ADVANCED SUBSIDIARY GCE UNIT

Morning
Time: 1 hour 30 minutes

Additional materials:

Answer booklet (8 pages)
Graph paper
MEI Examination Formulae and Tables (MF2)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- \quad The total number of marks for this paper is 72.

ADVICE TO CANDIDATES

- Read each question carefully and make sure you know what you have to do before starting your answer.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
This document consists of 4 printed pages.
HN/3 © OCR 2007 [M/102/2666] OCR is an exempt Charity
[Turn over

Section A (36 marks)

1 A calculator gives the answer to a calculation as 1.7112245×10^{98}, correct to 8 significant figures. Find the largest possible absolute error and the largest possible relative error in this value.

Though the calculator displays numbers such as 1.7112245 to 8 digit accuracy, it stores them internally to 11 digit accuracy. Explain briefly why this is done.

2 The approximation

$$
\tan x \approx x+\frac{1}{3} x^{3}
$$

is valid for small values of x in radians.
(i) Find the absolute and relative errors in the approximation for $x=0.2$.

A much more accurate approximation is given by

$$
\tan x \approx x+\frac{1}{3} x^{3}+k x^{5}
$$

where k is a constant.
(ii) Use the first result in part (i) to estimate k, giving your answer to 2 significant figures.

3 An equation is being solved numerically using a fixed-point iteration of the form

$$
x_{r+1}=\mathrm{g}\left(x_{r}\right) .
$$

The iteration has been used to obtain the values shown in the following table.

r	0	1	2	3
x_{r}	0.35	0.354767	0.356462	0.357067
Differences				
Ratio of differences				

Copy and complete the table to show the differences in successive values of x_{r} and the ratios of those differences. Use extrapolation to estimate the root to which this iteration is converging, giving your answer to the accuracy that appears justified.

4 Show, graphically or otherwise, that the equation $x^{2}=\cos x$ where x is in radians has exactly one root for $x>0$. Show further that the root lies in the interval $(0.7,0.9)$.

Use the secant method to find the root correct to 3 decimal places.

5 The function $\mathrm{f}(x)$ has the values shown in the table.

x	0	0.25	0.5
$\mathrm{f}(x)$	1.1105	1.2446	1.4065

(i) Use the forward difference formula with $h=0.5$ and $h=0.25$ to obtain two estimates of $f^{\prime}(0)$. Comment on the likely accuracy of these results and on the number of decimal places that it would be safe to quote.
(ii) Obtain the best estimate you can of the value of $\mathrm{f}^{\prime}(0.25)$. Comment on the likely accuracy of this result in relation to those in part (i). To how many decimal places would you quote the answer?

Section B (36 marks)

6 The following values of x and y were obtained in an experiment. The values of x are exact; the values of y are correct to 2 decimal places. It is required to estimate α, the value of x for which $y=0$.

x	0.9	1.1	1.2	1.4	1.5
y	-0.43	-0.09	0.15	0.78	1.15

(i) Use Lagrange's method to find the equation of the straight line joining the data points for $x=1.1$ and $x=1.2$. Hence estimate α.

By considering the maximum possible errors in the values of y obtain a range of possible values of α. Hence give the value of α to the accuracy that is justified.
(ii) Obtain a further estimate of α by fitting a quadratic to the data points for $x=1.1,1.2$ and 1.4.

7 This question concerns the function $\mathrm{f}(x)=x^{-x}$. (This can also be written as $\mathrm{f}(x)=\frac{1}{x^{x}}$.) The table below shows some values of the function.

x	1	1.5	2
$\mathrm{f}(x)$	1	0.544331	0.25

(i) Use the values in the table to find the Simpson's rule estimate of $\int_{1}^{2} \mathrm{f}(x) \mathrm{d} x$ with $h=0.5$. Find the Simpson's rule estimate with $h=0.25$.

You are now given that the Simpson's rule estimate with $h=0.125$ is 0.572344 to 6 dp . Let the three Simpson's rule estimates with $h=0.5,0.25,0.125$ be denoted by a, b and c respectively.
(ii) Find the value of the ratio of differences $\frac{c-b}{b-a}$. State the theoretical value of this ratio and comment.
(iii) Extrapolate from b and c to obtain a further estimate of the integral.

Give the value of the integral to the accuracy that appears to be justified, explaining your reasoning.

