

### ADVANCED GCE UNIT MATHEMATICS (MEI)

4768/01

Statistics 3 FRIDAY 12 JANUARY 2007

Morning

Time: 1 hour 30 minutes

Additional Materials: Answer booklet (8 pages) Graph paper MEI Examination Formulae and Tables (MF2)

#### INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer **all** the questions.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

#### **INFORMATION FOR CANDIDATES**

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.

#### **ADVICE TO CANDIDATES**

- Read each question carefully and make sure you know what you have to do before starting your answer.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.

This document consists of 4 printed pages.

1 The continuous random variable *X* has probability density function

$$f(x) = k(1 - x) \quad \text{for } 0 \le x \le 1$$

where k is a constant.

- (i) Show that k = 2. Sketch the graph of the probability density function. [4]
- (ii) Find E(X) and show that  $Var(X) = \frac{1}{18}$ . [5]
- (iii) Derive the cumulative distribution function of *X*. Hence find the probability that *X* is greater than the mean. [4]

(iv) Verify that the median of X is 
$$1 - \frac{1}{\sqrt{2}}$$
. [2]

- (v)  $\overline{X}$  is the mean of a random sample of 100 observations of X. Write down the approximate distribution of  $\overline{X}$ . [3]
- 2 The manager of a large country estate is preparing to plant an area of woodland. He orders a large number of saplings (young trees) from a nursery. He selects a random sample of 12 of the saplings and measures their heights, which are as follows (in metres).

 $0.63 \quad 0.62 \quad 0.58 \quad 0.56 \quad 0.59 \quad 0.62 \quad 0.64 \quad 0.58 \quad 0.55 \quad 0.61 \quad 0.56 \quad 0.52$ 

- (i) The manager requires that the mean height of saplings at planting is at least 0.6 metres. Carry out the usual *t* test to examine this, using a 5% significance level. State your hypotheses and conclusion carefully. What assumption is needed for the test to be valid? [11]
- (ii) Find a 95% confidence interval for the true mean height of saplings. Explain carefully what is meant by a 95% confidence interval.
- (iii) Suppose the assumption needed in part (i) cannot be justified. Identify an alternative test that the manager could carry out in order to check that the saplings meet his requirements, and state the null hypothesis for this test.

**3** Bill and Ben run their own gardening company. At regular intervals throughout the summer they come to work on my garden, mowing the lawns, hoeing the flower beds and pruning the bushes. From past experience it is known that the times, in minutes, spent on these tasks can be modelled by independent Normally distributed random variables as follows.

|         | Mean | Standard deviation |
|---------|------|--------------------|
| Mowing  | 44   | 4.8                |
| Hoeing  | 32   | 2.6                |
| Pruning | 21   | 3.7                |

- (i) Find the probability that, on a randomly chosen visit, it takes less than 50 minutes to mow the lawns. [3]
- (ii) Find the probability that, on a randomly chosen visit, the total time for hoeing and pruning is less than 50 minutes.
- (iii) If Bill mows the lawns while Ben does the hoeing and pruning, find the probability that, on a randomly chosen visit, Ben finishes first. [4]

Bill and Ben do my gardening twice a month and send me an invoice at the end of the month.

- (iv) Write down the mean and variance of the total time (in minutes) they spend on mowing, hoeing and pruning per month.
- (v) The company charges for the **total** time spent at 15 pence per minute. There is also a fixed charge of  $\pounds 10$  per month. Find the probability that the total charge for a month does not exceed  $\pounds 40$ .

[6]

4 (a) An amateur weather forecaster has been keeping records of air pressure, measured in atmospheres. She takes the measurement at the same time every day using a barometer situated in her garden. A random sample of 100 of her observations is summarised in the table below. The corresponding expected frequencies for a Normal distribution, with its two parameters estimated by sample statistics, are also shown in the table.

| Pressure<br>( <i>a</i> atmospheres) | Observed frequency | Frequency as given by Normal model |
|-------------------------------------|--------------------|------------------------------------|
| <i>a</i> ≤ 0.98                     | 4                  | 1.45                               |
| $0.98 < a \le 0.99$                 | 6                  | 5.23                               |
| $0.99 < a \leqslant 1.00$           | 9                  | 13.98                              |
| $1.00 < a \le 1.01$                 | 15                 | 23.91                              |
| $1.01 < a \le 1.02$                 | 37                 | 26.15                              |
| $1.02 < a \le 1.03$                 | 21                 | 18.29                              |
| 1.03 <i>&lt; a</i>                  | 8                  | 10.99                              |

Carry out a test at the 5% level of significance of the goodness of fit of the Normal model. State your conclusion carefully and comment on your findings. [9]

(b) The forecaster buys a new digital barometer that can be linked to her computer for easier recording of observations. She decides that she wishes to compare the readings of the new barometer with those of the old one. For a random sample of 10 days, the readings (in atmospheres) of the two barometers are shown below.

| Day | А     | В     | С     | D     | Е     | F     | G     | Н     | Ι     | J     |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Old | 0.992 | 1.005 | 1.001 | 1.011 | 1.026 | 0.980 | 1.020 | 1.025 | 1.042 | 1.009 |
| New | 0.985 | 1.003 | 1.002 | 1.014 | 1.022 | 0.988 | 1.030 | 1.016 | 1.047 | 1.025 |

Use an appropriate Wilcoxon test to examine at the 10% level of significance whether there is any reason to suppose that, on the whole, readings on the old and new barometers do not agree.

[9]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Mark Scheme 4768 January 2007

| 1     |                                                                                                                                                                   | 1        |                                                                                                    |    |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------|----|
| Q1    | $f(x) = k(1-x) \qquad 0 \le x \le 1$                                                                                                                              |          |                                                                                                    |    |
| (i)   | $\int_0^1 k(1-x) \mathrm{d}x = 1$                                                                                                                                 | M1       | Integral of f( <i>x</i> ), including limits (possibly implied later), equated to 1.                |    |
|       | $\therefore k[x - \frac{1}{2}x^2]_0^1 = 1$                                                                                                                        |          |                                                                                                    |    |
|       | $\therefore k(1-\frac{1}{2})-0=1$                                                                                                                                 |          |                                                                                                    |    |
|       | $\therefore k = 2$                                                                                                                                                | E1       | Convincingly shown. Beware printed answer.                                                         |    |
|       | Labelled sketch: straight line segment from (0,2) to (1,0).                                                                                                       | G1<br>G1 | Correct shape.<br>Intercepts labelled.                                                             | 4  |
| (ii)  | $E(X) = \int_{0}^{1} 2x(1-x)dx$                                                                                                                                   | M1       | Integral for E(X) including limits (which may appear later).                                       | •  |
|       | $= [x^{2} - \frac{2}{3}x^{3}]_{0}^{1} = (1 - \frac{2}{3}) - 0 = \frac{1}{3}$                                                                                      | A1       |                                                                                                    |    |
|       | $E(X^{2}) = \int_{0}^{1} 2x^{2} (1-x) dx$ $= \left[\frac{2}{3}x^{3} - \frac{2}{4}x^{4}\right]_{0}^{1} = \left(\frac{2}{3} - \frac{1}{2}\right) - 0 = \frac{1}{4}$ | M1       | Integral for $E(X^2)$ including limits (which may appear later).                                   |    |
|       | $Var(X) = \frac{1}{6} - (\frac{1}{3})^2$                                                                                                                          | M1       |                                                                                                    |    |
|       | $=\frac{1}{18}$                                                                                                                                                   | A1       | Convincingly shown. Beware printed answer.                                                         | 5  |
| (iii) | $\mathbf{F}(x) = \int_0^x 2(1-t) \mathrm{d}t$                                                                                                                     | M1       | Definition of cdf, including limits,<br>possibly implied later. Some valid<br>method must be seen. |    |
|       | $= [2t - t^{2}]_{0}^{x} = (2x - x^{2}) - 0 = 2x - x^{2}$                                                                                                          | A1       | [for $0 \le x \le 1$ ; do not insist on this.]                                                     |    |
|       | $P(X > \mu) = P(X > \frac{1}{3}) = 1 - F(\frac{1}{3})$                                                                                                            | M1       | For $1 - c$ 's $F(\mu)$ .                                                                          |    |
|       | $= 1 - (2 \times \frac{1}{3} - (\frac{1}{3})^2) = 1 - \frac{5}{9} = \frac{4}{9}$                                                                                  | A1       | ft c's $E(X)$ and $F(x)$ . If answer<br>only seen in decimal expect 3<br>d.p. or better.           | 4  |
| (iv)  | $F(1-\frac{1}{\sqrt{2}}) = 2(1-\frac{1}{\sqrt{2}}) - (1-\frac{1}{\sqrt{2}})^2$                                                                                    | M1       | Substitute $m = 1 - \frac{1}{\sqrt{2}}$ in c's cdf.                                                |    |
|       | $= 2 - \frac{2}{\sqrt{2}} - 1 + \frac{2}{\sqrt{2}} - \frac{1}{2} = \frac{1}{2}$                                                                                   | E1       | Convincingly shown. Beware printed answer.                                                         | 2  |
|       | Alternatively:                                                                                                                                                    |          |                                                                                                    |    |
|       | $2m - m^2 = \frac{1}{2}$<br>$\therefore m^2 - 2m + \frac{1}{2} = 0$                                                                                               | M1       | Form a quadratic equation $F(m) = \frac{1}{2}$ and attempt to solve it. ft                         |    |
|       | $\therefore m = 1 \pm \frac{1}{\sqrt{2}}$                                                                                                                         |          | c's cdf provided it leads to a quadratic.                                                          |    |
|       | SO $m = 1 - \frac{1}{\sqrt{2}}$                                                                                                                                   | E1       | Convincingly shown. Beware printed answer.                                                         |    |
| (v)   | $\overline{X} \sim \mathrm{N}(rac{1}{3}, rac{1}{1800})$                                                                                                         | B1       | Normal distribution.                                                                               |    |
|       |                                                                                                                                                                   | B1<br>B1 | Mean. ft c's E(X).<br>Correct variance.                                                            | 3  |
|       |                                                                                                                                                                   |          |                                                                                                    | 18 |
|       |                                                                                                                                                                   |          |                                                                                                    |    |

| ຸລ2  |                                                                                                                |                |                                                                                                                                                           |    |
|------|----------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| i)   | H <sub>0</sub> : $\mu = 0.6$<br>H <sub>1</sub> : $\mu < 0.6$<br>Where $\mu$ is the (population) mean height of | B1<br>B1<br>B1 | Allow absence of "population" if                                                                                                                          |    |
|      | the saplings.                                                                                                  |                | correct notation $\mu$ is used, but do NOT allow " $\overline{X}$ =" or similar                                                                           |    |
|      |                                                                                                                |                | unless $\overline{X}$ is clearly and explicitly<br>stated to be a <u>population</u> mean.<br>Hypotheses in words only must<br>include "population".       |    |
|      | $\overline{x} = 0.5883$ , $s_{n-1} = 0.03664$ ( $s_{n-1}^2 = 0.00134$ )                                        | B1             | Do not allow $s_n = 0.03507$ ( $s_n^2 = 0.00123$ ).                                                                                                       |    |
|      | Test statistic is $\frac{0.5883 - 0.6}{\left(\frac{0.03664}{\sqrt{12}}\right)}$                                | M1             | Allow c's $\overline{x}$ and/or $s_{n-1}$ .<br>Allow alternative: 0.6 ± (c's –<br>1.796) × $\frac{0.03664}{\sqrt{12}}$ (=0.5810,                          |    |
|      |                                                                                                                |                | 0.6190) for subsequent<br>comparison with $\overline{x}$ .<br>(Or $\overline{x} \pm$ (c's –1.796) × $\frac{0.03664}{\sqrt{12}}$                           |    |
|      | = -1.103                                                                                                       | A1             | (=0.5693, 0.6073) for comparison<br>with 0.6.)<br>c.a.o. but ft from here in any case<br>if wrong.<br>Use of $0.6 - \overline{x}$ scores M1A0,<br>but ft. |    |
|      | Refer to $t_{11}$ .<br>Lower 5% point is $-1.796$ .                                                            | M1<br>A1       | No ft from here if wrong.<br>No ft from here if wrong.<br>Must be –1·796 unless it is clear<br>that absolute values are being<br>used.                    |    |
|      | –1·103 > –1·796, ∴ Result is not                                                                               | E1             | ft only c's test statistic.                                                                                                                               |    |
|      | significant.<br>Seems mean height of saplings meets the<br>manager's requirements.                             | E1             | ft only c's test statistic.                                                                                                                               | 11 |
|      | Underlying population is Normal.                                                                               | B1             |                                                                                                                                                           |    |
| (ii) | CI is given by 0.5883 ±<br>2.201                                                                               | M1<br>B1       | ft c's $\overline{x} \pm$ .                                                                                                                               |    |
|      | $\times \frac{0.03664}{\sqrt{12}}$                                                                             | M1             | ft c's s <sub>n-1</sub> .                                                                                                                                 |    |
|      | $= 0.5883 \pm 0.0233 = (0.565(0), 0.611(6))$                                                                   | A1             | c.a.o. Must be expressed as an interval.                                                                                                                  |    |
|      |                                                                                                                |                | ZERO if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0. Recovery to $t_{11}$ is OK.                                       |    |

|       | In repeated sampling, 95% of intervals constructed in this way will contain the true population mean. | E1       | 5  |
|-------|-------------------------------------------------------------------------------------------------------|----------|----|
| (iii) | Could use the Wilcoxon test.<br>Null hypothesis is "Median = 0.6".                                    | E1<br>E1 | 2  |
|       |                                                                                                       |          | 18 |

| Q3    | $M \sim N(44, 4 \cdot 8^2)$<br>$H \sim N(32, 2 \cdot 6^2)$<br>$P \sim N(21, 3 \cdot 7^2)$                                                                          |                | When a candidate's answers<br>suggest that (s)he appears to<br>have neglected to use the<br>difference columns of the Normal<br>distribution tables, penalise the<br>first occurrence only. |   |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| (i)   | $P(M < 50) = P(Z < \frac{50 - 44}{4 \cdot 8} = 1.25)$<br>= 0.8944                                                                                                  | M1<br>A1<br>A1 | For standardising. Award once, here or elsewhere.                                                                                                                                           | 3 |
| (ii)  | $H + P \sim N(32 + 21 = 53, 2 \cdot 6^2 + 3 \cdot 7^2 = 20 \cdot 45)$                                                                                              | B1<br>B1       | Mean.<br>Variance. Accept sd = √20·45 =<br>4·522                                                                                                                                            |   |
|       | $P(H + P < 50) = P(Z < \frac{50 - 53}{\sqrt{20 \cdot 45}} = -0.6634)$ $= 1 - 0.7465 = 0.2535$                                                                      | A1             | C.a.o.                                                                                                                                                                                      | 3 |
| (iii) | Want $P(M > H + P)$ i.e. $P(M - (H + P) > 0)$                                                                                                                      | M1             |                                                                                                                                                                                             |   |
| (111) | Want $P(M > H + P)$ i.e. $P(M - (H + P) > 0)$<br>$M - (H + P) \sim N(44 - (32 + 21) = -9,$<br>$4 \cdot 8^2 + 2 \cdot 6^2 + 3 \cdot 7^2 =$<br>$43 \cdot 49)$        | B1<br>B1       | Allow $H + P - M$ provided<br>subsequent work is consistent.<br>Mean.<br>Variance. Accept sd = $\sqrt{43.49}$ =<br>6.594                                                                    |   |
|       | P(this > 0) = P(Z > $\frac{0 - (-9)}{\sqrt{43 \cdot 49}}$ = 1.365)<br>= 1 - 0.9139 = 0.0861                                                                        | A1             |                                                                                                                                                                                             | 4 |
|       |                                                                                                                                                                    |                | C.a.o.                                                                                                                                                                                      | 4 |
| (iv)  | Mean = $44 + 44 + 32 + 32 + 21 + 21$<br>= 194<br>Variance = $4 \cdot 8^2 + 4 \cdot 8^2 + 2 \cdot 6^2 + 2 \cdot 6^2 + 3 \cdot 7^2 + 3 \cdot 7^2$<br>= $86 \cdot 98$ | B1<br>B1       | (sd = 9·3263)                                                                                                                                                                               | 2 |
| (v)   | $C \sim N(194 \times 0.15 + 10 = 39.10,$                                                                                                                           | M1<br>M1<br>A1 | c's mean in (iv) × 0·15<br>+ 10 (or subtract 10 from 40<br>below)<br>ft c's mean in (iv).                                                                                                   |   |
|       | $86 \cdot 98 \times 0 \cdot 15^2 = 1 \cdot 957 \big)$                                                                                                              | M1             | c's variance in (iv) $\times 0.15^2$                                                                                                                                                        |   |
|       | $P(C \le 40) = P(Z \le \frac{40 - 39 \cdot 10}{\sqrt{1 \cdot 957}} = 0.6433)$                                                                                      | A1             | ft c's variance in (iv).                                                                                                                                                                    |   |
|       | = 0.7400                                                                                                                                                           | A1             | C.a.o.                                                                                                                                                                                      | 6 |
|       | Alternatively:<br>$P(C \le 40) = P(\text{total time} \le \frac{40-10}{0.15} = 200$<br>minutes)                                                                     | M1<br>M1<br>A1 | – 10<br>÷ 0.15<br>c.a.o.                                                                                                                                                                    |   |
|       | $= P(Z \le \frac{200 - 194}{\sqrt{86 \cdot 98}} = 0.6433)$                                                                                                         | M1             | Correct use of c's variance in (iv).                                                                                                                                                        |   |

| = 0.7400 | A1 | c.a.o. |    |
|----------|----|--------|----|
|          |    |        | 18 |

|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1      |                                                                     | 1  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------|----|
| Q4  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                                                                     |    |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                                                                     |    |
| (a) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                                                                     |    |
|     | Obs Exp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1     | Combine first two rows.                                             |    |
|     | 10 6.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |                                                                     |    |
|     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                                                                     |    |
|     | $\therefore X^2 = \frac{(10 - 6 \cdot 68)^2}{6 \cdot 68} + \text{etc}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N/4    |                                                                     |    |
|     | 0 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M1     |                                                                     |    |
|     | = 1.6501 + 1.7740 + 3.3203 + 4.5018 + 0.4015 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + 0.0016 + |        |                                                                     |    |
|     | 0.4015 + 0.8135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                                                                     |    |
|     | = 12·46(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A1     |                                                                     |    |
|     | d.o.f. = $6 - 3 = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | Dequire de f - Ne celle used                                        |    |
|     | 0.0.1. = 0 = 3 = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | Require d.o.f. = No. cells used – 3.                                |    |
|     | Pofor to $w^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M1     | No ft from here if wrong.                                           |    |
|     | Refer to $\chi_3^2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | •                                                                   |    |
|     | Upper 5% point is 7.815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A1     | No ft from here if wrong.                                           |    |
|     | $12.46 > 7.815$ $\therefore$ Result is significant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E1     | ft only c's test statistic.                                         |    |
|     | Seems the Normal model does not fit the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E1     | ft only c's test statistic.                                         |    |
|     | data at the 5% level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |                                                                     |    |
|     | Fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                                                                     |    |
|     | E.g.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E1     |                                                                     |    |
|     | <ul> <li>The biggest discrepancy is in the class</li> <li>1.01 &lt; a ≤ 1.02</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |                                                                     |    |
|     | <ul> <li>The model overestimates in classes,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E1     | Any two suitable comments.                                          | 9  |
|     | but underestimates in classes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                     | J  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                                                                     |    |
| (b) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | L                                                                   |    |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.008 | -0.010 0.009 -0.005 -0.016                                          |    |
|     | Rank of  diff  6 2 1 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7      | 9 8 5 10                                                            |    |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1      |                                                                     |    |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1     | For differences. ZERO in this                                       |    |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | section if differences not used.                                    |    |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1     | For ranks of  difference .                                          |    |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A1     | All correct.                                                        |    |
|     | $M_{1} = 6 + 2 + 4 + 8 = 20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B1     | ft from here if ranks wrong.<br>Or $W_{-} = 1 + 3 + 7 + 9 + 5 + 10$ |    |
|     | $W_{+} = 6 + 2 + 4 + 8 = 20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ы      | $01 W_{-} = 1 + 3 + 7 + 9 + 5 + 10$<br>= 35                         |    |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | - 55                                                                |    |
|     | Refer to Wilcoxon single sample (/paired)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M1     | No ft from here if wrong.                                           |    |
|     | tables for $n = 10$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1411   |                                                                     |    |
|     | Lower two-tail 10% point is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M1     | Or, if 35 used, upper point is 45.                                  |    |
|     | 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A1     | No ft from here if wrong.                                           |    |
|     | $20 > 10$ $\therefore$ Result is not significant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E1     | Or 35 < 45.                                                         |    |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | ft only c's test statistic.                                         |    |
|     | Seems there is no reason to suppose the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E1     | ft only c's test statistic.                                         | 9  |
|     | barometers differ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                                                                     |    |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                                                                     |    |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                                                                     | 18 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                                                                     | -  |

### 4768 - Statistics 3

### General Comments

Once again the overall standard of the scripts seen was pleasing: many candidates appeared well prepared for the paper. However, as in the past, the quality of their comments, interpretations and explanations was consistently below that of the rest of the work.

It was noticeable that candidates' use of correct mathematical notation was often poor. For example: integrals written without the terminator "dx" and interchanging the symbols "=" and " $\Rightarrow$ ". Also many candidates showed a lack of appreciation of the level of detail of arithmetic required to convince the examiner that an answer printed in the question has been obtained genuinely.

Invariably all four questions were attempted, and attempted well on the whole. Questions 1 and 3 were found to be particularly high scoring. There was no evidence to suggest that candidates found themselves short of time at the end.

#### **Comments on Individual Questions**

1

#### Continuous random variables; no context.

- (i) Although the accuracy of notation left much to be desired (as noted above) virtually all candidates were able to establish the value of k satisfactorily. Also, most candidates sketched the graph of f(x) with little difficulty. The only note of disappointment was the number of candidates who neglected to draw a sketch at all.
- (ii) The value of E(X) was almost always obtained with no difficulty. Similarly Var(X) was found correctly. Candidates need to be aware, however, that a little more effort is appropriate when establishing the exact value printed in the question.
- (iii) As in the past, candidates did not acquit themselves at all well when attempting to find the cumulative distribution function (c.d.f.). They must be encouraged to realise that a definite integral (with suitable limits) is expected. It was then interesting to see that an appreciable proportion of candidates seemed not to know how to use and/or interpret their c.d.f. Instead, in both this part and the next, they set up and evaluated integrals that were completely unnecessary. Having said that there were very many who did eventually find the correct probability of *X* greater than the mean.
- (iv) Perhaps fewer than half of the candidates used their c.d.f. and substitution to verify that the given value was the median. The majority (including those who first integrated) obtained and solved a quadratic equation for *m*, and this left them needing to remember to distinguish between the two roots.
- (v) Most candidates were able to write down the correct distribution here, based on the Central Limit Theorem.

# 2 The *t* distribution: hypothesis test for the population mean; confidence interval for a population mean; heights of saplings.

- (i) The null hypothesis was usually correct, although some used "≥" instead of "=", but there were fewer correct alternative hypotheses. Furthermore it remains the case that too many candidates neglect to define in words the symbol " $\mu$ ". At this level it is expected that candidates are going to use the built-in statistical functions of their calculators for the mean and sample variance. There were an appreciable number of scripts where this did not seem to be the case, and so the accuracy of their results suffered a little from premature approximation. Nonetheless the test statistic was usually worked out correctly. Similarly the test was carried out and concluded correctly, the most common problem being the use of the wrong critical value (-2.201 instead of -1.796). When the test is onetailed, requiring the lower tail critical value and involving a negative test statistic. candidates are often less than clear and careful about the negative signs. Centres are advised that the "special case", shown in past mark schemes to allow for a particular form of misreading the tables, will not be applied from June 2007 onwards.
- (ii) Most candidates showed that they were familiar with how to construct a confidence interval, and did so successfully. Unsurprisingly, there were a number who seemed to forget that they should still be using the *t* distribution. Clear and accurate descriptions of the meaning of a confidence interval were disappointingly rare.
- (iii) There were many correct responses to this part. However it was also quite common to see answers that were only partially correct, for example by identifying the Wilcoxon single sample rank sum test but then suggesting a null hypothesis that was inconsistent with it.

### 3 Combinations of Normal distributions; times of gardening tasks.

This question was very well answered with very many scoring full marks. Candidates seemed well prepared for it and understood what was expected. In many cases their answers were concise and to the point. Those who take the trouble to provide simple sketch graphs of the standard Normal distribution do much to enhance the quality of their responses. There was evidence from some quarters of effective use of the built in functions on graphics calculators.

- (i) This part was almost always correct.
- (ii) This part, too, was almost always correct.
- (iii) Again, correct answers were often seen here too, but this time weaker candidates experienced difficulty with the formulation of the requirement.
- (iv) Usually the mean total time was correct, but often the variance was not. Typically the error came about through a lack of proper understanding of the difference between Var(2X) (=  $2^2Var(X)$ ) and  $Var(X_1 + X_2)$  (= $Var(X_1) + Var(X_2)$ ). Here the former was used when it should have been the latter.

4

(v) There were many good answers to this part, and they were evenly split between those who adapted their answers to part (iv) to obtain the probability distribution of the monthly charges and hence the probability of the charge not exceeding £40, and those who found the time (in minutes) corresponding to a total charge of £40 and then the probability of not exceeding that time.

## Chi-squared test of goodness of fit; Wilcoxon paired sample test for a difference in population medians; air pressures.

- (a) Although there were plenty of good attempts at this part of the question many broke down in one or more of the following ways. Some, but not very many, candidates neglected to merge the first two classes. Quite a few used the wrong number of degrees of freedom, usually because they forgot to allow for the two estimated parameters, and hence their critical value was inappropriate. Following the conclusion of the test, many simply neglected to comment on their findings. For this last point it is expected that candidates will undertake a brief discussion of what can be deduced by looking at the data in order to explain the outcome of the test.
- (b) There were very many good answers to this part and most of these scored full or nearly full marks for it. It was a rare script indeed where the candidate did not know to take differences and then rank the absolute values. An occasional slip with the arithmetic was seen here. The vast majority of candidates found and used the correct test statistic and compared it with the correct critical value, which led to a correct conclusion.