 6, of arcs taken alternately from the full bipartite graph and from the graph representing the incomplete matching. Hence give a complete matching.
(v) The gardener would like to have an automatic procedure to solve similar tree-planting problems in the future. Produce an LP to solve the problem of finding a maximal matching from the information given in the original table.

Produce a print-out of your LP. Run it and produce a print-out of your results.
Interpret your results.

3 The builders of a shopping precinct have to decide where to place CCTV cameras. The diagram shows buildings (which are shaded), pavements, and 12 possible locations for cameras.

Cameras can be rotated to view along different directions, and all pavements must be in sight of at least one camera.
(i) By inspection select a set of 6 locations from which cameras can scan all pavements.

The diagram below shows one way of splitting the pavements into rectangles.

(ii) Formulate an LP to select a minimum set of locations from which cameras can scan all of the rectangles. Produce a print-out of your formulation.
(iii) Run your LP, produce a print-out of your output, and interpret the results.

The costs of installing a camera depends on the location. They are listed below.

Location	C1	C2	C3	C4	C5	C6	C7	C8	C 9	C10	C11	C12
Cost $(£ 000)$	5	2	3	5	4	1.5	2	2	5	3	4	7

(iv) Modify your LP to find the cheapest way of achieving full coverage of all pavements.
(v) Run your modified LP, produce a print-out of your output, and interpret the results.

4 A component in a machine has a short lifespan. It fails either after 1, 2 or 3 days, with probabilities given in the table.

Time to failure (days)	1	2	3
Probability	0.1	0.3	0.6

When a component fails it is replaced at the end of the day.
(i) Construct a look-up table to simulate the failure time for a component. Print out the formulae which you use.
(ii) Set up a spreadsheet to simulate failure times for a number of components so that you can accumulate the times to failure. Simulate enough components so that the accumulated failure times exceed 16 days.

Print out your spreadsheet formulae.
(iii) From your simulation in part (ii) record

- whether or not there was a failure on day 14 ,
- whether or not there was a failure on day 15 ,
- whether or not there was a failure on day 16 ,
- the total number of failures up to and including day 14.

Repeat your simulation 9 more times (10 times in total), recording information as before. Hence estimate the probability of a failure on day 14 , the probability of a failure on day 15 , the probability of a failure on day 16 , and the expected number of failures up to and including day 14 .

Replacing a part when it fails costs $£ 50$, plus the cost of the component, which is $£ 25$. An alternative policy is to replace a component if it fails on its first day, and otherwise to replace it anyway, failed or not, at the end of its second day. Such a scheduled replacement costs $£ 30$ plus the cost of the component.
(iv) Simulate the operation of this scheduled replacement policy over a period of 14 days. Repeat your simulation 10 times and use your results from part (iii) to see whether or not this policy is cost effective.
(v) How could you improve the reliability of your results?

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.
OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Mark Scheme 4773 June 2007

1.

(i) $u_{n+2}=u_{n+1}+p u_{n}$
(ii) Auxiliary equation is $\lambda^{2}-\lambda-0.11=0$

Solution is $u_{n}=22.5(1.1)^{\mathrm{n}}-2.5(-0.1)^{\mathrm{n}}$
(iii)

Rec rel	Formula		Int RR
20.0000	0	20.0000	20
25.0000	1	25.0000	25
27.2000	2	27.2000	27
29.9500	3	29.9500	30
32.9420	4	32.9420	33
36.2365	5	36.2365	36
39.8601	6	39.8601	40
43.8461	7	43.8461	44
48.2307	8	48.2307	48
53.0538	9	53.0538	53
58.3592	10	58.3592	58
64.1951	11	64.1951	64
70.6146	12	70.6146	70
77.6761	13	77.6761	77
85.4437	14	85.4437	85
93.9881	15	93.9881	93
103.3869	16	103.3869	102
113.7256	17	113.7256	112
125.0981	18	125.0981	123
137.6080	19	137.6080	135
151.3687	20	151.3687	149

Formula: $=\mathrm{INT}(\mathrm{H} 3+\mathrm{B} \$ 2 * \mathrm{H} 2+0.5)$
(iv) $v_{n+2}=(1-r) v_{n+1}+p v_{n}$

M1 A1

M1 A1
M1 gen homogeneous
A1 with $1.1 \&-0.1$
B1 case $1\left(u_{0}=20\right)$
+case 2($u_{1}=25$)
M1 simultaneous
A1 22.5 and -2.5
B1 final answer

B1 recurrence relation

B1 checking formula
B1 discretising

1

M1 A1

1. (cont)

2.
(i)

(ii) e.g. locations 3, 6 and 7 for only two trees, so one must be rejected. Therefore other 6 locations needed.
(iii)

(iv) e.g. P2-5-M-6

$$
\begin{array}{llllll}
\text { P1 } & \text { P2 } & \text { E } & \text { M } & \text { J } & \text { A } \\
4 & 5 & 1 & 6 & 2 & 3
\end{array}
$$

2 (cont).
(v) Max
$\mathrm{P} 11+\mathrm{P} 14+\mathrm{P} 15+\mathrm{P} 21+\mathrm{P} 24+\mathrm{P} 25+\mathrm{E} 1+\mathrm{E} 2+\mathrm{M} 3+\mathrm{M} 5+\mathrm{M} 6$

$$
+\mathrm{J} 2+\mathrm{J} 4+\mathrm{A} 3+\mathrm{A} 6+\mathrm{A} 7
$$

st $\quad \mathrm{P} 11+\mathrm{P} 14+\mathrm{P} 15<=1$
$\mathrm{P} 21+\mathrm{P} 24+\mathrm{P} 25<=1$
$\mathrm{E} 1+\mathrm{E} 2<=1$
$\mathrm{M} 3+\mathrm{M} 5+\mathrm{M} 6<=1$
$\mathrm{J} 2+\mathrm{J} 4<=1$
$\mathrm{A} 3+\mathrm{A} 6+\mathrm{A} 7<=1$
$\mathrm{P} 11+\mathrm{P} 21+\mathrm{E} 1<=1$
$\mathrm{E} 2+\mathrm{J} 2<=1$
M3 + A3 $<=1$
$\mathrm{P} 14+\mathrm{P} 24+\mathrm{J} 4<=1$
P15+P25+M5<=1
M6 + A $6<=1$
A $7<=1$
End
LP OPTIMUM FOUND AT STEP 13
OBJECTIVE FUNCTION VALUE

1) 6.000000

VARIABLE	VALUE	REDUCED COST
P11	0.000000	0.000000
P14	0.000000	0.000000
P15	1.000000	0.000000
P21	0.000000	0.000000
P24	1.000000	0.000000
P25	0.000000	0.000000
E1	1.000000	0.000000
E2	0.000000	0.000000
M3	0.000000	0.000000
M5	0.000000	1.000000
M6	1.000000	0.000000
J2	1.000000	0.000000
J4	0.000000	0.000000
A3	0.000000	0.000000
A6	0.000000	0.000000
A7	1.000000	0.000000

P1 P2 E M J A
$\begin{array}{llllll}5 & 4 & 1 & 6 & 2 & 7\end{array}$
3.
(i) e.g. C2 C3 C5 C7 C9 C11
(ii)

Min $\mathrm{C} 1+\mathrm{C} 2+\mathrm{C} 3+\mathrm{C} 4+\mathrm{C} 5+\mathrm{C} 6+\mathrm{C} 7+\mathrm{C} 8+\mathrm{C} 9+\mathrm{C} 10+\mathrm{C} 11+\mathrm{C} 12$
st $\quad \mathrm{C} 1+\mathrm{C} 2+\mathrm{C} 3+\mathrm{C} 4>=1$
$\mathrm{C} 4+\mathrm{C} 5+\mathrm{C} 6>=1$
$\mathrm{C} 6+\mathrm{C} 7+\mathrm{C} 8+\mathrm{C} 9+\mathrm{C} 10>=1$
$\mathrm{C} 1+\mathrm{C} 10+\mathrm{C} 11>=1$
C2>=1
$\mathrm{C} 3+\mathrm{C} 8+\mathrm{C} 12>=1$
$\mathrm{C} 5+\mathrm{C} 12>=1$
C11>=1
C9>=1
C7>=1
end
(iii)

LP OPTIMUM FOUND AT STEP 7
OBJECTIVE FUNCTION VALUE

1) 6.000000

VARIABLE VALUE REDUCED COST
C1 $0.000000 \quad 0.000000$
$\begin{array}{lll}\mathrm{C} 2 & 1.000000 & 0.000000\end{array}$
$\begin{array}{lll}\mathrm{C} 3 & 0.000000 & 1.000000\end{array}$
$\begin{array}{lll}\mathrm{C} 4 & 1.000000 & 0.000000\end{array}$
C5 $\quad 0.000000 \quad 0.000000$
$\begin{array}{lll}\text { C6 } & 0.000000 & 0.000000\end{array}$
C7 $\quad 1.000000 \quad 0.000000$
$\begin{array}{lll}\mathrm{C} 8 & 0.000000 & 1.000000\end{array}$
$\begin{array}{ll}\text { C9 } & 1.000000 \\ 0.000000\end{array}$
C10 $0.000000 \quad 0.000000$
$\begin{array}{lll}\mathrm{C} 11 & 1.000000 & 0.000000\end{array}$
$\begin{array}{lll}\mathrm{C} 12 & 1.000000 & 0.000000\end{array}$
Use locations 2, 4, 7, 9, 11 and 12 .
6 cameras needed
(iv) New objective:
$5 \mathrm{C} 1+2 \mathrm{C} 2+3 \mathrm{C} 3+5 \mathrm{C} 4+4 \mathrm{C} 5+1.5 \mathrm{C} 6+2 \mathrm{C} 7+2 \mathrm{C} 8+5 \mathrm{C} 9$
$+3 \mathrm{C} 10+4 \mathrm{C} 11+7 \mathrm{C} 12$
(v) Running

Use locations 2, 5, 7, 8, 9 and 11.
Cost $=£ 19000$

M1 A1

M1 objective
constraints
(-1 each error)

B1 running
4.
(i) e.g.
$10 \quad=\operatorname{LOOKUP}(\operatorname{RAND}(), \mathrm{B} 1: \mathrm{B} 3, \mathrm{~A} 1: \mathrm{A} 3)$
20.1
$3 \quad 0.4$
(ii) $=\operatorname{LOOKUP}(\operatorname{RAND}(), \$ B \$ 3: \$ B \$ 5, \$ A \$ 3: \$ A \$ 5)$

+ accumulation
e.g.

2	2
3	5
2	7
3	10
2	12
3	15
3	18
3	21
3	24
3	27
2	29
2	31
3	34
2	36
2	38
3	41

(iii) e.g.

day 14	day 15	day16	no. of replacements
0	0	1	5
1	0	0	6
0	0	1	5
0	0	1	5
1	0	0	6
0	1	0	5
0	1	0	6
1	0	1	5
0	1	0	5
1	0	1	6
0.4	0.3	0.5	5.4

Q4 (cont)

(iv)	e.g.							changed probabilities	
	Replacements day 1 day 2						B1		
	1	0	1	1	2	6			
	2	0.1	1	2	0	7			
			2	4	0	7			
			2	6	1	6			
			2	8	1	6	B1	repetitions	
			2	10	0	7			
			2	12	1	6	B1	results averages	
			2	14	0	7	B1		
			1	15	0	7			
			2	17	1	6			
			2	19					
			2	21	0.6	6.5			
	$\begin{aligned} & 5.4^{*}(50+25)=405 \text { versus } \\ & 0.6^{*}(50+25)+6.5^{*}(30+25)=402.5 \end{aligned}$						B1B1		
(v)	More repetitions.							B1	

4773: Decision Mathematics Computation

General Comments

There were fewer problems this year involving missing printouts. However, many candidates could usefully spend a few moments helping the examiner, and themselves, by arranging their printouts in the correct order and orientation, and checking that they are correctly labelled.

Comments on Individual Questions

1 Recurrence relations

It was very surprising to see so many candidates failing to produce the Excel output that was needed. It was expected that there would be many who failed correctly to "integerise" as specified, but many, even among those who succeeded with the recurrence relation algebra, failed to answer the first part of (iii) adequately.

Networks

This question was entirely on matchings.
Some candidates worked through the question without introducing vertices P1 and P2 for the two pine trees. This was possible, but was not always carried through successfully.
Not all candidates were able to mount a convincing argument in part (ii). However, in addition to the logically argued solutions, a few candidates produced an appropriate LP which showed a complete matching was not possible.
It was very noticeable that the computing work (part (v)) was done better more often than was the theoretical work. In particular, there were many candidates who were unable to tackle the alternating path in part (iv).

3 LP modelling

Many candidates were able to cope well with this question, and good solutions were often seen. Some candidates thought that C3 could not see all the way to C8, but this erroneous assumption was often then incorrectly implemented. A few candidates were unclear about the use of inequalities in their constraints. Marks were unnecessarily lost when candidates failed to make clear the interpretation of their LP output.

Simulation

Many candidates found this to be the most difficult of the questions. Parts (i), (ii) and (iii) were relatively easy, but were often not done efficiently. Furthermore candidates often made it very difficult for examiners to check what was being done. In part (iv) few candidates made clear how they were modelling the changed distribution of failure times, probably because they were themselves confused about it. Few correct cost comparison calculations were seen.
Most managed to pick up the final mark!

