ADVANCED GCE UNIT
 MATHEMATICS (MEI)

4754(B)/01

Applications of Advanced Mathematics (C4)
Paper B: Comprehension
INSERT
TUESDAY 23 JANUARY 2007

INSTRUCTIONS TO CANDIDATES

- This insert contains the text for use with the questions.

Benford's Law

Leading digits

This article is concerned with a surprising property of the leading digits of numbers in various sets. The leading digit of a number is the first digit you read. In the number 193000 the leading digit is 1 . When a number is written in standard form, such as 1.93×10^{5} or 2.78×10^{-7}, the leading digit is the digit before the decimal point, in these examples 1 and 2 respectively.

Mathematical sequences

Table 1 shows the integer powers of 2 , from 2^{1} to 2^{50}. In this table, which digits occur more frequently as the leading digit? You might expect approximately one ninth of the numbers to have a leading digit of 1 , one ninth of the numbers to have a leading digit of 2 , and so on. In fact, this is far from the truth.

2	2048	2097152	2147483648	2199023255552
4	4096	4194304	4294967296	4398046511104
8	8192	8388608	8589934592	8796093022208
16	16384	16777216	17179869184	17592186044416
32	32768	33554432	34359738368	35184372088832
64	65536	67108864	68719476736	70368744177664
128	131072	134217728	137438953472	140737488355328
256	262144	268435456	274877906944	281474976710656
512	524288	536870912	549755813888	562949953421312
1024	1048576	1073741824	1099511627776	1125899906842624

Table 1

The frequencies of the different leading digits in these powers of 2 are shown in Table 2.

Leading digit	1	2	3	4	5	6	7	8	9
Frequency	15	10	5	5	5	4	1	5	0

Table 2
You can see that, for these data, 1 and 2 appear more frequently than any other numbers as the leading digit. Is this just a peculiarity of the first fifty powers of 2 , or is a general pattern emerging?

Here is another example. Imagine you invest $£ 100$ in an account that pays compound interest at a rate of 20% per year. Table 3 shows the total amount (in $\mathfrak{£}$), after interest is added, at the end of each of the following 50 years.

120.00	743.01	4600.51	28485.16	176372.59
144.00	891.61	5520.61	34182.19	211647.11
172.80	1069.93	6624.74	41018.63	253976.53
207.36	1283.92	7949.68	49222.35	304771.83
248.83	1540.70	9539.62	59066.82	365726.20
298.60	1848.84	11447.55	70880.19	438871.44
358.32	2218.61	13737.06	85056.22	526645.73
429.98	2662.33	16484.47	102067.47	631974.87
515.98	3194.80	19781.36	122480.96	758369.85
619.17	3833.76	23737.63	146977.16	910043.82

Table 3
The frequencies of leading digits for these data are shown in Table 4.

Leading digit	1	2	3	4	5	6	7	8	9
Frequency	15	9	6	5	4	3	4	2	2

Table 4
The pattern that emerges is much the same as that in Table 2, with 1 appearing as the leading digit in 30% of cases and 2 appearing in 18% of cases.

Now imagine that a second person invests $£ 200$ rather than $£ 100$. Each amount in this person’s table (Table 5) is double the corresponding amount in Table 3.

240.00	1486.02	9201.02	56970.32	352745.18
288.00	1783.22	11041.23	68364.38	423294.21
345.60	2139.86	13249.47	82037.25	507953.05
414.72	2567.84	15899.37	98444.70	609543.66
497.66	3081.40	19079.24	118133.65	731452.40
597.20	3697.69	22895.09	141760.37	877742.88
716.64	4437.22	27474.11	170112.45	1053291.45
859.96	5324.67	32968.93	204134.94	1263949.74
1031.96	6389.60	39562.72	244961.93	1516739.69
1238.35	7667.52	47475.26	293954.31	1820087.63

Table 5

The frequencies of leading digits for these data are shown in Table 6.

Leading digit	1	2	3	4	5	6	7	8	9
Frequency	15	9	6	5	4	3	3	3	2

Table 6

A remarkable result now emerges. The frequencies in Table 6 are almost the same as those in
Table 4.
In Table 3 there are 15 numbers with a leading digit of 1 . Each of these numbers, when doubled, has a leading digit of either 2 or 3, as can be seen in Table 5. Similarly, the numbers in Table 3 with leading digit 5, 6, 7, 8 or 9 give numbers in Table 5 with leading digit 1. These outcomes are reflected in the frequencies in Table 4 and Table 6.

Physical phenomena

The numbers in Tables 1,3 and 5 were all generated mathematically. Now look at something less mathematical in origin.

The frequencies of the leading digits of the areas of the world's 100 largest countries, measured in square kilometres, are given in Table 7. (For interest the data are given in Appendix A.)

Leading digit	1	2	3	4	5	6	7	8	9
Frequency	33	20	13	8	6	6	4	4	6

Table 7
You will notice that these data, even though they have a non-mathematical origin, show essentially the same pattern of frequencies. The populations of cities and countries also show this general pattern. As further examples, if you take the heights of the world's tallest mountains, the lengths of Europe's longest rivers, the numbers of votes cast for each political party in every constituency in a general election or the values of a wide range of scientific constants, you will find a similar pattern in many cases. The remainder of this article looks at such physical data, rather than mathematically generated data, and answers the following question.

Why does this pattern in leading digits occur, and how can it be modelled mathematically?

Benford's Law

This phenomenon was noted in 1881 by Simon Newcombe, an American mathematician and astronomer, and then rediscovered by the physicist Frank Benford in 1938. Benford analysed 20229 sets of data, including information about rivers, baseball statistics and all the numbers in an issue of Reader's Digest. He was rewarded for his efforts by having the law named after him.

Benford's Law gives a formula for the proportions of leading digits in data sets like these. This formula will be derived over the next few pages.

The proportions given by Benford's Law are illustrated in Fig. 8.

Fig. 8

This shows that, in a typical large data set, approximately 30% of the data values have leading digit 1 but fewer than 5% have leading digit 9 . For small data sets, you cannot expect the leading digits to follow Benford's Law closely; the larger the data set, the better the fit is likely to be.

Fig. 9 shows the proportions for the leading digits of the areas of the world's largest countries, derived from Table 7, together with the proportions given by Benford's Law. You will see that there is a very good match.

Fig. 9
Benford's Law does not apply to all situations, even when there is a large data set. There is still debate about the conditions under which it applies. The rest of this article relates to situations in which it does apply.

Scale invariance

If the areas of the countries in Appendix A are measured in square miles, rather than square kilometres, it turns out that the leading digits still follow the same pattern. This is a feature of all data sets which follow Benford's Law; it does not matter what units are used when measuring the data. The next example illustrates this.

Table 10 shows the frequencies of the leading digits of the share prices of the 100 largest UK companies on 28 February 2006, in pounds sterling, US dollars and euros.

Leading digit	1	2	3	4	5	6	7	8	9
Frequency (£)	33	14	7	4	14	11	3	8	6
Frequency (\$)	41	18	13	6	6	2	3	7	4
Frequency (€)	36	18	10	8	2	4	8	8	6

Table 10
These results are illustrated in Fig. 11 along with the proportions given by Benford's Law. Despite there being only 100 items of data, two features are evident.

- There is a reasonable agreement between the proportions for the three currencies.
- Benford's Law gives a reasonable approximation in each case.

Fig. 11
This property, that it does not matter what units are used when measuring the data, is called scale invariance.

The frequencies of leading digits

The idea of scale invariance is important. If scale invariance applies, what does this tell us about the frequencies of leading digits?

In order to answer this question it is helpful to use the following notation.

- $\quad p_{n}$ represents the proportion of data values with leading digit n.

Thus p_{1} represents the proportion of data values with leading digit $1, p_{2}$ represents the proportion of data values with leading digit 2 , and so on. Clearly $\sum_{n=1}^{9} p_{n}=1$.

The proportions $p_{1}, p_{2}, \ldots, p_{9}$ can be represented by the areas of the rectangles on a diagram such as Fig. 12. The total area is 1.

p_{1}	p_{2}	p_{3}	p_{4}	p_{5}	p_{6}	p_{7}	p_{8}	p_{9}

Fig. 12
Many things can be deduced about the values of $p_{1}, p_{2}, \ldots, p_{9}$ by thinking about a large data set in which scale invariance holds exactly. Here are some of them.

- If every number in the data set is multiplied by 2 , then all the numbers with leading digit 1, and no others, are mapped to numbers with leading digit either 2 or 3 . Since this does not change the distribution of leading digits, it follows that

$$
p_{1}=p_{2}+p_{3} .
$$

- Similarly, when multiplying by 2 , all numbers with leading digit $5,6,7,8$ or 9 , and no others, are mapped to numbers with leading digit 1 . Therefore

$$
p_{5}+p_{6}+p_{7}+p_{8}+p_{9}=p_{1} .
$$

As a consequence of these two results,

$$
\begin{equation*}
p_{1}+\left(p_{2}+p_{3}\right)+p_{4}+\left(p_{5}+p_{6}+p_{7}+p_{8}+p_{9}\right)=3 p_{1}+p_{4}, \tag{95}
\end{equation*}
$$

from which it follows that

$$
3 p_{1}+p_{4}=1
$$

and so $p_{1}<\frac{1}{3}$.

- By using a multiplier of 4 , instead of 2 , it follows that

$$
p_{1}=p_{4}+p_{5}+p_{6}+p_{7} .
$$

This shows that $p_{1}>p_{4}$. Using the fact that $3 p_{1}+p_{4}=1$, it follows that $p_{1}>\frac{1}{4}$. Therefore $\frac{1}{4}<p_{1}<\frac{1}{3}$. This is consistent with the value of about 0.3 observed in several of the data sets considered earlier in the article.

In a similar way, other relationships connecting values of p_{n}, such as $p_{1}=p_{3}+p_{4}+p_{5}$, $p_{6}+p_{7}=p_{3}$ and $p_{2}=p_{6}+p_{7}+p_{8}$, can be derived.

Deriving Benford's Law

It is helpful now to introduce the quantities $L(1), L(2), \ldots, L(10)$, defined as follows.

- $\mathrm{L}(1)=0$
- $\mathrm{L}(2)=p_{1}$
- $\mathrm{L}(3)=p_{1}+p_{2}$
- $\mathrm{L}(4)=p_{1}+p_{2}+p_{3}$
- $\mathrm{L}(10)=p_{1}+p_{2}+\ldots+p_{9}=1$

The quantities $\mathrm{L}(1), \mathrm{L}(2), \ldots, \mathrm{L}(10)$ are the cumulative proportions. They are illustrated in Fig. 13.

| p_{1} | | p_{2} | p_{3} | p_{4} | p_{5} | p_{6} | p_{7} | p_{8} | p_{9} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Fig. 13
What can you say about the quantities $\mathrm{L}(1), \mathrm{L}(2), \ldots, \mathrm{L}(10)$?

- You know $p_{1}=p_{2}+p_{3}$.

This corresponds to $L(2)-L(1)=L(4)-L(2)$ which simplifies to $L(4)=2 \times L(2)$.

- Similarly $p_{1}=p_{3}+p_{4}+p_{5}$.

This corresponds to $\mathrm{L}(2)-\mathrm{L}(1)=\mathrm{L}(6)-\mathrm{L}(3)$ which simplifies to $\mathrm{L}(6)=\mathrm{L}(3)+\mathrm{L}(2)$.

- \quad Also $p_{6}+p_{7}=p_{3}$.

This corresponds to $\mathrm{L}(8)-\mathrm{L}(6)=\mathrm{L}(4)-\mathrm{L}(3)$. Combining this with the last two results gives $\mathrm{L}(8)=3 \times \mathrm{L}(2)$.

These results, and others like them, suggest that $\mathrm{L}(n)$ is a logarithmic function. The fact that $\mathrm{L}(10)=1$ shows that the base of the logarithms is 10 , and so $\mathrm{L}(n)=\log _{10} n$.

It follows that $p_{n}=\mathrm{L}(n+1)-\mathrm{L}(n)=\log _{10}(n+1)-\log _{10} n$. That is, the proportion of data values with leading digit n (where $1 \leqslant n \leqslant 9$) is $\log _{10}(n+1)-\log _{10} n$. This is Benford's Law.

Uses of Benford's Law

Since the 1980s Benford's Law has, on several occasions, been used successfully to convict people accused of fraud. When concocting figures to include in fictitious company accounts, it is natural to try to make the amounts look 'random' or 'average'. This might, for example, be done by including a high proportion of 'average' amounts beginning with 'middle digits' such as 4,5 or 6 , or including amounts just under $£ 1000, £ 10000$ and $£ 100000$, in an attempt to avoid closer analysis. In this way fraudsters are generating data which do not follow Benford's Law and thereby attracting the kind of scrutiny they were trying to avoid.

Appendix A Areas of countries (thousands of km^{2})

Russia	17075	Pakistan	804	Poland	313
Canada	9976	Mozambique	802	Italy	301
USA	9629	Turkey	781	Philippines	300
China	9597	Chile	757	Ecuador	284
Brazil	8512	Zambia	753	Burkina Faso	274
Australia	7687	Myanmar	679	New Zealand	269
India	3288	Afghanistan	648	Gabon	268
Argentina	2767	Somalia	638	Western Sahara	266
Kazakhstan	2717	C. African Republic	623	Guinea	246
Sudan	2506	Ukraine	604	Great Britain	
Algeria	2382	Botswana	600	(and N Ireland)	245
Congo (Dem. Rep.)	2345	Madagascar	587	Ghana	239
Greenland	2166	Kenya	583	Romania	238
Mexico	1973	France	547	Laos	237
Saudi Arabia	1961	Yemen	528	Uganda	236
Indonesia	1919	Thailand	514	Guyana	215
Libya	1760	Spain	505	Oman	212
Iran	1648	Turkmenistan	488	Belarus	208
Mongolia	1565	Cameroon	475	Kyrgyzstan	199
Peru	1285	Papua New Guinea	463	Senegal	196
Chad	1284	Sweden	450	Syria	185
Niger	1267	Uzbekistan	447	Cambodia	181
Angola	1247	Morocco	447	Uruguay	176
Mali	1240	Iraq	437	Tunisia	164
South Africa	1220	Paraguay	407	Suriname	163
Colombia	1139	Zimbabwe	391	Bangladesh	144
Ethiopia	1127	Japan	378	Tajikistan	143
Bolivia	1099	Germany	357	Nepal	141
Mauritania	1031	Congo (Rep.)	342	Greece	132
Egypt	1001	Finland	337	Nicaragua	129
Tanzania	945	Malaysia	330	Eritrea	121
Nigeria	924	Vietnam	330	Korea (North)	121
Venezuela	912	Norway	324	Malawi	118

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.
OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

