

GCE

Mathematics (MEI)

Advanced GCE A2 7895-8

Advanced Subsidiary GCE AS 3895-8

Mark Schemes for the Units

January 2007

3895-8/7895-8/MS/R/07J

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2007

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annersley NOTTINGHAM NG15 0DL

Telephone:0870 870 6622Facsimile:0870 870 6621E-mail:publications@ocr.org.uk

CONTENTS

Advanced GCE Further Mathematics (MEI) (7896) Advanced GCE Further Mathematics (Additional) (MEI) (7897) Advanced GCE Mathematics (MEI) (7895) Advanced GCE Pure Mathematics (MEI) (7898)

Advanced Subsidiary GCE Further Mathematics (MEI) (3896) Advanced Subsidiary GCE Further Mathematics (Additional) (MEI) (3897) Advanced Subsidiary GCE Mathematics (MEI) (3895) Advanced Subsidiary GCE Pure Mathematics (MEI) (3898)

MARK SCHEME ON THE UNITS

Unit	Content	Page
4751	Introduction to Advanced Mathematics (C1)	1
4752	Concepts for Advanced Mathematics (C2)	7
4753	Methods for Advanced Mathematics (C3)	11
4754	Applications of Advanced Mathematics (C4)	17
4755	Further Concepts for Advanced Mathematics (FP1)	23
4756	Further Methods for Advanced Mathematics (FP2)	31
4758	Differential Equations	39
4761	Mechanics 1	45
4762	Mechanics 2	51
4763	Mechanics 3	57
4766	Statistics 1	63
4767	Statistics 2	69
4768	Statistics 3	75
4771	Decision Mathematics 1	83
4776	Numerical Methods	89
*	Grade Thresholds	92

Mark Scheme 4751 January 2007

Section	۸
	A

	Section A			
1	y = 2x + 4	3	M1 for $m = 2$ stated [M0 if go on to use $m = -\frac{1}{2}$] or M1 for $y = 2x + k$, $k \neq 7$ and M1indep for $y - 10 = m(x - 3)$ or (3, 10) subst in $y = mx + c$; allow 3 for $y = 2x$ + k and $k = 4$	3
2	neg quadratic curve intercept (0, 9) <u>through</u> (3, 0) and (-3, 0)	1 1 1	condone (0, 9) seen eg in table	3
3	$[a=]\frac{2c}{2-f}$ or $\frac{-2c}{f-2}$ as final answer	3	M1 for attempt to collect as and cs on different sides and M1 ft for a $(2 - f)$ or dividing by $2 - f$; allow M2 for $\frac{7c - 5c}{2 - f}$ etc	3
4	f(2) = 3 seen or used $2^3 + 2k + 5 = 3$ o.e. k = -5	M1 M1 B1	allow M1 for divn by $(x - 2)$ with $x^2 + 2x + (k + 4)$ or $x^2 + 2x - 1$ obtained <u>alt:</u> M1 for $(x - 2)(x^2 + 2x - 1) + 3$ (may be seen in division) then M1dep (and B1) for $x^3 - 5x + 5$ <u>alt</u> divn of $x^3 + kx + 2$ by $x - 2$ with no rem.	3
5	375	3	allow $375x^4$; M1 for 5^2 or 25 used or seen with x^4 and M1 for 15 or $\frac{6 \times 5}{2}$ oe eg $\frac{6!}{4!2!}$ or 1 6 15 seen [⁶ C ₄ not sufft]	3
6	(i) 125 (ii) $\frac{9}{49}$ as final answer	2 2	M1 for $25^{\frac{1}{2}} = \sqrt{25}$ soi or for $\sqrt{25^{3}}$ M1 for $a^{-1} = \frac{1}{a}$ soi eg by 3/7 or 3/49	4
7	showing $a + b + c = 6$ o.e $bc = \frac{9^2 - 17}{16}$ =64/16 o.e. correctly obtained	1 M1 A1	simple equiv fraction eg 192/32 or 24/4 correct expansion of numerator; may be unsimplified 4 term expansion; M0 if get no further than $(\sqrt{17})^2$; M0 if no evidence before 64/16 o.e. may be implicit in use of factors in	
	completion showing <i>abc</i> = 6 o.e.	A1	completion	4

Mark Scheme

8	use <i>k</i> ² <	4ac soi of $b^2 - 4ac < 0$ 16 [may be implied by $k < 4$] k < 4 or $k > -4$ and $k < 4$ isw	M1 M1 A1 A1	de al co ea	hay be implied by $k^2 < 16$ educt one mark in qn for \leq instead of $<$; llow equalities earlier if final inequalities prrect; condone <i>b</i> instead of <i>k</i> ; if M2 not arned, give SC2 for qn [or M1 SC1] for [=] 4 and – 4 as answer]	4
(ii) $\frac{(x+2)(x-2)}{(x-2)(x-3)}$ $\frac{x+2}{x+2}$ as final answer		2 M2 A1	M	for 2 'terms' correct in final answer I1 for each of numerator or denom. orrect or M1, M1 for correct factors een separately	5	
10	seer diffe 4 <i>m</i> ²	ect expansion of both brackets n (may be unsimplified), or rence of squares used correctly obtained [±]2 <i>m</i> cao	fo of cc		I1 for one bracket expanded correctly; or M2, condone done together and lack f brackets round second expression if prrect when we insert the pair of rackets	4
	Sectio	n B		1		
11	iA	0.2 to 0.3 and 3.7 to 3.8	1	+1	[tol. 1mm or 0.05 throughout qn]; if 0, allow M1 for drawing down lines at both values	2
	iВ	$x + \frac{1}{x} = 4 - x$ their y = 4 - x drawn	M		condone one error allow M2 for plotting positive branch of y = 2x + 1/x [plots at (1,3) and (2,4.5) and above other graph] or for plot of y $= 2x^2 - 4x + 1$	
		0.2 to 0.35 and 1.65 to 1.8	B	2	1 each	4
	ii	(0, ±√3)	2		condone $y = \pm \sqrt{3}$ isw; 1 each or M1 for 1 + $y^2 = 4$ or $y^2 = 3$ o.e.	2
	iii	centre (1, 0) radius 2 touches at (1, 2) [which is distance 2 from centre] all points on other branch > 2 from centre	e 1	+1	allow seen in (ii) allow ft for both these marks for centre at $(-1, 0)$, rad 2; allow 2 for good sketch or compass- drawn circle of rad 2 centre $(\pm 1, 0)$	4

	grad AB = $(8 - 4)/(71)$ or 4/8 grad normal = -2 or ft perp bisector is	M1 M1	indep obtained for use of $m_1m_2 = -1$; condone stated/used as -2 with no working only if 4/8 seen	
	y - 6 = -2(x - 3) or ft their grad. of normal (not AB) and/or midpoint correct step towards completion	M1 A1	or M1 for showing grad given line = -2 and M1 for showing (3, 6) fits given line	6
ii	Bisector crosses y axis at C (0, 12)	M1	may be implicit in their area calcn	
	AB crosses y axis at D (0, 4.5)	B2	M1 for 4 + their grad AB or for eqn AB is $y - 8 =$ their $\frac{1}{2}(x - 7)$ oe with	
	¹ ⁄₂ × (12 − their 4.5) × 3 (may be two triangles M1 each)	M2	coords of A or their M used or M1 for $[MC]^2 = 3^2 + 6^2$ or 45 or $[MD]^2 = 3^2 + 1.5^2$ or 11.25 oe and M1	
	45/4 o.e. without surds, isw	A1	<u>MR</u> : AMC used not DMC: lose B2 for D but then allow ft M1 for MC ² or MA ² [=4 ² + 2 ²] and M1 for $\frac{1}{2} \times MA \times MC$ and A1 for 15	
	A (-1, 4) 0 X		<u>MR</u> : intn used as D(0, 4) can score a max of M1, B0, M2 (eg M1 for their DM = $\sqrt{13}$), A0	
	alt allow integration used:		condone poor notation	
	$\int_0^3 (-2x + 12) \mathrm{d}x \ [= 27]$	M1	allow if seen, with correct line and	
	obtaining AB is $y - 8 =$ their $\frac{1}{2} (x -$	M1	limits seen/used as above	
		M1	ft from their AB	
	•0	A1 M1		
	their area under CB – their area under AB		allow only if at least some valid integration/area calculations for these trapezia seen	
	= 45/4 o.e. cao	,,,,	if combined integration, so 63/4 not found separately, mark equivalently	6
i	x - 2 is factor soi	M1	eg may be implied by divn	
	$x^3 - 2x^2$ seen in working			
	attempt at quad formula or comp	A1 M1	or B3 www ft their quadratic	
	$-1\pm\sqrt{2}$ as final answer	A2	A1 for $\frac{-2\pm\sqrt{8}}{2}$ seen; or B3 www	6
		ii Bisector crosses y axis at C (0, 12) seen or used AB crosses y axis at D (0, 4.5) seen or used $\frac{1}{2} \times (12 - \text{their } 4.5) \times 3$ (may be two triangles M1 each) 45/4 o.e. without surds, isw $\frac{1}{45/4} = \frac{1}{2} + $	ii Disector crosses y axis at C (0, 12) seen or used AB crosses y axis at D (0, 4.5) seen or used $\frac{1}{2} \times (12 - \text{their 4.5}) \times 3$ (may be two triangles M1 each) $\frac{45}{4} \text{ o.e. without surds, isw}$ $\frac{1}{45} \times (12 - \text{their 4.5}) \times 3$ (may be two triangles M1 each) $\frac{45}{4} \text{ o.e. without surds, isw}$ $\frac{1}{45} \times (12 - 12) \times (12 - $	normal (not AB) and/or midpoint correct step towards completionM1 A1or M1 for showing grad given line = -2 and M1 for showing (3, 6) fits given lineiiBisector crosses y axis at C (0, 12) seen or used AB crosses y axis at D (0, 4.5) seen or usedM1 may be implicit in their area calcn $X = 12$ their $4.5 > x 3$ (may be two triangles M1 each)M1 for $4 + their grad AB or for eqn ABis y - 8 = their \frac{1}{2} (x - 7) oe withcoords of A or their M usedor M1 for MC^2 or 45 or(M1^2 = 3^2 + 6^2 or 45 or(M1^2 = 3^2 + 6^2 or 45 or(M1^2 = 3^2 + 6^2 or 45 or(M1^2 = 3^2 + 1.5^2 or 11.25 oe and M1for \frac{1}{2} \times their MC \times MD; all ft their M45/4 o.e. without surds, iswy = \frac{1}{2} $

Mark Scheme

January 2007

4751

4	4751	Mark Sc	heme	January	2007
	ii	$f(x-3) = (x-3)^3 - 5(x-3) + 2$ (x-3)(x ² - 6x + 9) or other constructive attempt at expanding (x - 3) ³ eg 1 3 3 1 soi	B1 M1	or $(x - 5)(x - 2 + \sqrt{2})(x - 2 - \sqrt{2})$ soi or ft from their (i) for attempt at multiplying out 2 brackets or valid attempt at multiplying all 3	
		x ³ - 9x ² + 27x - 27 - 5x + 15 [+2]	A1 B1	alt: A2 for correct full unsimplified expansion or A1 for correct 2 bracket expansion eg $(x - 5)(x^2 - 4x + 2)$	4
	iii	5 $2\pm\sqrt{2}$ or ft	B1 B1	condone factors here, not roots if B0 in this part, allow SC1 for their roots in (i) – 3	2

Mark Scheme 4752 January 2007 Section A

	ction A	1	I	,
1	$\frac{5}{2} \times 6x^{\frac{3}{2}}$	1+1	- 1 if extra term	2
2	-0.2	3	M1 for $5 = \frac{6}{1-r}$ and M1 dep for correct constructive step	3
3	√8 or 2√2 not ±√8	3	M1 for use of $\sin^2 \theta$ + $(1/3)^2 = 1$ and M1for $\sin \theta = \sqrt{8/3}$ (ignore ±) Diag.: hypot = 3, one side =1 M1 3rd side $\sqrt{8}$ M1	0
		_		3
4	(i) C (ii) B (iii) 2 ⁿ⁻¹	1 1 1		3
5	(i) −0.93, -0.930, -0.9297	2	M1 for grad = $(1 - \text{their } y_B)/(2 - 2.1)$	
	(ii) answer strictly between 1.91 and 2 or 2 and 2.1	B1	if M0, SC1 for 0.93 don't allow 1.9 recurring	
	(iii) $y' = -8/x^3$, gradient = -1	M1A1		5
6	At least one cycle from (0, 0) amplitude 1 and period 360[°] indicated	G1 G1dep		
	Indicated	Gruep		
	222.8 to 223 and 317 to 317.2 [°]	2	1 each, ignore extras	4
7	<i>x</i> < 0 and <i>x</i> > 6	3	B2 for one of these or for 0 and 6 identified or M1 for x^2 -6x > 0 seen (M1 if y found correctly and sketch drawn)	3
8	<i>a</i> + 6 <i>d</i> = 6 correct	M1		
	$30 = \frac{10}{2} (2a + 9d) \text{ correct o.e.}$ elimination using their equations a = -6 and $d = 25th term = 2$	M1 M1f.t. A1 A1	Two equations in a and d	5
9	$(y =) 2x^3 + 4x^2 - 1$ accept $2x^3 + 4x^2 + c$ and $c = -1$	4	M2 for $(y =) 2x^3 + 4x^2 + c$ (M1 if one error) and M1 for subst of (1, 5) dep on their y =, +c, integration attempt.	4
10	(i) 3 log _a x	2	M1 for 4 $\log_a x$ or $-\log_a x$; or $\log x^3$	
	ii) $b = \frac{1000}{c}$	2	M1 for 1000 or 10 ³ seen	4

4752	2	Mark Sche	me	January 200	ry 2007	
11	i	Correct attempt at cos rule correct full method for C C = 141.1 bearing = [0]38.8 cao	M1 M1 A1 A1	any vertex, any letter or B4	4	
	ii	$\frac{1}{2} \times 118 \times 82 \times \text{sin their C or supp.}$	M1	or correct use of angle A or angle B	2	
	iiiA	$3030 \text{ to } 3050 \text{ [m}^2\text{]}$ sin ($\theta/2$) = ($\frac{1}{2} \times 189$)/130	A1 M1	or cosθ = (130 ² +130 ² - 189 ²)/(2x130x130)	2	
		1.6276 → 1.63	A1	In all methods, the more accurate number to be seen.		
	iiiB	$0.5 \times 130^2 \times \sin 1.63$ $0.5 \times 130^2 \times 1.63$ their sector – their triangle AOB 5315 to 5340	M1 M1 M1 A1	condone their θ (8435) condone their θ in radians (13770) dep on sector > triangle	4	
12	i	(2x - 3)(x - 4) x = 4 or 1.5	M1 A1A1	or $(11 \pm \sqrt{(121 - 96))}/4$ if M0, then B1 for showing <i>y</i> = 0 when <i>x</i> = 4 and B2 for x = 1.5	3	
	ii	y' = 4x - 11 = 5 when x = 4 c.a.o. grad of normal = -1/their y' y[- 0]= <u>their</u> -0.2 (x - 4)	M1 A1 M1f.t. M1	condone one error or 0 = their (-0.2)x4 + c dep on normal attempt		
		y-intercept for <u>their</u> normal area = ½ × 4 × 0.8 c.a.o.	B1f.t. A1	s.o.i. normal must be linear or integrating their f(x) from 0 to 4 M1	6	
	iii	$\frac{2}{3}x^{3} - \frac{11}{2}x^{2} + 12x$ attempt difference between value at 4 and value at 1.5 $[-]5\frac{5}{24} \text{ o.e. or } [-]5.2(083)$	M1 M1 A1	condone one error, ignore + c ft their (i), dep on integration attempt. c.a.o.	3	
13	i	$\log_{10} y = \log_{10} k + \log_{10} 10^{ax}$	M1		0	
	ii	log $_{10}$ y = ax + log $_{10}$ k compared to y = mx+c 2.9(0), 3.08, 3.28, 3.48, 3.68 plots [tol 1 mm] ruled line of best fit drawn	M1 T1 P1f.t L1f.t.	condone one error	2	
	iii	intercept = 2.5 approx gradient = 0.2 approx y = their 300x $10^{x(\text{their 0.2})}$ or y = $10^{(\text{their 2.5 + their 0.2x})}$	M1 M1 M1f.t.	or y – 2.7 = m(x – 1)	3	
	iv	subst 75000 in any x/y eqn subst in a correct form of the relationship	M1 M1	B3 with evidence of valid working	3	
	v	11,12 or 13 "Profits change" or any reason for this.	A1 R1	too big, too soon	1	

Mark Scheme 4753 January 2007

Section	A
---------	---

1 (i) P is (2, 1)	B1	
(ii) $ x = 1\frac{1}{2}$ $\Rightarrow x = (-1\frac{1}{2}) \text{ or } 1\frac{1}{2}$ $ x-2 +1 = 1\frac{1}{2} \Rightarrow x-2 = \frac{1}{2}$ $\Rightarrow x = (2\frac{1}{2}) \text{ or } 1\frac{1}{2}$	M1 A1 M1 E1	allow $x = 1\frac{1}{2}$ unsupported or $\left 1\frac{1}{2} - 2\right + 1 = \frac{1}{2} + 1 = 1\frac{1}{2}$
or by solving equation directly: $ x-2 +1 = x $ $\Rightarrow 2-x+1 = x$ $\Rightarrow x = 1\frac{1}{2}$ $\Rightarrow y = x = 1\frac{1}{2}$	M1 M1 A1 E1 [4]	equating from graph or listing possible cases
$2 \int_{1}^{2} x^{2} \ln x dx u = \ln x dv / dx = x^{2} \Rightarrow v = \frac{1}{3} x^{3}$ $= \left[\frac{1}{3} x^{3} \ln x\right]_{1}^{2} - \int_{1}^{2} \frac{1}{3} x^{3} \cdot \frac{1}{x} dx$ $= \frac{8}{3} \ln 2 - \int_{1}^{2} \frac{1}{3} x^{2} dx$	M1 A1	Parts with $u = \ln x dv/dx = x^2 \Rightarrow v = x^3/3$
$= \frac{8}{3} \ln 2 - \left[\frac{1}{9}x^{3}\right]_{1}^{2}$ $= \frac{8}{3} \ln 2 - \frac{8}{9} + \frac{1}{9}$ $= \frac{8}{3} \ln 2 - \frac{7}{9}$	A1 M1 A1 cao [5]	$\begin{bmatrix} \frac{1}{9}x^3 \end{bmatrix}$ substituting limits o.e. – not ln 1
3 (i) When $t = 0$, $V = 10\ 000$ $\Rightarrow 10\ 000 = Ae^0 = A$	M1 A1	$ \begin{array}{l} 10\ 000 = Ae^{0} \\ A = 10\ 000 \end{array} $
When $t = 3$, $V = 6000$ $\Rightarrow 6000 = 10\ 000\ e^{-3k}$ $\Rightarrow -3k = \ln(0.6) = -0.5108$ $\Rightarrow k = 0.17(02)$	M1 M1 A1 [5]	taking lns (correctly) on their exponential equation - not logs unless to base 10 art 0.17 or $-(\ln 0.6)/3$ oe
(ii) $2000 = 10\ 000e^{-kt}$ $\Rightarrow -kt = \ln 0.2$ $\Rightarrow t = -\ln 0.2 / k = 9.45$ (years)	M1 A1 [2]	taking lns on correct equation (consistent with their <i>k</i>) allow art 9.5, but not 9.

4 Perfect squares are		
0, 1, 4, 9, 16, 25, 36, 49, 64, 81 none of which end in a 2, 3, 7 or 8.	M1 E1	Listing all 1- and 2- digit squares. Condone absence of 0^2 , and listing squares of 2 digit nos (i.e. $0^2 - 19^2$)
Generalisation: no perfect squares end in a 2, 3, 7 or 8.	B1 [3]	For extending result to include further square numbers.
5 (i) $y = \frac{x^2}{2x+1}$		
	M1	Use of quotient rule (or product rule)
$\Rightarrow \frac{dy}{dx} = \frac{(2x+1)2x - x^2 \cdot 2}{(2x+1)^2} \\ = \frac{2x^2 + 2x}{(2x+1)^2} = \frac{2x(x+1)}{(2x+1)^2} *$	A1	Correct numerator – condone missing bracket provided it is treated as present
	A1 E1 [4]	Correct denominator www –do not condone missing brackets
(ii) $\frac{dy}{dx} = 0$ when $2x(x+1) = 0$		
$\Rightarrow \qquad x = 0 \text{ or } -1 \\ y = 0 \text{ or } -1$	B1 B1 B1 B1 [4]	Must be from correct working: SC -1 if denominator = 0
6(i) $QA = 3 - y$, PA = 6 - (3 - y) = 3 + y	B1 B1	
By Pythagoras, $PA^2 = OP^2 + OA^2$ $\Rightarrow (3+y)^2 = x^2 + 3^2 = x^2 + 9. *$	E1 [3]	must show some working to indicate Pythagoras (e.g. $x^2 + 3^2$)
(ii) Differentiating implicitly: $2(y+3)\frac{dy}{dx} = 2x$	M1	Allow errors in RHS derivative (but not LHS) - notation should be correct
$\Rightarrow \frac{dy}{dx} = \frac{x}{y+3} *$	E1	brackets must be used
$or 9 + 6y + y^2 = x^2 + 9$ $\Rightarrow 6y + y^2 = x^2$		
$\Rightarrow (6+2y)\frac{dy}{dx} = 2x$	M1	Allow errors in RHS derivative (but not LHS) - notation should be correct
$\Rightarrow \frac{dy}{dx} = \frac{x}{y+3}$	E1	brackets must be used
or $y = \sqrt{(x^2 + 9) - 3} \Rightarrow \frac{dy}{dx} = \frac{1}{2}(x^2 + 9)^{-1/2}.2x$	M1	(cao)
$=\frac{x}{\sqrt{x^2+9}}=\frac{x}{y+3}$	E1	
(iii) $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$ = $\frac{4}{2+3} \times 2$	M1	chain rule (soi)
$=\frac{2+3}{5}$	A1 A1	

Section B

7(i) When $x = -1$, $y = -1\sqrt{0} = 0$	E1	
Domain $x \ge -1$	B1 [2]	Not $y \ge -1$
(ii) $\frac{dy}{dx} = x \cdot \frac{1}{2} (1+x)^{-1/2} + (1+x)^{1/2}$	B1	$x \cdot \frac{1}{2}(1+x)^{-1/2}$
$= \frac{1}{2} (1+x)^{-1/2} [x+2(1+x)]$	B1 M1	$\dots + (1 + x)^{1/2}$ taking out common factor or common denominator
$=\frac{2+3x}{2\sqrt{1+x}} *$	E1	www
$or \ u = x + 1 \Rightarrow du/dx = 1$ $\Rightarrow y = (u - 1)u^{1/2} = u^{3/2} - u^{1/2}$ $\Rightarrow dv 3 \frac{1}{2} 1 -\frac{1}{2}$	M1	
$\Rightarrow \frac{dy}{du} = \frac{3}{2}u^{\frac{1}{2}} - \frac{1}{2}u^{-\frac{1}{2}}$ $\Rightarrow \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{3}{2}(x+1)^{\frac{1}{2}} - \frac{1}{2}(x+1)^{-\frac{1}{2}}$	A1	
$=\frac{1}{2}(x+1)^{-\frac{1}{2}}(3x+3-1)$	M1	taking out common factor or common denominator
$=\frac{2+3x}{2\sqrt{1+x}}*$	E1 [4]	
(iii) $dy/dx = 0$ when $3x + 2 = 0$ $\Rightarrow x = -2/3$ $\Rightarrow y = -\frac{2}{3}\sqrt{\frac{1}{3}}$ Range is $y \ge -\frac{2}{3}\sqrt{\frac{1}{3}}$	M1 A1ca o A1 B1 ft [4]	o.e. not $x \ge -\frac{2}{3}\sqrt{\frac{1}{3}}$ (ft their y value, even if approximate)
(iv) $\int_{-1}^{0} x \sqrt{1+x} dx$		
let $u = 1 + x$, $du/dx = 1 \Rightarrow du = dx$	M1	du = dx or $du/dx = 1$ or $dx/du = 1$
when $x = -1$, $u = 0$, when $x = 0$, $u = 1$ = $\int_{0}^{1} (u - 1)\sqrt{u} du$	B1 M1	changing limits – allow with no working shown provided limits are present and consistent with dx and du. $(u-1)\sqrt{u}$
$= \int_0^1 (u^{3/2} - u^{1/2}) du^*$	E1	www – condone only final brackets missing, otherwise notation must be correct
$= \left[\frac{2}{5}u^{5/2} - \frac{2}{3}u^{3/2}\right]_{0}^{1}$ $= \pm \frac{4}{15}$	B1 B1 M1 A1ca o [8]	$\frac{2}{5}u^{5/2}, -\frac{2}{3}u^{3/2} \text{ (oe)}$ substituting correct limits (can imply the zero limit) $\pm \frac{4}{15}$ or ± 0.27 or better, not 0.26

8 (i) $f'(x) = 2(e^x - 1)e^x$ When $x = 0$, $f'(0) = 0$ When $x = \ln 2$, $f'(\ln 2) = 2(2 - 1)2$ = 4	M1 A1 B1dep M1 A1cao [5]	or $f(x) = e^{2x} - 2e^x + 1 M1$ (or $(e^x)^2 - 2e^x + 1$ plus correct deriv of $(e^x)^2$) $\Rightarrow f'(x) = 2e^{2x} - 2e^x A1$ derivative must be correct, www $e^{\ln 2} = 2$ soi
(ii) $y = (e^x - 1)^2$ $x \leftrightarrow y$ $x = (e^y - 1)^2$ $\Rightarrow \sqrt{x} = e^y - 1$ $\Rightarrow 1 + \sqrt{x} = e^y$ $\Rightarrow y = \ln(1 + \sqrt{x})$	M1 M1 E1	reasonable attempt to invert formula taking lns similar scheme of inverting $y = \ln(1 + \sqrt{x})$
or $gf(x) = g((e^{x} - 1)^{2})$ = $ln(1 + e^{x} - 1)$ = x	M1 M1 E1	constructing gf or fg $\ln(e^x) = x$ or $e^{\ln(1+\sqrt{x})} = 1 + \sqrt{x}$
	B1	reflection in $y = x$ (must have infinite gradient at origin)
Gradient at $(1, \ln 2) = \frac{1}{4}$	B1ft [5]	
(iii) $\int (e^x - 1)^2 dx = \int (e^{2x} - 2e^x + 1) dx$ = $\frac{1}{2}e^{2x} - 2e^x + x + c^*$	M1 E1	expanding brackets (condone e^{x^2})
$\int_{0}^{\ln^{2}} (e^{x} - 1)^{2} dx = \left[\frac{1}{2}e^{2x} - 2e^{x} + x\right]_{0}^{\ln^{2}}$ $= \frac{1}{2}e^{2\ln^{2}} - 2e^{\ln^{2}} + \ln^{2} - (\frac{1}{2} - 2)$ $= 2 - 4 + \ln^{2} - \frac{1}{2} + 2$ $= \ln^{2} - \frac{1}{2}$	M1 M1 A1 [5]	substituting limits $e^{\ln 2} = 2$ used must be exact
(iv)	M1 B1 A1cao [3]	subtracting area in (iii) from rectangle rectangle area = $1 \times \ln 2$ must be supported

4753

Mark Scheme 4754 January 2007

Paper A – Section A

	1	1
$1 \qquad \frac{1}{x} + \frac{x}{x+2} = 1$ $\Rightarrow \qquad x+2+x^2 = x(x+2)$ $= x^2 + 2x$ $\Rightarrow \qquad x = 2$	M1 A1 DM1 A1 [4]	Clearing fractions solving cao
2(i) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 M1 A1 [3]	At least one value calculated correctly or 13.13or 6.566 seen
(ii) 3.25 (or Chris) area should decrease with the number of strips used.	B1 B1 [2]	ft (i) or area should decrease as concave upwards
3(i) $\sin 60 = \sqrt{3}/2, \cos 60 = 1/2,$ $\sin 45 = 1/\sqrt{2}, \cos 45 = 1/\sqrt{2}$ $\sin(105^\circ) = \sin(60^\circ + 45^\circ)$ $= \sin 60^\circ \cos 45^\circ + \cos 60^\circ \sin 45^\circ$ $= \frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{2}} + \frac{1}{2} \cdot \frac{1}{\sqrt{2}}$ $= \frac{\sqrt{3} + 1}{2\sqrt{2}} *$	M1 M1 A1 E1 [4]	splitting into 60° and 45°, and using the compound angle formulae
(ii) Angle B = 105° By the sine rule: $\frac{AC}{\sin B} = \frac{1}{\sin 30}$ $\Rightarrow AC = \frac{\sin 105}{\sin 30} = \frac{\sqrt{3} + 1}{2\sqrt{2}} \cdot 2$ $= \frac{\sqrt{3} + 1}{\sqrt{2}} *$	M1 A1 E1 [3]	Sine rule with exact values www
$4 \qquad \frac{1 + \tan^2 \theta}{1 - \tan^2 \theta} = \frac{1 + \frac{\sin^2 \theta}{\cos^2 \theta}}{1 - \frac{\sin^2 \theta}{\cos^2 \theta}} = \frac{\cos^2 \theta + \sin^2 \theta}{\cos^2 \theta - \sin^2 \theta}$	M1 M1	$\tan \theta = \frac{\sin \theta}{\cos \theta} \text{or } 1 + \tan^2 \theta = \sec^2 \theta \text{ used}$ simplifying to a simple fraction in terms of $\sin \theta$ and/or $\cos \theta$ only
$= \frac{1}{\cos 2\theta}$ $= \sec 2\theta$ $\sec 2\theta = 2 \Rightarrow \cos 2\theta = \frac{1}{2}$ $\Rightarrow 2\theta = 60^{\circ}, 300^{\circ}$ $\Rightarrow \theta = 30^{\circ}, 150^{\circ}$	M1 E1 M1 B1 B1 [7]	$\cos^2 \theta - \sin^2 \theta = \cos 2\theta$ oe used or $1 + \tan^2 \theta = 2(1 - \tan^2 \theta) \Rightarrow \tan \theta = \pm 1/\sqrt{30}$ oe 30° 150° and no others in range

5 $(1+3x)^{\frac{1}{3}} =$ = $1+\frac{1}{3}(3x)+\frac{\frac{1}{3}\cdot(-\frac{2}{3})}{2!}(3x)^2+\frac{\frac{1}{3}(-\frac{2}{3})(-\frac{5}{3})}{3!}(3x)^3+$ = $1+x-x^2+\frac{5}{3}x^3+$ Valid for $-1 < 3x < 1 \Rightarrow -1/3 < x < 1/3$	M1 B1 A2,1,0 B1 [5]	binomial expansion (at least 3 terms) correct binomial coefficients (all) $x, -x^2, 5x^3/3$
$6(i) \frac{1}{(2x+1)(x+1)} = \frac{A}{2x+1} + \frac{B}{x+1}$ $\Rightarrow 1 = A(x+1) + B(2x+1)$ $x = -1: \ 1 = -B \Rightarrow B = -1$ $x = -\frac{1}{2}: \ 1 = \frac{1}{2}A \Rightarrow A = 2$	M1 A1 [3]	or cover up rule for either value
(ii) $\frac{dy}{dx} = \frac{y}{(2x+1)(x+1)}$ $\Rightarrow \int \frac{1}{y} dy = \int \frac{1}{(2x+1)(x+1)} dx$ $= \int (\frac{2}{2x+1} - \frac{1}{x+1}) dx$ $\Rightarrow \ln y = \ln(2x+1) - \ln(x+1) + c$ When $x = 0, y = 2$ $\Rightarrow \ln 2 = \ln 1 - \ln 1 + c \Rightarrow c = \ln 2$ $\Rightarrow \ln y = \ln(2x+1) - \ln(x+1) + \ln 2$ $= \ln \frac{2(2x+1)}{x+1}$ $\Rightarrow y = \frac{4x+2}{x+1} *$	M1 A1 B1ft M1 E1 [5]	separating variables correctly condone omission of c. ft A,B from (i) calculating c , no incorrect log rules combining lns www

Mark Scheme

4754

Section B

7(i) At A, $\cos \theta = 1 \Rightarrow \theta = 0$ At B, $\cos \theta = -1 \Rightarrow \theta = \pi$ At C $x = 0$, $\Rightarrow \cos \theta = 0 \Rightarrow \theta = \pi/2$ $\Rightarrow y = \sin \frac{\pi}{2} - \frac{1}{8} \sin \pi = 1$	B1 B1 M1 A1 [4]	or subst in both <i>x</i> and <i>y</i> allow 180°
(ii) $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}$	M1	finding $dy/d\theta$ and $dx/d\theta$
$=\frac{\cos\theta-\frac{1}{4}\cos 2\theta}{-\sin\theta}$	A1	correct numerator
$= \frac{-\sin\theta}{\cos 2\theta - 4\cos\theta}$ $= \frac{4\sin\theta}{4\sin\theta}$	A1	correct denominator
$\frac{dy}{dx} = 0 \text{ when } \cos 2\theta - 4\cos \theta = 0$ $\Rightarrow \qquad 2\cos^2 \theta - 1 - 4\cos \theta = 0$	M1	=0 or their num=0
$\Rightarrow 2\cos^2\theta - 4\cos\theta - 1 = 0^*$	E1 [5]	
(iii) $\cos \theta = \frac{4 \pm \sqrt{16 + 8}}{4} = 1 \pm \frac{1}{2}\sqrt{6}$ (1 + $\frac{1}{2}\sqrt{6} > 1$ so no solution) $\Rightarrow \theta = 1.7975$	M1 A1ft A1 cao	$1 \pm \frac{1}{2}\sqrt{6}$ or (2.2247,2247) both or -ve their quadratic equation 1.80 or 103°
$y = \sin\theta - \frac{1}{8}\sin 2\theta = 1.0292$	M1 A1 cao [5]	their angle 1.03 or better
(iv) $V = \int_{-1}^{1} \pi y^2 dx$ $= \frac{1}{16} \pi \int_{-1}^{1} (16 - 8x + x^2)(1 - x^2) dx$ $= \frac{1}{16} \pi \int_{-1}^{1} (16 - 8x + x^2 - 16x^2 + 8x^3 - x^4) dx$ $= \frac{1}{16} \pi \int_{-1}^{1} (16 - 8x - 15x^2 + 8x^3 - x^4) dx *$ $= \frac{1}{16} \pi \left[16x - 4x^2 - 5x^3 + 2x^4 - \frac{1}{5}x^5 \right]_{-1}^{1}$ $= \frac{1}{16} \pi (32 - 10 - \frac{2}{5})$ $= 1.35\pi = 4.24$	M1 M1 E1 B1 M1 A1cao [6]	correct integral and limits expanding brackets correctly integrated substituting limits

8 (i) $\sqrt{(40-0)^2 + (0+40)^2 + (-20-0)^2}$ = 60 m	M1 A1 [2]	
(ii) $\overrightarrow{BA} = \begin{pmatrix} -40\\ -40\\ 20 \end{pmatrix} = 20 \begin{pmatrix} -2\\ -2\\ 1 \end{pmatrix}$ $\cos \theta = \frac{\begin{pmatrix} -2\\ -2\\ 1 \end{pmatrix} \begin{pmatrix} 3\\ 4\\ 1 \end{pmatrix}}{\sqrt{9\sqrt{26}}} = -\frac{13}{3\sqrt{26}}$ $\Rightarrow \theta = 148^{\circ}$	M1 A1 A1 A1 [4]	or \overrightarrow{AB} -13 oe eg -260 $\sqrt{9}\sqrt{26}$ oe eg $60\sqrt{26}$ cao (or radians)
(iii) $\mathbf{r} = \begin{pmatrix} 40\\0\\-20 \end{pmatrix} + \lambda \begin{pmatrix} 3\\4\\1 \end{pmatrix}$	B1 B1	$\begin{pmatrix} 40\\0\\-20 \end{pmatrix} + \dots \\ \dots + \lambda \begin{pmatrix} 3\\4\\1 \end{pmatrix} \qquad \text{or} \dots + \lambda \begin{pmatrix} a-40\\b\\20 \end{pmatrix}$
At C, $z = 0 \Rightarrow \lambda = 20$ $\Rightarrow a = 40 + 3 \times 20 = 100$ $b = 0 + 4 \times 20 = 80$	M1 A1 A1 [5]	(1) (20) 100 80
(iv) $\begin{pmatrix} 6 \\ -5 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ -2 \\ 1 \end{pmatrix} = -12 + 10 + 2 = 0$ $\begin{pmatrix} 6 \\ -5 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix} = 18 - 20 + 2 = 0$	B1 B1	(alt. method finding vector equation of plane M1 eliminating both parameters DM1 correct equation A1 stating Normal hence perpendicular B2)
$\Rightarrow \begin{pmatrix} 6 \\ -5 \\ 2 \end{pmatrix}$ is perpendicular to plane.		
Equation of plane is $6x - 5y + 2z = c$ At B (say) $6 \times 40 - 5 \times 0 + 2 \times -20 = c$ $\Rightarrow c = 200$ so $6x - 5y + 2z = 200$	M1 M1 A1 [5]	

Paper B Comprehension

1(i)											B1 Table
	Leading digit	1	1 2	2	3 4	5	6	7	8	9	
	Frequency	(5 4	1	2 2	2	1	1	1	1	
(ii)				-							M1 A1 Table
(11)	Leading digit	1	1	2	3 4	5	6	7	8	9	WIT AT TADIC
	Frequency	-	7 ;	3	2 3	1	2	1	1	0	
(iii)					r						Blany 4 correct
	Leading digit	1	2	3	4	5	6	7	8	9	B1 other 4 correct
	Frequency	6.0	3.5	2.5	1.9	1.6	1.3	1.2	1.0	0.9	
(iv)	Any sensible cor • The gen				requenci	es/resu	ults is th	e sam	e for a	ll three	E1
	tables.	-			-						
	Due to the follow Be					ns we d	cannot e	expect	the pa	ittern to	
2	Envidence of 4+2+	4+2+2 €		h1a 4 4			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	15	Fable (B1
Ζ	Evidence of 4+3+	4+2+2 II	om 1a	tole 4	requenci	es is the	same as	15 in	i able o		ВІ
3	$p_1 = p_3 + p_4 + p_4$	p_5 : on n	nultipl	icatior	n by 3, n	umbers	with a l	eading	g digit	of 1 will I	be B1 Multiplication
	mapped to numbers with a leading digit of 3, 4 or 5 and no other numbers have this property.								B1 by 3		
4	$\log_{10}(n+1) - \log_{10}n = \log_{10}\left(\frac{n+1}{n}\right) = \log_{10}\left(\frac{n}{n} + \frac{1}{n}\right) = \log_{10}\left(1 + \frac{1}{n}\right)$								M1 E1		
5	Substitute L(4)	$= 2 \times L$	(2)	and L	(6) = L	(3) + L	L(2) in				
	L(8) - L(6) = 1	L(4)-	L(3)	:							M1
	this gives $L(8) =$		~ /		(4) = L((2) + 2	$\times L(2)$	$= 3 \times I$	(2)		M1 subst E1
		-(*)	-(-) - (() -(-(-)		-(-)		(or alt M1 for 2 or more Ls used M1 use of at least 2 given results oe
											Ĕ1)
6	a = 28. All entri 1. None of the oth								have le	eading dig	git B1 B1
	b = 9. Similarly, leading digit 4. No	all entrie	es witl	n leadii	ng digit 8	or 9 wi	ll, on mu	ıltiplyir			B1 B1
				U	2	<u> </u>				~	Total 18

Mark Scheme 4755 January 2007

Qu	Answer	Mark	Comment
Section	on A		
1	The statement is false. The 'if' part is true, but the 'only if' is false since $x = -2$ also satisfies the equation.	M1 A1 [2]	'False', with attempted justification (may be implied) Correct justification
2(i)	$4 \pm \sqrt{16 - 28}$	M1	Attempt to use quadratic formula
	$\frac{4 \pm \sqrt{16 - 28}}{2} = \frac{4 \pm \sqrt{12}}{2} j = 2 \pm \sqrt{3} j$	A1	or other valid method Correct
2(ii)	Im	A1 A1 [4]	Unsimplified form. Fully simplified form.
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1(ft) B1(ft) [2]	One correct, with correct labelling Other in correct relative position s.c. give B1 if both points consistent with (i) but no/incorrect labelling
3(i)			
	$\begin{array}{c} y \\ z \\ i \\ i \\ i \\ z \\ i \\ z \\ z \\ z \\ y \\ y \\ z \\ z \\ z \\ y \\ z \\ z$	B3 B1	Points correctly plotted Points correctly labelled
	$ \begin{pmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 1 & 2 \\ 2 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 2 & 4 \\ 1 & 0 & 1 \end{pmatrix} $	ELSE M1 A1 [4]	Applying matrix to points Minus 1 each error
3(ii)	Stretch, factor 2 in <i>x</i> -direction, stretch factor half in <i>y</i> -direction.	B1	1 mark for stretch (withhold if rotation, reflection or translation
		B1 B1 [3]	mentioned incorrectly) 1 mark for each factor and direction

-			
4	$\sum_{r=1}^{n} r(r^{2}+1) = \sum_{r=1}^{n} r^{3} + \sum_{r=1}^{n} r$	M1	Separate into two sums (may be implied by later working)
	$1 (1 + 1)^2 + 1 (1 + 1)$	M1	Use of standard results
	$=\frac{1}{4}n^{2}(n+1)^{2}+\frac{1}{2}n(n+1)$	A1	Correct
	1	M1	Attempt to factorise (dependent
	$= \frac{1}{4}n(n+1)[n(n+1)+2]$		on previous M marks)
	1	A1	Factor of $n(n + 1)$
	$= \frac{1}{4}n(n+1)(n^{2}+n+2)$	A1	c.a.o.
		[6]	
-	$\omega = 2x + 1 \Longrightarrow x = \frac{\omega - 1}{2}$	N/4	
5	$\omega = 2x + 1 \Longrightarrow x = 2$	M1	Attempt to give substitution
	$(m-1)^3$ $(m-1)^2$ $(m-1)$	A1 M1	Correct Substitute into cubic
	$2\left(\frac{\omega-1}{2}\right)^{3} - 3\left(\frac{\omega-1}{2}\right)^{2} + \left(\frac{\omega-1}{2}\right) - 4 = 0$	101 1	
		A1(ft)	Cubic term
	$\Rightarrow \frac{1}{4} \left(\omega^3 - 3\omega^2 + 3\omega - 1 \right) - \frac{3}{4} \left(\omega^2 - 2\omega + 1 \right)$	A1(ft)	Quadratic term
		()	
	$+\frac{1}{2}(\omega-1)-4=0$		
	$\Rightarrow \omega^3 - 6\omega^2 + 11\omega - 22 = 0$	A2	Minus 1 each error (missing '= 0'
		A2	is an error)
		[7]	
5	OR		
	$\alpha + \beta + \gamma = \frac{3}{2}$		
	$\alpha + p + \gamma = \frac{1}{2}$	M1	Attempt to find sums and
	1		products of roots
	$\alpha\beta + \alpha\gamma + \beta\gamma = \frac{1}{2}$	A1	All correct
	$\alpha\beta\gamma = 2$		All contect
	$\mu p_{\gamma} = 2$		
	Let new roots be <i>k</i> , <i>l</i> , <i>m</i> then		
	$k+l+m=2(\alpha+\beta+\gamma)+3=6=\frac{-B}{A}$	M1	Use of sum of roots
	$\frac{1}{A}$		
	$kl + km + lm = 4(\alpha\beta + \alpha\gamma + \beta\gamma) +$	M1	Use of sum of product of roots in
	(c) c C		pairs
	$4(\alpha + \beta + \gamma) + 3 = 11 = \frac{C}{A}$		
	$klm = 8\alpha\beta\gamma + 4(\alpha\beta + \beta\gamma + \beta\gamma)$	M1	Use of product of roots
	$+2(\alpha+\beta+\gamma)+1=22=\frac{-D}{A}$		
		A2	Minus 1 each error (missing '= 0'
	$\Rightarrow \omega^3 - 6\omega^2 + 11\omega - 22 = 0$		is an error)
		[7]	

6 $\sum_{n=1}^{n} r^2 = \frac{1}{6} n (n+1) (2n+1)$		
n = 1, LHS = RHS = 1 Assume true for $n = k$ Next term is $(k+1)^2$	B1 M1 B1	Assuming true for k . (k + 1)th term.
Add to both sides RHS = $\frac{1}{6}k(k+1)(2k+1) + (k+1)^2$	M1	Add to both sides
$= \frac{1}{6} (k+1) [k (2k+1) + 6 (k+1)]$	M1	Attempt to factorise
$= \frac{1}{6}(k+1)[2k^{2}+7k+6]$ = $\frac{1}{6}(k+1)(k+2)(2k+3)$ = $\frac{1}{6}(k+1)((k+1)+1)(2(k+1)+1)$	A1 E1	Correct brackets required – also allow correct unfactorised form Showing this is the expression with
But this is the given result with $k + 1$ replacing k. Therefore if it is true for k it is true for $k + 1$. Since it is true for $k = 1$, it is		n = k + 1
true for $k = 1, 2, 3$ and so true for all positive integers.	E1 [8]	Only if both previous E marks awarded
		Section A Total: 36

Sectio	on B		
7(i)	$y = \frac{5}{8}$	B1 [1]	
7(ii)	x = -2, x = 4, y = 0	B1, B1 B1 [3]	
7(iii)	3 correct branches Correct, labelled asymptotes y-intercept labelled x = -2 y $x = 4$	B1 B1 B1	Ft from (ii) Ft from (i)
	$ \begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & & $	[3]	
7(iv)	$\frac{5}{(x+2)(4-x)} = 1$ $\Rightarrow 5 = (x+2)(4-x)$ $\Rightarrow 5 = -x^2 + 2x + 8$ $\Rightarrow x^2 - 2x - 3 = 0$ $\Rightarrow (x-3)(x+1) = 0$	M1	Or evidence of other valid method
	$\Rightarrow x = 3 \text{ or } x = -1$ From graph:	A1	Both values
	x < -2 or -1 < x < 3 or x > 4	B1 B1 B1	Ft from previous A1 Penalise inclusive inequalities only once
		[5]	

8(i)	$\frac{1}{m} = \frac{1}{-4+2j} = \frac{-4-2j}{(-4+2j)(-4-2j)}$	M1	Attempt to multiply top and bottom by conjugate
	$=\frac{-1}{5}-\frac{1}{10}j$	A1 [2]	Or equivalent
8(ii)	$ m = \sqrt{(-4)^2 + 2^2} = \sqrt{20}$	B1	
	$\arg m = \pi - \arctan\left(\frac{1}{2}\right) = 2.68$	M1 A1	Attempt to calculate angle Accept any correct expression for angle, including 153.4 degrees, – 206 degrees and –3.61 (must be at least 3s.f.)
	So $m = \sqrt{20} (\cos 2.68 + j \sin 2.68)$	A1(ft) [4]	Also accept (r, θ) form
8(iii) (A)	Ing		
	<u> </u>	B1 B1 [2]	Correct initial point Half-line at correct angle
	-4 -2 ° > ke		
8(iii) (<i>B</i>)	Shaded region, excluding boundaries $\frac{\pi}{4}$	B1(ft) B1(ft)	Correct horizontal half-line from starting point Correct region indicated Boundaries excluded (accept
	-4 -2 Pe	B1(ft) [3]	dotted lines)

Qu	Answer	Mark	Comment		
Section B (continued)					
9(i)	$\mathbf{M}^{-1} = \frac{1}{3} \begin{pmatrix} 1 & -2 \\ 0 & 3 \end{pmatrix}$ $\mathbf{N}^{-1} = \frac{1}{7} \begin{pmatrix} 4 & 3 \\ -1 & 1 \end{pmatrix}$	M1 A1 A1 [3]	Dividing by determinant One for each inverse c.a.o.		
9(ii)	$\mathbf{MN} = \begin{pmatrix} 3 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -3 \\ 1 & 4 \end{pmatrix} = \begin{pmatrix} 5 & -1 \\ 1 & 4 \end{pmatrix}$	M1 A1	Must multiply in correct order		
	$\left(\mathbf{MN}\right)^{-1} = \frac{1}{21} \begin{pmatrix} 4 & 1 \\ -1 & 5 \end{pmatrix}$	A1	Ft from MN		
9(iii)	$\mathbf{N}^{-1}\mathbf{M}^{-1} = \frac{1}{7} \begin{pmatrix} 4 & 3 \\ -1 & 1 \end{pmatrix} \times \frac{1}{3} \begin{pmatrix} 1 & -2 \\ 0 & 3 \end{pmatrix}$	M1 A1	Multiplication in correct order Ft from (i)		
	$= \frac{1}{21} \begin{pmatrix} 4 & 1 \\ -1 & 5 \end{pmatrix}$ $= (\mathbf{MN})^{-1}$	A1 [6]	Statement of equivalence to $(\mathbf{MN})^{-1}$		
	$\Rightarrow (\mathbf{PQ})^{-1} \mathbf{PQQ}^{-1} = \mathbf{IQ}^{-1}$ $\Rightarrow (\mathbf{PQ})^{-1} \mathbf{PI} = \mathbf{Q}^{-1}$ $\Rightarrow (\mathbf{PQ})^{-1} \mathbf{P} = \mathbf{Q}^{-1}$ $\Rightarrow (\mathbf{PQ})^{-1} \mathbf{PP}^{-1} = \mathbf{Q}^{-1}\mathbf{P}^{-1}$ $\Rightarrow (\mathbf{PQ})^{-1} \mathbf{I} = \mathbf{Q}^{-1}\mathbf{P}^{-1}$ $\Rightarrow (\mathbf{PQ})^{-1} = \mathbf{Q}^{-1}\mathbf{P}^{-1}$	M1 M1 M1	$QQ^{-1} = I$ Correctly eliminate I from LHS Post-multiply both sides by P^{-1} at an appropriate point		
	$\Rightarrow \left(\mathbf{PQ}\right)^{-1} = \mathbf{Q}^{-1}\mathbf{P}^{-1}$	A1 [4]	Correct and complete argument		
Section B Total: 36					
Total: 72					

Mark Scheme 4756 January 2007

1(a)(i)			
		B1	Correct shape for $0 \le \theta \le \frac{1}{2}\pi$
	$\xrightarrow{B 0} A$	B1	Correct shape for $\frac{1}{2}\pi \le \theta \le \pi$ Requires decreasing r
			on at least one axis
			Ignore other values of θ
	¢π	M1	For $\int (e^{-k\theta})^2 d\theta$
(ii)	Area is $\int \frac{1}{2}r^2 d\theta = \int_{0}^{\pi} \frac{1}{2}a^2(e^{-k\theta})^2 d\theta$	A1	For a correct integral expression
	<i>J</i> ()		including limits (may be implied
	$= \left[-\frac{a^2}{4k} e^{-2k\theta} \right]_0^{\pi}$		by later work) (Condone reversed limits)
		M1	Obtaining a multiple of $e^{-2k\theta}$ as
	$=\frac{a^2}{4k}(1-\mathrm{e}^{-2k\pi})$	A1	the integral
(h)	1	M1	For arctan
(b)	$\int_{0}^{\frac{1}{2}} \frac{1}{3+4x^{2}} dx = \left[\frac{1}{2\sqrt{3}} \arctan\left(\frac{2x}{\sqrt{3}}\right) \right]_{0}^{\frac{1}{2}}$		
	$\int_{0}^{0} 3 + 4x^{2} \qquad \left[2\sqrt{3} \qquad \left(\sqrt{3} \right) \right]_{0}$	A1A1	For $\frac{1}{2\sqrt{3}}$ and $\frac{2x}{\sqrt{3}}$
	$=\frac{1}{2\sqrt{3}}\arctan\left(\frac{1}{\sqrt{3}}\right)$		Dependent on first M1
	$2\sqrt{3}$ ($\sqrt{3}$)	M1	Dependent on first M1
	$=\frac{\pi}{12\sqrt{3}}$	A1	
	OR M1 Putting $2x = \sqrt{3} \tan \theta$ A1		For any tan substitution
	Integral is $\int_{0}^{\frac{1}{6}\pi} \frac{1}{2\sqrt{3}} d\theta$ A1		For $\int \frac{1}{2\sqrt{3}} d\theta$
	M1		For changing to limits of θ
	$=\frac{\pi}{12\sqrt{3}}$ A1		Dependent on first M1
(c)(i)	$f(x) = \tan x$, $f(0) = 0$		
	$f'(x) = \sec^2 x, f'(0) = 1$ $f''(x) = 2\sec^2 x \tan x, f''(0) = 0$	B1	
	$f'''(x) = 2 \sec^4 x + 4 \sec^2 x \tan^2 x, f'''(0) = 2$	M1	Obtaining f'''(x)
		A1	For $f''(0)$ and $f'''(0)$ correct
	$\tan x = x + \frac{x^3}{3!}(2) + \dots \ (= x + \frac{1}{3}x^3 + \dots)$	B1 ft	ft requires x^3 term and at least
		4	one other to be non-zero
(ii)	$\int_{h}^{4h} \frac{\tan x}{x} dx \approx \int_{h}^{4h} (1 + \frac{1}{3}x^2) dx$	M1	Obtaining a polynomial to
			integrate
	$= \left[\begin{array}{c} x + \frac{1}{9} x^3 \end{array} \right]_{h}^{4h}$	A1 ft	
	//		For $x + \frac{1}{9}x^3$
	$= (4h + \frac{64}{9}h^3) - (h + \frac{1}{9}h^3)$		ft requires at least two non-zero
	$=3h+7h^3$	A1 ag	terms
			3

	$ w = 3, \arg w = -\frac{1}{12}\pi$ $ z = 2, \arg z = -\frac{1}{3}\pi$ $\left \frac{w}{z}\right = \frac{3}{2}, \arg \frac{w}{z} = (-\frac{1}{12}\pi) - (-\frac{1}{3}\pi) = \frac{1}{4}\pi$	B1 B1B1 B1B1 ft 5	Deduct 1 mark if answers given in form $r(\cos\theta + j\sin\theta)$ but modulus and argument not stated. Accept degrees and decimal approxs
(ii)	$\frac{w}{z} = \frac{3}{2} \left(\cos \frac{1}{4} \pi + j \sin \frac{1}{4} \pi \right)$ $= \frac{3}{2\sqrt{2}} + \frac{3}{2\sqrt{2}} j$	M1 A1 2	Accept √1.125 + √1.125 j
(b)(i)	$e^{-\frac{1}{2}j\theta} + e^{\frac{1}{2}j\theta}$ = $(\cos\frac{1}{2}\theta - j\sin\frac{1}{2}\theta) + (\cos\frac{1}{2}\theta + j\sin\frac{1}{2}\theta)$ = $2\cos\frac{1}{2}\theta$	M1 A1	For either bracketed expression
	$1 + e^{j\theta} = e^{\frac{1}{2}j\theta} (e^{-\frac{1}{2}j\theta} + e^{\frac{1}{2}j\theta})$ $= e^{\frac{1}{2}j\theta} (2\cos\frac{1}{2}\theta)$	M1 A1 ag 4	
	OR $1 + e^{j\theta} = 1 + \cos\theta + j\sin\theta$ = $2\cos^2\frac{1}{2}\theta + 2j\sin\frac{1}{2}\theta\cos\frac{1}{2}\theta$ M1 = $2\cos\frac{1}{2}\theta(\cos\frac{1}{2}\theta + j\sin\frac{1}{2}\theta)$ = $2e^{\frac{1}{2}j\theta}\cos\frac{1}{2}\theta$ A1		
(ii)	$C + jS = 1 + {n \choose 1} e^{j\theta} + {n \choose 2} e^{2j\theta} + \dots + {n \choose n} e^{nj\theta}$ $= (1 + e^{j\theta})^n$ $= 2^n e^{\frac{1}{2}n\theta j} \cos^n \frac{1}{2}\theta$ $C = 2^n \cos(\frac{1}{2}n\theta) \cos^n \frac{1}{2}\theta$ $S = 2^n \sin(\frac{1}{2}n\theta) \cos^n \frac{1}{2}\theta$ $\frac{S}{C} = \frac{2^n \sin(\frac{1}{2}n\theta) \cos^n \frac{1}{2}\theta}{2^n \cos(\frac{1}{2}n\theta) \cos^n \frac{1}{2}\theta} = \frac{\sin(\frac{1}{2}n\theta)}{\cos(\frac{1}{2}n\theta)} = \tan(\frac{1}{2}n\theta)$	M1 M1A1 M1 A1 A1 B1 ag 7	Using (i) to obtain a form from which the real and imaginary parts can be written down Allow ft from $C + jS = e^{\frac{1}{2}n\theta j} \times$ any real function of <i>n</i> and θ

3 (i)	$\det \mathbf{P} = 1(6-k) - 1(4-2)$	M1	
	=4-k	A1	
	$\mathbf{P}^{-1} = \frac{1}{4-k} \begin{pmatrix} -1 & 2 & 6-k \\ 4 & -4-k & k-12 \\ -1 & 2 & 2 \end{pmatrix}$	M1	Evaluating at least three
	$\mathbf{r} = \frac{1}{4-k} \begin{bmatrix} 4 & -4-k & k-12 \\ 1 & 2 & 2 \end{bmatrix}$	M1	cofactors
		A1 ft	Fully correct method for inverse
	When $k = 2$, $\mathbf{P}^{-1} = \frac{1}{2} \begin{pmatrix} -1 & 2 & 4 \\ 4 & -6 & -10 \\ -1 & 2 & 2 \end{pmatrix}$		Ft from wrong determinant
	vvnen $k = 2$, $\mathbf{P}^{-1} = \frac{-1}{2} \begin{bmatrix} 4 & -6 & -10 \\ 1 & 2 & 2 \end{bmatrix}$	B1 ag	
	$(-1 \ 2 \ 2)$	-	Correctly obtained
(ii)	$\mathbf{M} \begin{pmatrix} 4\\1\\1 \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix} = 0 \begin{pmatrix} 4\\1\\1 \end{pmatrix} \qquad \mathbf{M} \begin{pmatrix} 2\\1\\0 \end{pmatrix} = \begin{pmatrix} 2\\1\\0 \end{pmatrix} = 1 \begin{pmatrix} 2\\1\\0 \end{pmatrix}$ $\begin{pmatrix} 2\\1\\0 \end{pmatrix} = \begin{pmatrix} 2$	M1	For one evaluation
	$\mathbf{M} \begin{pmatrix} 2\\3\\-1 \end{pmatrix} = \begin{pmatrix} 4\\6\\-2 \end{pmatrix} = 2 \begin{pmatrix} 2\\3\\-1 \end{pmatrix}$ Eigenvalues are 0, 1, 2		
		A1A1A1	
	~~~~~~		
	OR M	1	Obtaining an eigenvalue (e.g. by
		2	solving $-\lambda^3 + 3\lambda^2 - 2\lambda = 0$ ) Give A1 for one correct
	Eigenvalues are 0, 1, 2 A		Verifying given eigenvectors,
			linking with eigenvalues
			correctly
(iii)		B1B1	For $\begin{pmatrix} 4 & 2 & 2 \\ 1 & 1 & 3 \\ 1 & 0 & -1 \end{pmatrix}$ and $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^n \end{pmatrix}$
	$\mathbf{M}^{n} = \begin{pmatrix} 4 & 2 & 2 \\ 1 & 1 & 3 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^{n} \end{pmatrix} \frac{1}{2} \begin{pmatrix} -1 & 2 & 4 \\ 4 & -6 & -10 \\ -1 & 2 & 2 \end{pmatrix}$	M1A1	seen (for B2, these must be consistent)
	$=\frac{1}{2} \begin{pmatrix} 0 & 2 & 2^{n+1} \\ 0 & 1 & 3 \times 2^n \\ 0 & 0 & -2^n \end{pmatrix} \begin{pmatrix} -1 & 2 & 4 \\ 4 & -6 & -10 \\ -1 & 2 & 2 \end{pmatrix}$	B1 ft	For $SD^n S^{-1}$ (M1A0 if order wrong) $\begin{pmatrix} 4 & 2 & 2 \\ 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
	$= \begin{pmatrix} 4-2^n & -6+2^{n+1} & -10+2^{n+1} \\ 2-3\times 2^{n-1} & -3+3\times 2^n & -5+3\times 2^n \\ 2^{n-1} & -2^n & -2^n \end{pmatrix}$	M1 A1	or $\frac{1}{2} \begin{pmatrix} 4 & 2 & 2 \\ 1 & 1 & 3 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 4 & -6 & -10 \\ -2^n & 2^{n+1} & 2^{n+1} \end{pmatrix}$
	$= \begin{pmatrix} 4 & -6 & -10 \\ 2 & -3 & -5 \\ 0 & 0 & 0 \end{pmatrix} + 2^{n-1} \begin{pmatrix} -2 & 4 & 4 \\ -3 & 6 & 6 \\ 1 & -2 & -2 \end{pmatrix}$	A1 ag	Evaluating product of 3 matrices Any correct form
		8	[]

OR Prove $\mathbf{M}^n = \mathbf{A} + 2^{n-1}\mathbf{B}$ by induc When $n = 1$ , $\mathbf{A} + \mathbf{B} = \mathbf{M}$	tion B1	
Assuming $\mathbf{M}^{k} = \mathbf{A} + 2^{k-1}\mathbf{B}$ , $\mathbf{M}^{k+1} = \mathbf{A}\mathbf{M} + 2^{k-1}\mathbf{B}\mathbf{M}$	M1A2	or $M^{k+1} = M A + 2^{k-1} M B$
$= \mathbf{A} + 2^{k-1} (2 \mathbf{B})$	A1A1	
$= \mathbf{A} + 2^k \mathbf{B}$ True for $n = k \implies$ True for $n =$	A1 <i>k</i> +1;	
hence true for all positive integers <i>n</i>	A1	Dependent on previous 7 marks

4 (i)	If $y = \operatorname{arcosh} x$ , $x = \cosh y = \frac{1}{2}(e^{y} + e^{-y})$	M1	$\frac{1}{2}$ and + must be correct
	$e^{2y} - 2xe^{y} + 1 = 0$	M1	-
	$e^{y} = \frac{2x \pm \sqrt{4x^2 - 4}}{2}$		
	2	M1	
	$=x\pm\sqrt{x^2-1}$	A1	
	Since $y \ge 0$ , $e^y \ge 1$ , so $e^y = x + \sqrt{x^2 - 1}$		
	$\operatorname{arcosh} x = y = \ln(x + \sqrt{x^2 - 1})$	A1 ag <b>5</b>	
(ii)	$\begin{bmatrix} 3.9 \\ 1 \end{bmatrix}$ , $\begin{bmatrix} 1 \\ 2x \end{bmatrix}^{3.9}$	M1	For arcosh (or any cosh
	$\int_{2.5}^{3.9} \frac{1}{\sqrt{4x^2 - 9}}  \mathrm{d}x = \left[ \frac{1}{2} \operatorname{arcosh}\left(\frac{2x}{3}\right) \right]_{2.5}^{3.9}$	A1A1	substitution) $-1 \qquad 2x$
	$=\frac{1}{2}\left(\operatorname{arcosh} 2.6 - \operatorname{arcosh} \frac{5}{3}\right)$		For $\frac{1}{2}$ and $\frac{2x}{3}$
	$=\frac{1}{2}\left(\ln(2.6+\sqrt{2.6^2-1})-\ln(\frac{5}{3}+\sqrt{\frac{25}{9}-1})\right)$	M1	(or $2x = 3\cosh u$ and $\int \frac{1}{2} du$ )
	$=\frac{1}{2}(\ln 5 - \ln 3)$		(or limits of <i>u</i> in logarithmic form)
	$=\frac{1}{2}\ln\frac{5}{3}$	A1	
		5	
	OR M2		For $\ln(kx + \sqrt{k^2 x^2})$
	10		Give M1 for $\ln(k_1 x + \sqrt{k_2^2 x^2})$
	$\left[\frac{1}{2}\ln(2x+\sqrt{4x^2-9})\right]_{2.5}^{3.9}$ A1A1		For $\frac{1}{2}$ and $\ln(2x + \sqrt{4x^2 - 9})$
	$=\frac{1}{2}\ln 15 - \frac{1}{2}\ln 9$		(or $\ln(x + \sqrt{x^2 - \frac{9}{4}})$
	$=\frac{1}{2}\ln\frac{5}{3}$ A1		
(iii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(2+\sinh x)\sinh x - (\cosh x)(\cosh x)}{(2+\sinh x)^2}$	M1	Using quotient rule
		A1	Any correct form
	$=\frac{2\sinh x - 1}{\left(2 + \sinh x\right)^2}$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{9} \text{ when } 18\sinh x - 9 = (2 + \sinh x)^2$		
		M1	Quadratic in $\sinh x$ (or product of two quadratics in $e^x$ )
	$sinh^{2} x - 14 sinh x + 13 = 0$ $sinh x = 1, 13$	M1	Solving quadratic to obtain at
	When $\sinh x = 1$ , $\cosh x = \sqrt{2}$ , $x = \ln(1 + \sqrt{2})$		least one value of $\sinh x$ (or $e^x$ )
	Point is $\left( \ln(1+\sqrt{2}), \frac{\sqrt{2}}{3} \right)$	M1	Obtaining <i>x</i> in logarithmic form (must use a correct formula for
	When	A1 ag	arsinh)
	$\sinh x = 13$ , $\cosh x = \sqrt{170}$ , $x = \ln(13 + \sqrt{170})$		SR B1B1 for verifying $y = \frac{1}{3}\sqrt{2}$
	Point is $\left( \ln(13 + \sqrt{170}), \frac{\sqrt{170}}{15} \right)$	A1A1	and $\frac{dy}{dy} = \frac{1}{1} \frac{1}$
		8	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{9}  \text{when}  x = \ln(1 + \sqrt{2})$

## Alternatives for Q4 (i)

$\cosh \ln(x + \sqrt{x^2 - 1}) = \frac{1}{2} \left( e^{\ln(x + \sqrt{x^2 - 1})} + e^{-\ln(x + \sqrt{x^2 - 1})} \right)$	
$= \frac{1}{2} \left( x + \sqrt{x^2 - 1} + \frac{1}{x + \sqrt{x^2 - 1}} \right)$	M1
$= \frac{1}{2} \left( x + \sqrt{x^2 - 1} + x - \sqrt{x^2 - 1} \right)$	M1
=x	_ A1
Since $\ln(x + \sqrt{x^2 - 1}) > 0$ , $\operatorname{arcosh} x = \ln(x + \sqrt{x^2 - 1})$	¹⁾ A1
	5
If $y = \operatorname{arcosh} x$ then	
$\ln(x + \sqrt{x^2 - 1}) = \ln(\cosh y + \sqrt{\cosh^2 y - 1})$	M1
$= \ln(\cosh y + \sinh y)$	M1
since	A1
$\sinh y > 0$	M1
$=\ln(e^{\gamma})$	A1
= <i>y</i>	5

5 (i)			
		B1	General shape correct
	k=1	B1	Cusp at O clearly shown
	$k=1.5$ $\rightarrow o$	B1	General shape correct
	<i>k</i> = 1.5	B1	'Dimple' correctly shown
	$( \cdot \cdot \cdot ) \rightarrow$		
	<i>k</i> = 4	B1	
		5	
(ii)	Cusp	B1 <b>1</b>	
(iii)			
	When $k = 1.5$ , there are 4 points When $k = 4$ , there are 2 points	B2	Give B1 for two cases correct
		2	
(iv)	$x = k \cos \theta + \cos^2 \theta$ dx $k = k \sin \theta - 2 \cos \theta \sin \theta$	B1	
	$\frac{d\theta}{d\theta} = -k\sin\theta - 2\cos\theta\sin\theta$	B1	
	$= -\sin\theta(k+2\cos\theta)$		
	= 0 when $\theta = 0$ , $\pi$ , or $\cos \theta = -\frac{1}{2}k$ For just two points, $k \ge 2$	M1	
		A1 <b>4</b>	Allow $k > 2$
(v)	$d^2 = r^2 + 1^2 - 2r\cos\theta$	M1	
	$= (k + \cos \theta)^2 + 1 - 2(k + \cos \theta) \cos \theta$	A1	
	$=k^2 + 1 - \cos^2\theta  (=k^2 + \sin^2\theta)$		
	Since $0 \le \cos^2 \theta \le 1$ , $k^2 \le d^2 \le k^2 + 1$	M1	or $0 \leq \sin^2 \theta \leq 1$
	$n \ge u \ge n \top 1$	A1 ag <b>4</b>	
(vi)	When <i>k</i> is large, $\sqrt{k^2 + 1} \approx k$ , so $d \approx k$	M1	
	Curve is very nearly a circle, with centre (1, 0) and radius <i>k</i>	A1	
		2	

Mark Scheme 4758 January 2007

		1		
1(i)	$\lambda^2 - \lambda - 2 = 0$ $\lambda = -1 \text{ or } 2$	M1 A1	Auxiliary equation	
	$\mathcal{F} = -1 \text{ of } 2$ $\mathcal{F} = y = A e^{-t} + B e^{2t}$	F1	CF for their roots	
	$PI  y = a e^{-2t}$	B1		
	$\dot{y} = -2a e^{-2t},  \ddot{y} = 4a e^{-2t}$	M1	Differentiate twice	
	$4a e^{-2t} - (-2a e^{-2t}) - 2a e^{-2t} = e^{-2t}$	M1	Substitute	
	4a = 1	M1	Compare and solve	
	$a = \frac{1}{4}$	A1		
	$y = A e^{-t} + B e^{2t} + \frac{1}{4} e^{-2t}$	F1	Their CF with 2 constants + their Pl	9
(ii)	$0 = A + B + \frac{1}{4}$	M1	Use initial condition	
	$t \to \infty \Rightarrow e^{-t} \to 0, e^{-2t} \to 0, e^{2t} \to \infty \text{ so } y \to 0 \Rightarrow B = 0$	M1	Use asymptotic condition	
	$y = \frac{1}{4} \left( e^{-2t} - e^{-t} \right)$	A1	сао	
	$y = 0 \Leftrightarrow e^{-t} = e^{-2t} \Leftrightarrow e^{t} = 1 \Leftrightarrow t = 0$	M1 E1 B1 B1	Valid method to establish 0 is <i>only</i> root Complete argument Curve satisfies both conditions $y \neq 0$ for $t > 0$ and consistent with their	
			solution	
				7
(iii)	$CF  y = C  \mathrm{e}^{-t} + D  \mathrm{e}^{2t}$	F1	Correct or same as in (i)	
	$PI \ y = bt \ e^{-t}$	B1		
	$\dot{y} = b e^{-t} - bt e^{-t}, \ \ddot{y} = -2b e^{-t} + bt e^{-t}$			
	$-2be^{-t} + bte^{-t} - (be^{-t} - bte^{-t}) - 2be^{-t} = e^{-t}$	M1	Differentiate (product) and substitute	
	$\Rightarrow -2b - b = 1 \Rightarrow b = -\frac{1}{3}$	A1	сао	
	<b>GS</b> $y = C e^{-t} + D e^{2t} - \frac{1}{3}t e^{-t}$	F1	Their CF + their non-zero PI	
	$y = 0, t = 0 \Longrightarrow C + D = 0$	M1	Use condition	
	$y \to 0 \Longrightarrow D = 0$	M1	Use condition	
	$y = -\frac{1}{3}t e^{-t}$	A1	сао	
				8

2(i)	$\frac{\mathrm{d}}{\mathrm{d}x}(\ln\sin x) = \frac{1}{\sin x}\cos x = \cot x$	E1	Differentiate (chain rule)	
(ii)	$\frac{1}{y}\frac{\mathrm{d}y}{\mathrm{d}x} = -2\cot 2x$	M1	Rearrange	1
	$\int \frac{1}{y} dy = \int -2 \cot 2x  dx$	M1	Integrate	
	$\ln  y  = -\ln  \sin 2x  + c$ $y = A \operatorname{cosec} 2x$	A1 A1 M1 A1	One side correct (ignore constant) All correct, including constant Rearrange, dealing properly with constant	6
(iii)	$\frac{\mathrm{d}y}{\mathrm{d}x} + 2y\cot 2x = k$			
	$I = \exp\left(\int 2\cot 2x  \mathrm{d}x\right)$	M1	Attempt integrating factor	
	$= \exp(\ln\sin 2x)$	M1 A1	Integrate	
	$= \sin 2x$ $\frac{dy}{dx} \sin 2x + 2y \cos 2x = k \sin 2x$	M1	Simplified form of IF Multiply by their IF	
	$dx  y \sin 2x = \int k \sin 2x  dx$	M1	Integrate both sides	
	$= -\frac{1}{2}k\cos 2x + A$	A1	сао	
	$y = A \operatorname{cosec} 2x - \frac{1}{2}k \operatorname{cot} 2x$	E1		7
(iv)	$x = \frac{1}{4}\pi, y = 0 \Longrightarrow 0 = A$ $y = -\frac{1}{2}k \cot 2x$	M1 A1	Use condition	
		B1 B1	Increasing and through $\left(\frac{1}{4}\pi,0\right)$ Asymptote $x = 0$	
	π/4 π/2			4
(v)	$y = \frac{A - \frac{1}{2}k\cos 2x}{\sin 2x} = \frac{A - \frac{1}{2}k(1 - 2\sin^2 x)}{2\sin x\cos x}$	B1 M1 A1	Both double angle formulae correct (or small angle approximations or series expansion) Use expressions in general solution	-
	$A = \frac{1}{2}k \Longrightarrow y = \frac{\frac{1}{2}k\sin x}{\cos x}$	M1 E1	Identify value of <i>A</i> Correct solution, fully justified	
	which tends to zero as $x \to 0$	B1	Must be from correct solution	6

3(i)	$\frac{dv}{dv} = \frac{dv}{dv}$		NOL equation (eccent and allow sime and	
	$m\frac{\mathrm{d}v}{\mathrm{d}t} = mg - R$	B1	N2L equation (accept <i>ma</i> , allow sign errors)	
	$\frac{\mathrm{d}v}{\mathrm{d}t} = g - k_1 v$	E1	Must follow from correct N2L	
	$\int \frac{1}{g - k_1 \nu}  \mathrm{d}\nu = \int \mathrm{d}t$	M1	Separate and integrate	
	$-\frac{1}{k_1}\ln g - k_1 v  = t + c_1$	A1	LHS	
	$g - k_1 v = A e^{-k_1 t}$	M1	Rearrange (dealing properly with constant)	
	Alternatively	М1	Attempt integrating factor	
		A1	$\frac{\mathrm{d}}{\mathrm{d}t}\left(\mathrm{e}^{k_{1}t}v\right) = g\mathrm{e}^{k_{1}t}$	
	Alternatively	M1 M1	Integrate Auxiliary equation	
		A1	$CF A e^{-k_1 t}$	
		M1	Constant PI $(g/k_1)$	
	$t = 0, v = 0 \Longrightarrow A = g$	M1	Use condition	
	$v = \frac{g}{k_1} \left( 1 - \mathrm{e}^{-k_1 t} \right)$	E1		
(ii)		M1	Integrate v	7
(")	$x = \int v  \mathrm{d}t = \frac{g}{k_1} \left( t + \frac{1}{k_1} \mathrm{e}^{-k_1 t} + B \right)$	A1	cao (including constant)	
	$t = 0, x = 0 \Longrightarrow B = -\frac{1}{k_1}$	M1	Use condition	
	$x = \frac{g}{k_1} \left( t + \frac{1}{k_1} e^{-k_1 t} - \frac{1}{k_1} \right)$	A1	сао	
				4
(iii)	$mv\frac{\mathrm{d}v}{\mathrm{d}x} = mg - mk_2v^2$	B1	N2L with $mk_2v^2$ (accept $ma$ or $m\frac{dv}{dt}$ )	
	$\frac{v}{g - k_2 v^2} \frac{\mathrm{d}v}{\mathrm{d}x} = 1$	E1	Must follow from correct N2L	
	$\int \frac{v}{g - k_2 v^2} dv = \int dx$	M1	Integrate	
	$-\frac{1}{2k_2}\ln g - k_2v^2  = x + c_2$	A1	LHS	
	$g - k_2 v^2 = C e^{-2k_2 x}$	M1	Rearrange (dealing properly with constant)	
	$x = 0, v = 0 \Longrightarrow C = g$	M1	Use condition	
	$x = 0, v = 0 \Longrightarrow C = g$ $v = \sqrt{\frac{g}{k_2} \left(1 - e^{-2k_2 x}\right)}$	A1	сао	
(iv)	t v ⁱ v	B1	First line	7
	0 0 9.8	M1	Use algorithm	
	0.1 0.98 8.6115 7	A1	0.98	
	0.2 1.8411 6	M1	Use algorithm	
	-	A1	1.84116 (accept 3sf or better)	_
		l		5

(v)	$g - k_3 v^{\frac{3}{2}} = 0$ when $v = 4 \Rightarrow k_3 = \frac{g}{4^{\frac{3}{2}}} = 1.225$	E1	Deduce or verify value (must relate to resultant force or acceleration being zero)

4(i)	subtracting $\Rightarrow -5x + 5 = 0$	M1	Solve simultaneously	
1(1)	x = 1	A1		
	<i>y</i> = 7	A1		
(")				3
(ii)	$\ddot{x} = -3\dot{x} - \dot{y}$	M1	Differentiate	
	$=-3\dot{x}-(2x-y+5)$	M1	Substitute for $\dot{y}$	
	$= -3\dot{x} - 2x + (-\dot{x} - 3x + 10) - 5$	M1 M1	<i>y</i> in terms of $x, \dot{x}$ Substitute	
	$\ddot{x} + 4\dot{x} + 5x = 5$	E1		
				5
(iii)	$\lambda^2 + 4\lambda + 5 = 0$	M1	Auxiliary equation	
	$\lambda = -2 \pm j$	M1 A1	Solve to get complex roots	
	$CF \ x = \mathrm{e}^{-2t} \left( A\cos t + B\sin t \right)$	F1	CF for their roots	
	PI $x = \frac{5}{5} = 1$	B1		
	$GS \ x = \mathrm{e}^{-2t} \left( A \cos t + B \sin t \right) + 1$	F1	Their CF with 2 constants + their PI	
	$y = -\dot{x} - 3x + 10$	M1	<i>y</i> in terms of $x, \dot{x}$	
	$= -e^{-2t} \left( -A\sin t + B\cos t \right) + 2e^{-2t} \left( A\cos t + B\sin t \right)$	M1	Differentiate their x	
	$-3e^{-2t}(A\cos t + B\sin t) - 3 + 10$	M1	Substitute	
	$= e^{-2t} \left( (-A - B) \cos t + (A - B) \sin t \right) + 7$	A1	сао	
				10
(iv)	$t = 0, x = 0 \Longrightarrow A + 1 = 0$	M1	Use condition on <i>x</i>	
. ,	$t = 0, y = 0 \Longrightarrow -A + B + 7 = 0$	M1	Use condition on <i>y</i>	
	A = -1, B = 8			
	$x = \mathrm{e}^{-2t} \left( 8\sin t - \cos t \right) + 1$			
	$y = -e^{-2t} \left( 7\cos t + 9\sin t \right) + 7$	A1	Both correct	
				3
(v)	1×~	B1	Through origin	
		B1 B1	Positive gradient at $t = 0$ Asymptote $x = 1$ , or their non-zero constant	
	1		PI (accept oscillatory or non-oscillatory)	
	t			
	NB Oscillates about $x = 1$ , but not apparent at this			
	scale due to small amplitude			3
				5

Mark Scheme 4761 January 2007

Q 1		mark		sub
<u><u>u</u>1</u>	either 70 <i>V</i> obtained So 70 <i>V</i> = 1400 and <i>V</i> = 20 or	M1 A1 A1 A1 M1 A1 A1 M1	Attempt at area. If not trapezium method at least one part area correct. Accept equivalent. Or equivalent – need not be evaluated. Equate <b>their</b> 70 <i>V</i> to 1400. Must have attempt at complete areas or equations. cao Attempt to find areas in terms of ratios (at least one correct) Correct total ratio – need not be evaluated. (Evidence may be 800 or 400 or 200 seen). Complete method. (Evidence may be 800/40 or 400/20	SUD
	V = 20	A1	or 200/10 seen). cao [ Award 3/4 for 20 seen WWW]	
				4

Q 2		mark		sub
	$(v =)12 - 3t^{2}$ $v = 0 \Longrightarrow 12 - 3t^{2} = 0$ so $t^{2} = 4$ and $t = \pm 2$ $x = \pm 16$	M1 A1 M1 A1 A1	Differentiating Allow confusion of notation, including $x =$ Dep on 1 st M1. Equating to zero. Accept one answer only but no extra answers. FT only if quadratic or higher degree. cao. Must have both and no extra answers.	
				5

Q 3		mark		sub
(i)	<i>R</i> = <i>mg</i> so 49 N	B1	Equating to weight. Accept 5g (but not mg)	1
(ii)	$F \leftarrow \begin{array}{c} \mathbf{R} \\ 40^{\circ} \\ 49 \text{ N} \end{array} $	B1 B1	All except <i>F</i> correct (arrows and labels) (Accept <i>mg</i> , <i>W</i> etc and no angle). Accept cpts instead of 10N. No extra forces. <i>F</i> clearly marked and labelled	2
(iii)	$\uparrow R + 10\cos 40 - 49 = 0$ R = 41.339 so 41.3 N (3 s. f.)	M1 B1 A1	Resolve vertically. All forces present and 10N resolved Resolution correct and seen in an equation. (Accept $R = \pm 10 \cos 40$ as an equation)	
	$F = 10 \sin 40 = 6.4278$ so 6.43 N (3 s. f.)	B1	Allow –ve if consistent with the diagram.	4
				7

Q 4		mark		sub
(i)	$\downarrow  20 + 16\cos 60 = 28$	B1		1
(ii)	either $\rightarrow 16 \sin 60$	B1 M1	Any form. May be seen in (i). Accept any appropriate equivalent resolution. Use of Pythag with 2 distinct cpts (but not 16 and ± 20)	
	Mag $\sqrt{28^2 + 192} = 31.2409$ so 31.2 N (3 s.f.) or Cos rule mag ² = 16 ² + 20 ² - 2×16×20×cos120 31.2 N (3 s. f.)	F1 M1 A1 A1	Allow 34.788 only as FT Must be used with 20 N, 16 N and 60° or 120° Correct substitution	3
(iii)	Magnitude of accn is 15.620 m s ⁻² so 15.6 m s ⁻² (3 s. f.) angle with 20 N force is $\arctan\left(\frac{16\sin 60}{28}\right)$ so 26.3295 so 26.3° (3 s. f.)	B1 M1 A1	Award only for <b>their</b> $F \div 2$ Or equiv. May use force or acceleration. Allow use of sine or cosine rules. FT only $s \leftrightarrow c$ and sign errors. Accept reciprocal of the fraction. cao	3
				7
Q 5		mark		sub
(i)			N2L. All forces attempted in one equation.	
	sphere $19.6 - T = 2a$ block $T - 14.8 = 4a$	M1 A1 A1	Allow sign errors. No extra forces. Don't condone <i>F</i> = <i>mga</i> . Accept 2 <i>g</i> for 19.6	3
(ii)	-	A1	sign errors. No extra forces. Don't condone <i>F</i> = <i>mga</i> .	3

Q 6		mark		sub
(i)	$t = 2.5 \Longrightarrow \mathbf{v} = \begin{pmatrix} -5\\10 \end{pmatrix} + 2.5 \begin{pmatrix} 6\\-8 \end{pmatrix} = \begin{pmatrix} 10\\-10 \end{pmatrix}$	B1 E1	Need not be in vector form Accept diag and/or correct derivation of just $\pm 45^{\circ}$	
	speed is $\sqrt{10^2 + 10^2} = 14.14$ so 14.1 m s ⁻¹ (3 s. f.)	F1	FT their v	3
(ii)	$\mathbf{s} = 2.5 \begin{pmatrix} -5\\10 \end{pmatrix} + \frac{1}{2} \times 2.5^2 \times \begin{pmatrix} 6\\-8 \end{pmatrix}$ $= \begin{pmatrix} 6.25\\0 \end{pmatrix}$ so 090°	M1 A1 A1 A1	Consideration of <b>s</b> (const accn or integration) Correct sub into <i>uvast</i> with <b>u</b> and <b>a</b> . (If integration used it must be correct but allow no arb constant) cao. CWO.	4
				7

Q 7		mark		sub
(i)	acceleration is $\frac{24}{12}$ so 2 m s ⁻²	B1		
(ii)	24-15 = 12a <b>a</b> = 0.75 m s ⁻² 1 st distance is $0.5 \times 2 \times 16 = 16$ 2 nd distance is $0.5 \times 0.75 \times 16 = 6$ Difference is 10 m	M1 A1 M1 A1 A1 A1	Use of N2L. Both forces present. Must be <i>F</i> = <i>ma</i> . No extra forces. Appropriate <i>uvast</i> applied at least once. Need not evaluate. Both found. May be implied. FT (i) cao	5
(iii)	$12g \sin 5 - 15 = 12a$ a = -0.39587 so $-0.396$ m s ⁻² (3 s. f.)	M1 M1 A1 A1	Use of $F = ma$ , allow 15 N missing <i>or</i> weight not resolved. No extra forces. Allow use of $12 \sin 5$ . Attempt at weight cpt. Allow $\sin \leftrightarrow \cos$ . Accept seen on diagram. Accept the use of 12 instead of 12 <i>g</i> . Weight cpt correct. Accept seen on diagram. Allow not used. Correct direction must be made clear	
(iv)	time $0 = 1.5 + at \Rightarrow t = 3.789$ so 3.79 s (3 s. f.) distance $s = 0.5 \times (1.5 + 0) \times 3.789$ (or) giving s = 2.8418 so 2.84 m (3 s. f.)	M1 A1 M1 A1	Correct <i>uvast</i> . Use of 0, 1.5 and <b>their</b> <i>a</i> from (iii) or <b>their</b> <i>s</i> from (iv). Allow sign errors. Condone $u \leftrightarrow v$ . Correct <i>uvast</i> . Use of 0, 1.5 and <b>their</b> <i>a</i> from (iii) or <b>their</b> <i>t</i> from (iv). Allow sign errors. Condone $u \leftrightarrow v$ .	4
(V)	accn is given by $0 = 1.5 + 3.5a \Rightarrow a = -\frac{3}{7} = -0.42857$ $12g \sin 5 - R = 12 \times -0.42857$	M1 A1 M1	[The first A1 awarded for <i>t</i> or <i>s</i> has FT <b>their</b> <i>a</i> if signs correct; the second awarded is cao] Use of 0, 1.5 and 3.5 in correct <i>uvast</i> . Condone $u \leftrightarrow v$ . Allow $\pm$ N2L. Must use <b>their</b> <i>new</i> accn. Allow only sign errors.	4
	so <i>R</i> = 15.39 so 15.4 N (3 s. f.)	A1	сао	4

Q 8		mark		sub
(i)	Using $s = ut + 0.5at^2$ with $u = 10$ and $a = -10$	E1	Must be clear evidence of derivation of – 5. Accept one calculation and no statement about the other.	1
(ii)	either $s = 0$ gives $10t - 5t^2 = 0$ so $5t(2-t) = 0$ so $t = 0$ or 2. Clearly need $t = 2$ or Time to highest point is given by $0 = 10 - 10t$ Time of flight is $2 \times 1$ = 2 s horizontal range is 40 m as 40 < 70, hits the ground	B1 M1 A1 M1 A1 B1 E1	Factorising Award 3 marks for $t = 2$ seen WWW Dep on 1 st M1. Doubling <b>their</b> $t$ . Properly obtained FT 20 × <b>their</b> $t$ Must be clear. FT <b>their</b> range.	5
(iii)	need $10t - 5t^2 = -15$ Solving $t^2 - 2t - 3 = 0$ so $(t-3)(t+1) = 0$ and $t = 3$ range is 60 m	M1 M1 A1 M1 A1	[May divide flight into two parts] Equate $s = -15$ or equivalent. Allow use of $\pm 15$ . Method leading to solution of a quadratic. Equivalent form will do. Obtaining $t = 3$ . Allow no reference to the other root. [Award SC3 if $t = 3$ seen WWW] Range is $20 \times$ <b>their</b> $t$ (provided $t > 0$ ) cao. CWO.	5
(iv)	Using (ii) & (iii), since $40 + 60 > 70$ , paths cross (For $0 < t \le 2$ ) both have same vertical motion so B is always 15 m above A	E1 E1	Must be convincing. Accept sketches. Do not accept evaluation at one or more points alone. That B is <i>always</i> above A must be clear.	2
(v)	Need x components summing to 70 $20 \times 0.75 + 20 \times 2.75 = 15 + 55 = 70$ so true Need y components the same $10 \times 2.75 - 5 \times 2.75^2 + 15 = 4.6875$ $10 \times 0.75 - 5 \times 0.75^2 = 4.6875$	M1 E1 M1 B1 E1	May be implied. Or correct derivation of 0.75 s or 2.75 s Attempt to use 0.75 and 2.75 in two vertical height equations (accept same one or wrong one) 0.75 and 2.75 each substituted in the appropriate equn Both values correct. [Using cartesian equation: B1, B1 each equation: M1 solving: A1 correct point of intersection: E1 Verify times]	5
				18

Mark Scheme 4762 January 2007

Q 1		mark		sub
(i)	before $v_2 \text{ m s}^{-1}$ $v_1 \text{ m s}^{-1}$			
	$10 \times 0.5 = 0.5v_2 + 29.5v_1$ $\frac{v_1 - v_2}{0 - 10} = -0.8$ $v_1 = 0.3 \text{ so } V_1 = 0.3$ $v_2 = -7.7 \text{ so } V_2 = 7.7 \text{ m s}^{-1}$ in opposite to original direction	M1 A1 M1 A1 A1 A1 F1	PCLM and two terms on RHS All correct. Any form. NEL Any form Speed. Accept ±. Must be correct interpretation of clear working	7
(ii) (A)	$10 \times 0.5 = 30V$ so $V = \frac{1}{6}$	M1 A1 A1	PCLM and coalescence All correct. Any form. Clearly shown. Accept decimal equivalence. Accept no direction.	3
(B)	Same velocity No force on sledge in direction of motion	E1 E1	Accept speed	2
(iii)	before after $ \begin{array}{c} 2 \text{ m s}^{-1} \\ 39.5 \text{ kg} \\ V \\ u \end{array} $	B1		
	$2 \times 40 = 0.5u + 39.5V$ u - V = 10 Hence $V = 1.875$	M1 A1 B1 A1 17	PCLM, masses correct Any form May be seen on the diagram. Accept no reference to direction.	5

Q 2		mark	comment	sub
(i)	$X = R \cos 30$ (1) $Y + R \sin 30 = L$ (2)	B1 M1 A1	Attempt at resolution	3
(ii)	ac moments about A $R - 2L = 0$	B1		
	Subst in $(1)$ and $(2)$	M1	Subst their $R = 2L$ into their (1) or (2)	
	$X = 2L\frac{\sqrt{3}}{2} \text{ so } X = \sqrt{3}L$	E1	Clearly shown	
	$Y + 2L \times \frac{1}{2} = L$ so $Y + L = L$ and $Y = 0$	E1	Clearly shown	4
(iii)	(Below all are taken as tensions e. g. $T_{AB}$ in AB)	B1 B1	Attempt at all forces (allow one omitted) Correct. Accept internal forces set as tensions or thrusts or a mix	2
(iv)	$\downarrow A  T_{AD} \cos 30 \ (-Y) = 0$ so $T_{AD} = 0$	M1 E1	Vert equilibrium at A attempted. $Y = 0$ need not be explicit	2
(v)	Consider the equilibrium at pin-joints	M1	At least one relevant equilib attempted	
	A $\rightarrow$ $T_{AB} - X = 0$ so $T_{AB} = \sqrt{3}L$ (T)	B1	(T) not required	
	$C \downarrow L + T_{CE} \cos 30 = 0$	B1	Or equiv from <b>their</b> diagram	
	so $T_{\rm CE} = \frac{-2L}{\sqrt{3}}$ so $\frac{2L}{\sqrt{3}} \left( = \frac{2L\sqrt{3}}{3} \right)$ (C)	B1	Accept any form following from their	
	$C \leftarrow T_{BC} + T_{CE} \cos 60 = 0$	B1	equation. (C) not required. Or equiv from <b>their</b> diagram	
	so $T_{\rm BC} = -\left(-\frac{2\sqrt{3}L}{3}\right) \times \frac{1}{2} = \frac{\sqrt{3}L}{3}$ (T)	B1	FT <b>their</b> $T_{CE}$ or equiv but do not condone inconsistent signs even if right answer	
		F1	obtained. (T) not required. T and C consistent with <b>their</b> answers and <b>their</b> diagram	7
				7
(vi)	$\downarrow B  T_{BD}\cos 30 + T_{BE}\cos 30 = 0$	M1	Resolve vert at B	
	so $T_{\rm BD} = -T_{\rm BE}$ so mag equal and opp sense	E1	A statement required	2
		20		

Q 3		mark		sub
(i)	(10, 2, 2.5)	B1		1
(ii)	By symmetry $\overline{x} = 10$ , $\overline{y} = 2$ $(240 + 80)\overline{z} = 80 \times 0 + 240 \times 2.5$ so $\overline{z} = 1.875$	B1 B1 B1 M1 A1	Total mass correct Method for c.m. Clearly shown	5
(iii)	$\overline{x} = 10 \text{ by symmetry}$ $(320 + 80) \begin{pmatrix} \overline{x} \\ \overline{y} \\ \overline{z} \end{pmatrix} = 320 \begin{pmatrix} 10 \\ 2 \\ 1.875 \end{pmatrix} + 80 \begin{pmatrix} 10 \\ 4 \\ 3 \end{pmatrix}$ $\overline{y} = 2.4$ $\overline{z} = 2.1$	E1 M1 B1 E1 E1	Could be derived Method for c.m. y coord c.m. of lid z coord c.m. of lid shown shown	
(iv)	$\frac{2}{4} = 2.1$	B1 B1 B1 E1	Award for correct use of dimensions 2.1 and 2.4 or equivalent 1 st term o.e. (allow use of 2.4 and 2.1) 2 nd term o.e. (allow use of 2.4 and 2.1) Shown [Perpendicular method: M1 Complete method: A1 Correct lengths and angles E1 Shown]	6
(v)	0.41138 0.05P = 0 P = 8.22768 so $8.23$ (3 s. f.)	M1 A1	Allow use of 5 Allow if cm used consistently	2
		18		

Q 4		mark		sub
(i)	$F_{\text{max}} = \mu R$ $R = 2g \cos 30$ so $F_{\text{max}} = 0.75 \times 2 \times 9.8 \times \cos 30 = 12.730$	M1 B1	Must have attempt at <i>R</i> with <i>mg</i> resolved	
	so 12.7 N (3 s. f.)	A1	[Award 2/3 retrospectively for limiting friction seen below]	
	either Weight cpt down plane is 2gsin 30 = 9.8 N so no as 9.8 < 12.7 or	B1 E1	The inequality must be properly justified	
	Slides if $\mu < \tan 30$ But 0.75 > 0.577 so no	B1 E1	The inequality must be properly justified	5
(ii) (A)	Increase in GPE is $2 \times 9.8 \times (6 + 4 \sin 30) = 156.8 \text{ J}$	M1 B1 A1	Use of <i>mgh</i> 6 + 4 sin 30	
(B)	WD against friction is $4 \times 0.75 \times 2 \times 9.8 \times \cos 30 = 50.9222$ J	M1 A1	Use of WD = $Fd$	3
(C)	Power is 10×(156.8 + 50.9222)/60 = 34.620 so 34.6 W (3 s. f.)	M1 A1	Use $P = WD/t$	
				2
(iii)	$0.5 \times 2 \times 9^2$	M1	Equating KE to GPE and WD term. Allow sign errors and one KE term omitted. Allow 'old' friction as well.	
	= $2 \times 9.8 \times (6 + x \sin 30)$ + $0.5 \times 2 \times 4^2$ -90 so $x = 3.8163$ so $3.82$ (3 s. f.)	B1 A1 A1 A1	Both KE terms. Allow wrong signs. All correct but allow sign errors All correct, including signs. cao	5
		17		

Mark Scheme 4763 January 2007

1 (i)	[Velocity] = $LT^{-1}$	B1	Deduct 1 mark if answers given
	[Acceleration] = $LT^{-2}$	B1	$ms^{-1}, ms^{-2}, kgms^{-2}$
	$[Force] = M L T^{-2}$	B1	ms, ms, kgms
		;	3
(ii)	$[G] = \frac{[F][r^{2}]}{[m_{1}][m_{2}]} = \frac{(M L T^{-2})(L^{2})}{M^{2}}$		
		M1	
	$= M^{-1} L^3 T^{-2}$	E1	
			2
(iii)	$G = 6.67 \times 10^{-11} \times 0.4536 \times \frac{1}{(0.3048)^3}$	M1M1	For $\times 0.4536$ and $\times \frac{1}{(0.3048)^3}$
			SC Give M1 for
			$6.67 \times 10^{-11} \times \frac{1}{0.4536} \times (0.3048)^3$
	$= 1.07 \times 10^{-9}  (\ lb^{-1} \ ft^3 \ s^{-2} \ )$	A1	0.4536 (= 4.16×10 ⁻¹² )
			$(=4.16 \times 10^{-12})$
(iv)	$[RHS] = \sqrt{\frac{(M^{-1} L^{3} T^{-2})(M)}{L}}$	M1A1	
	$=\sqrt{L^2 T^{-2}} = L T^{-1}$		
	which is the same as [ LHS ]	E1	
		;	3
(v)	$T = (M^{-1} L^3 T^{-2})^{\alpha} M^{\beta} L^{\gamma}$	M1	
	Powers of M: $-\alpha + \beta = 0$	M1	At least two equations
	of L: $3\alpha + \gamma = 0$	A1	Three correct equations
	of T: $-2\alpha = 1$	N44	Obtaining at least and of
	$\alpha = -\frac{1}{2},  \beta = -\frac{1}{2},  \gamma = \frac{3}{2}$	M1 A1	Obtaining at least one of $\alpha, \beta, \gamma$
			5
1		1	

2(a)(i)	At the highest point,	M1	Liping appolaration 2/1.0
2(a)(i)	_		Using acceleration $v^2/1.8$
	$T + 5 \times 9.8 = 5 \times \frac{v^2}{1.8}$	A1	T may be omitted
	For least speed, $T = 0$ , $v^2 = 1.8 \times 9.8$		
	Speed is at least $4.2 \text{ ms}^{-1}$	E1	
		3	
(ii)	For least tension, speed at top is $4.2 \text{ ms}^{-1}$		
	By conservation of energy,	M1	Energy equation with 3 terms
	$\frac{1}{2} \times 5 \times (w^2 - 4.2^2) = 5 \times 9.8 \times 3.6$	A1	
	$w^2 = 88.2  (w = 9.39)$		
	$T - 5 \times 9.8 = 5 \times \frac{88.2}{1.8}$	M1	Equation of motion with 3 terms
	1.0	A1 ft	
	Tension is at least 294 N	A1	
		5	
	$R\sin\theta = 0.02 \times 9.8$	B1	
(b)(i)		M1	Using acceleration $0.32 \times 8.75^2$
	$R\cos\theta = 0.02 \times 0.32 \times 8.75^2$	A1	SC If $\sin\theta$ and $\cos\theta$
	$\tan \theta = \frac{0.02 \times 9.8}{0.02 \times 0.32 \times 8.75^2} = 0.4$	E1	interchanged,
	$0.02 \times 0.32 \times 8.75^2$	4	award B0M1A1E0
(ii)			
(")	/		
	R /		
	R		
		B1	For <i>R</i> and <i>mg</i>
	5		
	FL/ Vmg	B1	For <i>F</i> acting down the slope
		2	
(iii)		M1	Resolving <i>F</i> and <i>R</i> [or <i>mg</i> and
	$R\sin\theta = 0.02 \times 9.8 + F\cos\theta$	A1	accn]
	$R\cos\theta + F\sin\theta = 0.02 \times 0.32\omega^2$	A1	Can give A1A1 for sin / cos interchanged consistent with (i)
	For maximum $\omega$ , $F = \mu R$	M1	
	$R(\sin\theta - \mu\cos\theta) = 0.02 \times 9.8$		Dependent on first M1
	$R(\cos\theta + \mu\sin\theta) = 0.02 \times 0.32 \omega^2$		
	$\omega^2 = \frac{9.8(\cos\theta + \mu\sin\theta)}{0.32(\sin\theta - \mu\cos\theta)} = \frac{9.8(1 + \mu\tan\theta)}{0.32(\tan\theta - \mu)}$		
	$=\frac{9.8(1+0.11\times0.4)}{0.32(0.4-0.11)}$	M1	
	$\omega = 10.5$		Obtaining a numerical value for
		A1 cao	$\omega^2$
		6	Dependent on M1M1

2 (1)		N/4	
3 (i)	$k \times 0.8 = 60 \times 9.8$	M1	
	Stiffness is $735 \text{ Nm}^{-1}$	A1	
		2	
(ii)	Loss of PE is $60 \times 9.8(32 + x)$	B1	If x is measured from
	Gain in EE is $\frac{1}{2} \times 735x^2$	B1	equilibrium position, treat as MR
	$\frac{1}{2} \times 735x^2 = 60 \times 9.8(32 + x)$	M1	
	$x^2 = 1.6(32 + x)$		
	$x^{2} - 1.6x - 51.2 = 0$ (x - 8)(x + 6.4) = 0	E1	
	x = 8 Length of rope is 40 m	M1 A1	Obtaining a value of <i>x</i>
		6	
(iii)	Tension $T = 735x$	B1	
	$mg - T = m\frac{\mathrm{d}^2 x}{\mathrm{d}t^2}$	M1	Equation of motion with 3 terms
	$60 \times 9.8 - 735x = 60 \frac{d^2x}{dt^2}$	A1	
	$\frac{d^2x}{dt^2} + 12.25x = 9.8$	E1 <b>4</b>	
(iv)	SHM with $\omega^2 = 12.25$ ( $\omega = 3.5$ )	M1	
	Time taken is $\frac{1}{4} \times \frac{2\pi}{\omega}$	M1	or $\omega t = \frac{1}{2}\pi$
	$=\frac{1}{7}\pi=0.449$ s	A1 <b>3</b>	
(v)	When $x = 8$ , $\frac{d^2x}{dt^2} = 9.8 - 12.25 \times 8$	M1	or $735 \times 8 - 60 \times 9.8 = 60a$
	=-88.2 Acceleration is $88.2 \text{ m s}^{-2}$ (upwards)	A1	
	This acceleration $(9g)$ is too large for comfort	B1 3	
		3	

4 (i)	Area is $\int_{1}^{a} \frac{1}{x^2} dx = \left[ -\frac{1}{x} \right]_{1}^{a}$	M1	
	$=1-\frac{1}{a}$	A1	
	$\int x y  dx = \int_{1}^{a} \frac{1}{x}  dx  (= \ln a)$	M1	
	$\overline{x} = \frac{\int x \ y \ dx}{\int y \ dx}$	M1	
	$=\frac{\ln a}{1-\frac{1}{a}}  (=\frac{a\ln a}{a-1})$	A1	
	$\int \frac{1}{2} y^2 dx = \int_1^a \frac{1}{2x^4} dx = \left[ -\frac{1}{6x^3} \right]_1^a$ $= \frac{1}{6} \left( 1 - \frac{1}{a^3} \right)$	M1	Condone omission of $\frac{1}{2}$
	$\overline{y} = \frac{\int \frac{1}{2} y^2 dx}{\int y dx}$ $= \frac{\frac{1}{6} \left(1 - \frac{1}{a^3}\right)}{1 - \frac{1}{a^3}} = \frac{a^3 - 1}{6(a^3 - a^2)}$	M1	( $\frac{1}{2}$ needed for this mark )
	$1 - \frac{1}{a}$ $6(a^3 - a^2)$	E1 8	
(ii)	When $a = 2$ , $\bar{x} = 2 \ln 2$ , $\bar{y} = \frac{7}{24}$		
	$\tan\theta = \frac{\overline{x} - 1}{1 - \overline{y}}$	M1	CM vertically below A
	$=\frac{2\ln 2 - 1}{1 - \frac{7}{24}}$	A1	Correct expression for $\tan \theta$ or $\tan(\theta) = 0$
	$\theta = 28.6^{\circ}$	A1 3	$\tan(90-\theta)$

(iii) Volume is $\int \pi y^2 dx = \pi \int_1^a \frac{1}{x^4} dx$	M1	$\pi$ may be omitted throughout
$= \pi \left[ -\frac{1}{3x^3} \right]_1^a = \frac{\pi}{3} \left( 1 - \frac{1}{a^3} \right)$	A1	
$\int \pi x y^2 dx = \pi \int_1^a \frac{1}{x^3} dx = \pi \left[ -\frac{1}{2x^2} \right]_1^a$	M1	
$=\frac{\pi}{2}\left(1-\frac{1}{a^2}\right)$		
$\overline{x} = \frac{\int \pi x y^2 dx}{\int \pi y^2 dx}$		
$=\frac{\frac{\pi}{2}\left(1-\frac{1}{a^2}\right)}{\frac{\pi}{3}\left(1-\frac{1}{a^3}\right)}=\frac{3(a^3-a)}{2(a^3-1)}$	M1	
J(u)	A1	Any correct form
Since $a > 1$ , $a^3 - a < a^3 - 1$ Hence $\bar{x} < 3^3$ i.e. $\bar{x} < 15$	M1	or = 15 or = 15
<b>Hence</b> $\bar{x} < \frac{3}{2}$ , i.e. $\bar{x} < 1.5$	E1	or $\overline{x} \rightarrow 1.5$ as $a \rightarrow \infty$ Fully convincing argument
	7	

Mark Scheme 4766 January 2007

## **GENERAL INSTRUCTIONS**

Marks in the mark scheme are explicitly designated as M, A, B, E or G.

**M** marks ("method") are for an attempt to use a correct method (not merely for stating the method).

**A** marks ("accuracy") are for accurate answers and can only be earned if corresponding **M** mark(s) have been earned. Candidates are expected to give answers to a sensible level of accuracy in the context of the problem in hand. The level of accuracy quoted in the mark scheme will sometimes deliberately be greater than is required, when this facilitates marking.

**B** marks are independent of all others. They are usually awarded for a single correct answer.

**E** marks ("explanation") are for explanation and/or interpretation. These will frequently be sub divisible depending on the thoroughness of the candidate's answer.

**G** marks ("graph") are for completing a graph or diagram correctly.

- Insert part marks in **right-hand** margin in line with the mark scheme. For fully correct parts tick the answer. For partially complete parts indicate clearly in the body of the script where the marks have been gained or lost, in line with the mark scheme.
- Please indicate incorrect working by ringing or underlining as appropriate.
- Insert total in **right-hand** margin, ringed, at end of question, in line with the mark scheme.
- Numerical answers which are not exact should be given to at least the accuracy shown. Approximate answers to a greater accuracy *may* be condoned.
- Probabilities should be given as fractions, decimals or percentages.
- FOLLOW-THROUGH MARKING SHOULD NORMALLY BE USED WHEREVER POSSIBLE. There will, however, be an occasional designation of 'c.a.o.' for "correct answer only".
- Full credit MUST be given when correct alternative methods of solution are used. If errors occur in such methods, the marks awarded should correspond as nearly as possible to equivalent work using the method in the mark scheme.
- The following notation should be used where applicable:

FT	Follow-through marking
BOD	Benefit of doubt
ISW	Ignore subsequent working

## Mark Scheme

Q	Mean = 1	27.6/13 =	9.8			M1 for 127.6/13 soi	
1	Modion -	0.6				A1 CAO B1 CAO	
• (i)	Median = Midrange					B1 CAO B1 CAO	4
(י)	wiiurange	- 14.5				BICAO	-
(ii)	Mean slig	htly inflate	d due to th	ne outlier		B1	
.,				ected by the		B1	
	Midrange	poor as it	is highly ir	nflated due	to the outlier	B1	2
						TOTAL	3
-						IOTAL	1
Q	16					G1 labelled linear	
2	14	_			-	scales on both axes	
(i)	10 8				-	G1 heights	
	4				-	_	
	2	<b>_</b>					2
	0	1 2	3 4 Number of absentees	5 6			_
(ii)	N/a =	99					
	Mean =	$\frac{-1}{50} = 1.98$	5			B1 for mean	
						M4 for attained at 0	
	$S_{xx} = 31$	$5 - \frac{35}{50}$	(= 118.98)			M1 for attempt at $S_{xx}$	
	. [	118.98					
	rmsd = √	$\frac{1}{50} = 7$	1.54			A1 CAO	3
	· ·			rom recomm	ended method which		
	is use of ca	alculator fu	nctions				
(iii)	New mea	n = 30 – 1	.98 = 28.0	2		B1 FT their mean	
	New rmsd	d = 1.54 (u	inchanged	)		B1 FT their rmsd	2
						TOTAL	7
Q	time	freq	width	f dens			
	0-	34	5	6.8		M1 for fds	
3	5-	153	5	30.6		A1 CAO	
(i)	10-	188	10	18.8			
	20- 30-	73 27	10 10	7.3 2.7		Accept any suitable unit	
	40-	5	20	0.25		for fd such as eg freq per 5 mins.	
		C		0.20		per 5 mins.	
	frequency de	ensity					
	30					G1 linear scales on	
	20					both axes and label	
						G1 width of bars	
	10					G1 height of bars	5
				time			J
(::)		20	30 40	50 60			
(ii)	Positive s	kewness				B1 CAO (indep)	1
						TOTAL	6

Q	r	1	2	3	4	5	6	]	B1 for 3k, 5k, 7k, 9k	
<b>4</b> (i)	P( <i>X</i> = <i>r</i> )	k	3k	5k	7 <i>k</i>	9k	11 <i>k</i>		M1 for sum of six	
	36 <i>k</i> = 1 , s	o k = -	$\frac{1}{36}$						multiples of <i>k</i> = 1 A1 CAO <b>MUST BE</b> <b>FRACTION IN</b> <b>SIMPLEST FORM</b>	3
(ii)	E( <i>X</i> ) =								M1 for $\Sigma$ <i>rp</i>	
	$1 \times \frac{1}{36} + 2 \approx$	$\times \frac{3}{-+3}$	$3 \times \frac{5}{-+}$	$4 \times \frac{7}{}$	$+5 \times -9$	$-+6\times$	$\frac{11}{} = \frac{16}{}$	$\frac{51}{-} = 4.47$	A1 CAO	
	36	36	36	36	30	6	36 3	6		2
(iii)		. (1	$)^3$						M1 for 6 ×	
	P(X=16) =	$6 \times \left(\frac{1}{6}\right)$	/						M1 indep for $\left(\frac{1}{6}\right)^3$	
			=	$\frac{6}{216} = \frac{1}{2}$	$\frac{1}{2}$					3
				216	36				A1 CAO	
									TOTAL	8
Q 5(i)	P(jacket a	nd tie)	= 0.4 ×	0.3 = 0	0.12				M1 for multiplying A1 CAO	2
(ii)			.28		12) 0.0 52	Tie 08			G1 for two intersecting circles labelled G1 for 0.12 and either 0.28 or 0.08 G1 for remaining probabilities <u>Note</u> FT their 0.12 provided < 0.2	3
(iii)		jacket (	or tie) =	= 0.4	4 + 0.2	- 0.12	= 0.48		B1 FT	
	OR (B) P(no j OR OR	acket c	or no tie	) = 0.52 C	= 0.28 + 2 + 0.28 0.6 + 0.8 1 – 0.12	3 + 0.08 8 – 0.5	8 = 0.88 2 = 0.88	3	B2 FT <u>Note</u> FT their 0.12 provided < 0.2 <b>TOTAL</b>	3

Q	Median = 3370	B1	
6 (i)	$Q_1 = 3050$ $Q_3 = 3700$ Inter-quartile range = 3700 - 3050 = 650	B1 for $Q_3$ or $Q_1$ B1 for IQR	3
(ii)	Lower limit $3050 - 1.5 \times 650 = 2075$ Upper limit $3700 + 1.5 \times 650 = 4675$ Approx 40 babies below 2075 and 5 above 4675 so total 45	B1 B1 M1 (for either) A1	4
(iii)	Decision based on convincing argument: eg 'no, because there is nothing to suggest that they are not genuine data items and these data may influence health care provision'	E2 for convincing argument	2
(iv)	All babies below 2600 grams in weight	B2 CAO	2
(v)	(A) $X \sim B(17, 0.12)$ $P(X = 2) = {\binom{17}{2}} \times 0.12^2 \times 0.88^{15} = 0.2878$ (B) $P(X > 2)$ $= 1 - (0.2878 + {\binom{17}{1}} \times 0.12 \times 0.88^{16} + 0.88^{17})$ = 1 - (0.2878 + 0.2638 + 0.1138) = 0.335	M1 $\binom{17}{2} \times p^2 \times q^{15}$ M1 indep $0.12^2 \times 0.88^{15}$ A1 CAO M1 for P(X=1)+ P(X=0) M1 for 1 - P(X \le 2) A1 CAO	3
(vi)	Expected number of occasions is 33.5	B1 FT	1
		TOTAL	18

$ \begin{array}{ c c c c c } \hline \mathbf{Q} & (A) & P(both) = \left(\frac{2}{3}\right)^2 = \frac{4}{9} & \text{B1 CAO} \\ \hline \mathbf{R} & P(one) = 2 \times \frac{2}{3} \times \frac{1}{3} = \frac{4}{9} & \text{B1 CAO} \\ \hline (B) & P(one) = 2 \times \frac{2}{3} \times \frac{1}{3} = \frac{4}{9} & \text{B1 CAO} \\ \hline (C) & P(neither) = \left(\frac{1}{3}\right)^2 = \frac{1}{9} & \text{B1 CAO} \\ \hline (C) & P(neither) = \left(\frac{1}{3}\right)^2 = \frac{1}{9} & \text{B1 CAO} \\ \hline (II) & Independence necessary because otherwise, the probability of one seed germinating would change according to whether or not the other one germinates. \\ May not be valid as the two seeds would have similar growing conditions og temperature, moisture, etc. \\ NB Allow valid alternatives \\ \hline (III) & Expected number = 2 \times \frac{2}{3} = \frac{4}{3} (= 1.33) & \text{B1 FT} \\ \hline E(X^2) = 0 \times \frac{1}{9} + 1 \times \frac{4}{9} + 4 \times \frac{4}{9} = \frac{20}{9} & \text{M1 for } E(X^2) \\ Var(X) &= \frac{20}{9} - \left(\frac{4}{3}\right)^2 = \frac{4}{9} = 0.444 & \text{A1 CAO} \\ \hline (IV) & Expect 200 \times \frac{8}{9} = 177.8 \text{ plants} & \text{M1 for } 200 \times \frac{8}{9} \\ So expect 0.85 \times 177.8 = 151 \text{ onions} & \text{M1 dep for $\times$ 0.85 $A1 CAO} \\ \hline (V) & Let X - B(18, p) \\ Let p = probability of germination (for population) \\ H_0: p = 0.90 \\ H_1: p < 0.90 \\ H_1: p < 0.92 > 5\% \\ So not enough evidence to reject H_0 \\ Conclude that there is not enough evidence to indicate that the germination rate is below 90\%. \\ \hline \end{array}$		2		
(B) $P(one) = 2 \times \frac{2}{3} \times \frac{1}{3} = \frac{4}{9}$ B1 CAO(C) $P(neither) = \left(\frac{1}{3}\right)^2 = \frac{1}{9}$ B1 CAO(ii)Independence necessary because otherwise, the probability of one seed germinating would change according to whether or not the other one germinates. May not be valid as the two seeds would have similar growing conditions eg temperature, moisture, etc. NB Allow valid alternativesE1(iii)Expected number = $2 \times \frac{2}{3} = \frac{4}{3}$ (= 1.33)B1 FT $E(X^2) = 0 \times \frac{1}{9} + 1 \times \frac{4}{9} + 4 \times \frac{4}{9} = \frac{20}{9}$ M1 for $E(X^2)$ $Var(X) = \frac{20}{9} - \left(\frac{4}{3}\right)^2 = \frac{4}{9} = 0.444$ A1 CAO3NB use of nog scores M1 for product, A1CAOM1 for $200 \times \frac{8}{9}$ 3(iv)Expect $200 \times \frac{8}{9} = 177.8$ plantsM1 dep for $\times 0.85$ 3So expect $0.85 \times 177.8 = 151$ onionsM1 dep for $\times 0.85$ 3(v)Let $X \sim B(18, p)$ Let $p$ = probability of germination (for population) H ₁ : $p < 0.90$ B1 for definition of $p$ B1 for H ₁ 7 $P(X \le 14) = 0.0982 > 5\%$ So not enough evidence to reject H ₀ Conclude that there is not enough evidence to indicate that the germination rate is below 90%.M1 for probability M1 dep for comparison A1 E1 for conclusion in		(A) P(both) = $\left(\frac{2}{3}\right)^2 = \frac{4}{9}$	B1 CAO	
Drivide(C) $P(neither) = \left(\frac{1}{3}\right)^2 = \frac{1}{9}$ 3(ii)Independence necessary because otherwise, the probability of one seed gerninating would change according to whether or not the other one gerninates. May not be valid as the two seeds would have similar growing conditions eg temperature, moisture, etc. NB Allow valid alternativesE1(iii)Expected number = $2 \times \frac{2}{3} = \frac{4}{3}$ (= 1.33)B1 FT $E(X^2) = 0 \times \frac{1}{9} + 1 \times \frac{4}{9} + 4 \times \frac{4}{9} = \frac{20}{9}$ M1 for $E(X^2)$ $Var(X) = \frac{20}{9} - \left(\frac{4}{3}\right)^2 = \frac{4}{9} = 0.444$ A1 CAO3NB use of nog scores M1 for product, A1CAOM1 for $200 \times \frac{8}{9}$ 3(iv)Expect $200 \times \frac{8}{9} = 177.8$ plantsM1 dep for $\times 0.85$ 3So expect $0.85 \times 177.8 = 151$ onionsM1 dep for $\times 0.85$ 3(v)Let $X \sim B(18, p)$ Let $p =$ probability of germination (for population) H_1: $p < 0.90$ B1 for definition of $p$ B1 for H_17 $P(X \le 14) = 0.0982 > 5\%$ So not enough evidence to reject H_0 Conclude that there is not enough evidence to indicate that the germination rate is below 90%.M1 for probability M1 dep for comparison A1 E1 for conclusion in	(i)	(B) P(one) = $2 \times \frac{2}{2} \times \frac{1}{2} = \frac{4}{2}$		
(i) Independence necessary because otherwise, the probability of one seed germinating would change according to whether or not the other one germinates. May not be valid as the two seeds would have similar growing conditions eg temperature, moisture, etc. NB Allow valid alternativesE12(iii)Expected number = $2 \times \frac{2}{3} = \frac{4}{3}$ (= 1.33)B1 FT $E(X^2) = 0 \times \frac{1}{9} + 1 \times \frac{4}{9} + 4 \times \frac{4}{9} = \frac{20}{9}$ M1 for $E(X^2)$ $Var(X) = \frac{20}{9} - (\frac{4}{3})^2 = \frac{4}{9} = 0.444$ A1 CAONB use of npg scores M1 for product, A1CAOM1 for $200 \times \frac{8}{9}$ (iv)Expect 200 $\times \frac{8}{9} = 177.8$ plantsM1 dep for $\times 0.85$ A1 CAO(v)Let $X \sim B(18, p)$ Let $p$ = probability of germination (for population) H ₀ : $p = 0.90$ B1 for definition of $p$ B1 for H ₀ B1 for H ₀ (v)Let $X \sim B(18, p)$ Let $p = 0.0982 > 5\%$ So not enough evidence to reject H ₀ Conclude that there is not enough evidence to indicate that the germination rate is below 90%.M1 for probability M1 dep for comparison A1 E1 for conclusion in		3 3 9	B1 CAO	
1of one seed germinating would change according to whether or not the other one germinates. May not be valid as the two seeds would have similar growing conditions eg temperature, moisture, etc. $NB Allow valid alternatives$ E12(iii)Expected number = $2 \times \frac{2}{3} = \frac{4}{3}$ (= 1.33)B1 FTE12 $E(X^2) = 0 \times \frac{1}{9} + 1 \times \frac{4}{9} + 4 \times \frac{4}{9} = \frac{20}{9}$ M1 for $E(X^2)$ A1 CAO3 $Var(X) = \frac{20}{9} - (\frac{4}{3})^2 = \frac{4}{9} = 0.444$ A1 CAO3 <i>NB use of npg scores M1 for product, A1CAO</i> M1 for $200 \times \frac{8}{9}$ 3(iv)Expect $200 \times \frac{8}{9} = 177.8$ plantsM1 dep for $\times 0.85$ 3So expect $0.85 \times 177.8 = 151$ onionsM1 dep for $\times 0.85$ 3(v)Let $X \sim B(18, p)$ Let $p = probability of germination (for population)H_0: p = 0.90B1 for definition of pB1 for H_0B1 for H_17P(X \le 14) = 0.0982 > 5\%So not enough evidence to reject H_0Conclude that there is not enough evidence to indicate thatthe germination rate is below 90%.M1 for probabilityM1 dep for comparisonA1E1 for conclusion in$		(C) P(neither) = $\left(\frac{1}{3}\right)^2 = \frac{1}{9}$		3
May not be valid as the two seeds would have similar growing conditions eg temperature, moisture, etc. NB Allow valid alternativesE12(iii)Expected number $= 2 \times \frac{2}{3} = \frac{4}{3}$ (= 1.33)B1 FT $E(X^2) = 0 \times \frac{1}{9} + 1 \times \frac{4}{9} + 4 \times \frac{4}{9} = \frac{20}{9}$ M1 for $E(X^2)$ $Var(X) = \frac{20}{9} - (\frac{4}{3})^2 = \frac{4}{9} = 0.444$ A1 CAONB use of npg scores M1 for product, A1CAOM1 for $200 \times \frac{8}{9}$ (iv)Expect $200 \times \frac{8}{9} = 177.8$ plantsM1 for $200 \times \frac{8}{9}$ So expect $0.85 \times 177.8 = 151$ onionsM1 dep for $\times 0.85$ 3(v)Let $X \sim B(18, p)$ Let $p =$ probability of germination (for population) $H_0: p = 0.90$ B1 for definition of $p$ B1 for $H_0$ B1 for $H_1$ To probability M1 dep for comparison A1 E1 for conclude that there is not enough evidence to indicate that the germination rate is below 90%.M1 for probability M1 dep for comparison in	(ii)	of one seed germinating would change according to whether	E1	
Image: Constraint of the probability of germination (for population)M1 for E(X²)M1 for E(X²)Image: Constraint of the probability of germination (for population)M1 for 200 × $\frac{8}{9}$ M1 for 200 × $\frac{8}{9}$ M1 for 200 × $\frac{8}{9}$ Image: Constraint of the probability of germination (for population)M1 for 200 × $\frac{8}{9}$ M1 for definition of $p$ M1 for H0M1 for $M_1$ M1 for probability of germination (for population)M1 for probability M1 for probabilityM1 for probabilityM1 for probability of germination (for population)M1 for probability M1 for probabilityM1 for probabilityM1 for probability of germination (for population)M1 for probabilityM1 for probabilityM1 for probability of germination (for population)M1 for probabilityM1 for probabilityM1 for probability of germination (for population)M1 for probabilityM1 for proclusion inM1 for probabilityM1 for probability<		May not be valid as the two seeds would have similar growing conditions eg temperature, moisture, etc.	E1	2
E(X ⁴ ) = $0 \times \frac{1}{9} + 1 \times \frac{1}{9} + 4 \times \frac{1}{9} = \frac{1}{9}$ A1 CAO3Var(X) = $\frac{20}{9} - \left(\frac{4}{3}\right)^2 = \frac{4}{9} = 0.444$ A1 CAO3(iv)Expect $200 \times \frac{8}{9} = 177.8$ plantsM1 for $200 \times \frac{8}{9}$ 3(iv)Expect $200 \times \frac{8}{9} = 177.8$ plantsM1 dep for $\times 0.85$ 3(v)Let $X \sim B(18, p)$ Let $p$ = probability of germination (for population) $H_0$ : $p = 0.90$ B1 for definition of $p$ B1 for $H_1$ B1 for definition of $p$ B1 for $H_1$ 7P(X $\le 14) = 0.0982 > 5\%$ So not enough evidence to reject $H_0$ Conclude that there is not enough evidence to indicate that the germination rate is below 90%.M1 for probability M1 dep for comparison A1 E1 for conclusion in7	(iii)	Expected number = $2 \times \frac{2}{3} = \frac{4}{3}$ (= 1.33)	B1 FT	
NB use of npq scores M1 for product, A1CAOM1 for $200 \times \frac{8}{9} = 177.8$ plantsM1 for $200 \times \frac{8}{9}$ (iv)Expect $200 \times \frac{8}{9} = 177.8$ plantsM1 for $200 \times \frac{8}{9}$ 3So expect $0.85 \times 177.8 = 151$ onionsM1 dep for $\times 0.85$ 3(v)Let $X \sim B(18, p)$ Let $p$ = probability of germination (for population) H ₀ : $p = 0.90$ H ₁ : $p < 0.90$ B1 for definition of $p$ B1 for H ₀ B1 for H ₁ 7P(X $\leq 14$ ) = $0.0982 > 5\%$ So not enough evidence to reject H ₀ Conclude that there is not enough evidence to indicate that the germination rate is below 90%.M1 for probability M1 dep for comparison A1 E1 for conclusion in7		$E(X^2) = 0 \times \frac{1}{9} + 1 \times \frac{4}{9} + 4 \times \frac{4}{9} = \frac{20}{9}$	M1 for $E(X^2)$	
(iv)Expect $200 \times \frac{8}{9} = 177.8$ plantsM1 for $200 \times \frac{8}{9}$ 3So expect $0.85 \times 177.8 = 151$ onionsM1 dep for $\times 0.85$ 3(v)Let $X \sim B(18, p)$ Let $p$ = probability of germination (for population) H ₀ : $p = 0.90$ H ₁ : $p < 0.90$ B1 for definition of $p$ B1 for H ₀ B1 for H ₁ 3P(X \le 14) = 0.0982 > 5% So not enough evidence to reject H ₀ Conclude that there is not enough evidence to indicate that the germination rate is below 90%.M1 for probability M1 for conclusion in7		Var(X) = $\frac{20}{9} - \left(\frac{4}{3}\right)^2 = \frac{4}{9} = 0.444$	A1 CAO	3
So expect $0.85 \times 177.8 = 151$ onionsM1 dep for $\times 0.85$ A1 CAO3(v)Let $X \sim B(18, p)$ Let $p = probability of germination (for population)H_0: p = 0.90H_1: p < 0.90B1 for definition of pB1 for H_0B1 for H_17P(X \leq 14) = 0.0982 > 5\%So not enough evidence to reject H_0Conclude that there is not enough evidence to indicate thatthe germination rate is below 90%.M1 for probabilityM1 dep for comparisonA1E1 for conclusion in7$		NB use of npq scores M1 for product, A1CAO		
(v)Let $X \sim B(18, p)$ Let $p$ = probability of germination (for population) $H_0$ : $p = 0.90$ $H_1$ : $p < 0.90$ B1 for definition of $p$ B1 for $H_0$ B1 for $H_1$ 7P(X \le 14) = 0.0982 > 5% So not enough evidence to reject $H_0$ Conclude that there is not enough evidence to indicate that the germination rate is below 90%.M1 for probability M1 dep for comparison A1 E1 for conclusion in7	(iv)	Expect $200 \times \frac{8}{9} = 177.8$ plants	M1 for 200 $\times \frac{8}{9}$	
Let $X \sim B(18, p)$ Let $p$ = probability of germination (for population) $H_0: p = 0.90$ $H_1: p < 0.90$ B1 for definition of $p$ B1 for $H_0$ B1 for $H_1$ 7 $P(X \le 14) = 0.0982 > 5\%$ So not enough evidence to reject $H_0$ Conclude that there is not enough evidence to indicate that the germination rate is below 90%.M1 for probability M1 dep for comparison A1 E1 for conclusion in7		So expect 0.85 × 177.8 = 151 onions	-	3
So not enough evidence to reject H0M1 for probability7Conclude that there is not enough evidence to indicate that the germination rate is below 90%.M1 for probability7E1 for conclusion inM2	(v)	Let $p$ = probability of germination (for population) H ₀ : $p$ = 0.90	B1 for H ₀	
		So not enough evidence to reject $H_0$ Conclude that there is not enough evidence to indicate that	M1 dep for comparison A1 E1 for conclusion in	7
Note: use of critical region method scores M1 for region {0,1,2,, 13} M1 for 14 does not lie in critical region then A1 E1 as per scheme		M1 for region {0,1,2,, 13}		
TOTAL 18			TOTAL	18

Mark Scheme 4767 January 2007

## 4767

# Question 1

<i>(</i> i)			
(i)	$\bar{t} = 112.8, \ \bar{v} = 0.6$	B1 for $\bar{t}$ and $\bar{v}$ used (SOI)	
	$b = \frac{Svt}{Svv} = \frac{405.2 - 3 \times 564/5}{2.20 - 3^2/5} = \frac{66.8}{0.4} = 167$ OR $b = \frac{405.2/5 - 0.6 \times 112.8}{2.20/5 - 0.6^2} = \frac{13.36}{0.08} = 167$	M1 for attempt at gradient ( <i>b</i> ) A1 for 167 CAO	
	$2.20/5 - 0.6^2$ 0.08	M1 for equation of line	
	hence least squares regression line is: $t - \bar{t} = b(v - \bar{v})$	A1 FT	
	$\Rightarrow t - 112.8 = 167(v - 0.6)$ $\Rightarrow t = 167v + 12.6$		5
(ii)	(A) For 0.5 litres, predicted time = = $167 \times 0.5 + 12.6 = 96.1$ seconds	M1 for at least one prediction attempted	
	( <i>B</i> ) For 1.5 litres, predicted time = = 167 ×1.5 + 12.6 = 263.1 seconds	A1 for both answers (FT their equation if <i>b</i> >0) NB for reading predictions off	
	Any valid relevant comment relating to each prediction such as eg: 'First prediction is fairly reliable as it is interpolation	the graph only award A1 if accurate to nearest whole number	
	and the data is a good fit' 'Second prediction is less certain as it is an extrapolation'	E1 (first prediction) E1 (second prediction)	4
(iii)	The <i>v</i> -coefficient is the number of additional seconds required for each extra litre of water	E1 for indication of rate wrt <i>v</i> E1 <i>dep</i> for specifying ito	
		units	2
(iv)	$v = 0.8 \Rightarrow$ predicted $t = 167 \times 0.8 + 12.6 = 146.2$	M1 for either prediction M1 for either subtraction	
	Residual = $156 - 146.2 = 9.8$	A1 CAO for absolute value	
	$v = 1.0 \Rightarrow$	of both residuals B1 for both signs correct.	
	predicted $t = 167 \times 1.0 + 12.6 = 179.6$ Residual = 172 - 179.6 = -7.6		4
(v)	The residuals can be measured by finding the vertical distance between the plotted point and the regression line. The sign will be negative if the point is below	E1 for distance E1 for vertical E1 for sign	
	the regression line (and positive if above).	-	3
			18

Que	stion 2		
(a)	<i>X</i> ~ N(28,16)		
(i)	$P(24 < X < 33) = P\left(\frac{24 - 28}{4} < Z < \frac{33 - 28}{4}\right)$	M1 for standardizing	
	= P(-1 < Z < 1.25)	A1 for 1. 25 and -1	
	$= \Phi(1.25) - (1 - \Phi(1))$ = 0.8944 - (1 - 0.8413) = 0.8944 - 0.1587	M1 for prob. with tables and correct structure A1 CAO (min 3 s.f., to include use of difference	
	= 0.7357 (4 s.f.) <i>or</i> 0.736 (to 3 s.f.)	column)	4
(ii)	25000 ×0.7357 ×0.1 = £1839	M1 for either product, (with	
	25000 ×0.1587 ×0.05 = £198	or without price) M1 for sum of both	
	Total = £1839 + £198 = £2037	products with price A1 CAO awrt £2040	3
	<i>X</i> ~ N( <i>k</i> , 16)	D1 for 11 C1E coop	
(iii)	From tables $\Phi^{-1}(0.95) = 1.645$	B1 for ±1.645 seen	
	$\frac{33-k}{4} = 1.645$	M1 for correct equation in <i>k</i> with positive z-value	
	$33 - k = 1.645 \times 4$		
	<i>k</i> = 33 – 6.58	A1 CAO	
	<i>k</i> = 26.42 (4 s.f.) <i>or</i> 26.4 (to 3 s.f.)		3
(b)		B1 for both correct & ito $\mu$	
(i)	H ₀ : $\mu$ = 0.155; H ₁ : $\mu$ > 0.155 Where $\mu$ denotes the mean weight in kilograms of the population of onions of the new variety	B1 for definition of $\mu$	2
(ii)	Mean weight = 4.77/25 = 0.1908	B1	
(,	0.1908 - 0.155 - 0.0358	M1 must include √25	
	Test statistic = $\frac{0.0000}{\sqrt{0.005}/\sqrt{25}} = \frac{0.0000}{0.01414}$ = 2.531	A1FT	
	1% level 1-tailed critical value of $z = 2.326$ 2.531 > 2.236 so significant. There is sufficient evidence to reject H ₀	B1 for 2.326 M1 For sensible comparison leading to a conclusion	
	It is reasonable to conclude that the new variety has a higher mean weight.	A1 for correct, consistent conclusion in words and in context	6
			18

#### Mark Scheme

# 4767

	$\sum rf = 0 + 20 + 12 + 2 = 25$	B1 for mean	
(i)	Mean = $\frac{\Sigma x f}{n} = \frac{0 + 20 + 12 + 3}{80} = \frac{35}{80}$ (= 0.4375)	NB answer given	1
	Variance = $0.6907^2 = 0.4771$	B1 for variance	
(ii)	So Poisson distribution may be appropriate, since mean is close to variance	E1dep on squaring s	2
(iii)	$P(X = 1) = e^{-0.4375} \frac{0.4375^{1}}{1!}$ = 0.282 (3 s.f.)	M1 for probability calc. M0 for tables unless interpolated (0.2813) A1	
	<i>Either:</i> Thus the expected number of 1's is 22.6 which is reasonably close to the observed value of 20. <i>Or</i> : This probability compares reasonably well with the relative frequency 0.25	B1 for expectation of 22.6 or r.f. of 0.25 E1 for comparison	4
(iv)	<i>λ</i> = 8×0.4375 = 3.5	B1 for mean (SOI)	
	Using tables: $P(X \ge 12) = 1 - P(X \le 11)$	M1 for using tables to find 1	
	= 1 – 0.9997 = 0.0003	$-P(X \le 11)$ A1 FT	
			3
(v)	The probability of at least 12 free repairs is very low, so the model is not appropriate. This is probably because the mean number of free repairs in the launderette will be much higher since the machines will get much more use than usual.	E1 for 'at least 12' E1 for very low E1	3
(vi)	(A) $\lambda = 0.4375 + 0.15 = 0.5875$	B1 for mean (SOI)	•
	$P(X = 3) = e^{-0.5875} \frac{0.5875^3}{3!}$ = 0.0188 (3 s.f.)	M1 A1	3
	(B) P(Drier needs 1) = $e^{-0.15} \frac{0.15^1}{1!} = 0.129$	B1 for 0.129 (SOI)	
	$P(Each needs just 1) = 0.282 \times 0.129$	B1FT for 0.036	
	= 0.036		2
			18

## Question 4

Que (i)	estion 4	ociation betw	leen am	hition and	home	B1 in context	1
(1)	location;						1
	H ₁ : some association between ambition and home						
location;							
			Home	location			
	Ob	served					
	City Non-city						
	Ambition		102	147			
		Other	75	156		M1 A1 for attempt at	
			Home	location	1	expected values	
	Ex	pected	City	Non-city	-		
		Good results	91.82	157.18			
	Ambition		85.18	145.82		M1 for valid attempt at (O	
		Other	05.10	145.62		M1 for valid attempt at (O- E) ² /E	
		ution to the	Home	location			
	test	statistic	City	Non-city			
	A	Good results	1.129	0.659			
	Ambition	Other	1.217	0.711			
		- Culoi			1	A1CAO for $X^2$	
							4
	$x^2 - 0.740$					B1 for 1 dof SOI B1 CAO for cv	
	X = 3/10		B1 dep on attempt at cv				
		e at 5% level =	5% level = 3.84 l		E1 conclusion in context		
	Result is not significant There is insufficient evidence to conclude that there is						
		ion between h					4
	•	versed, or 'corre					
(::)		or final B1 or fir ountry, Results		F6 / 490 - 1	00.02	D1	
(ii) (A)		ountry, Results				B1 B1	•
()		, <u> </u>					2
( <i>B</i> )	Refer to $\chi_2^2$	$\sim at E^{0}$ lovel -	E 001			B1 for 2 dof SOI	
	Result is sig	e at 5% level = nificant	5.991			B1 CAO for cv E1 for conclusion in	
	There is o	evidence to				context	
		between home					3
(C)		dents are muc (Results' as t				E1 for correct obs ⁿ for	
		show that city			-	'Country' E1 for additional correct	
		fer markedly in			-	observation (must refer	2
()	Conclusion	n (i) in volid if i	anly actor	orizina har	20	to contributions)	
(iii)		n (i) is valid if on city and non-c		-			
	subdivided ir	nto town and c	ountry this	s additional	•	E1	
		gives the data	•		llows		2
		hip in part (ii) (		evedieu.			2
							18
L	I					1	I

Mark Scheme 4768 January 2007

Q1 $f(x) = k(1-x)$ $0 \le x \le 1$ M1Integral of f(x), including limits (possibly implied later), equated to 1.(i) $\int_{x}^{1} k(1-x)dx = 1$ $\therefore k(1-\frac{1}{2}) - 0 = 1$ $\therefore k = 2$ M1Integral of f(x), including limits (possibly implied later), equated to 1.(ii) $F(x) = \int_{x}^{1} 2x(1-x)dx$ $= [x^2 - \frac{1}{2}x^{-1}]_{x}^{1} = (1-\frac{1}{2}) - 0 = \frac{1}{2}$ M1Integral for E(X) including limits (which may appear later).(iii) $F(x) = \int_{x}^{1} 2x^{-1}(1-x)dx$ $= [\frac{1}{2}x^{-2}, \frac{1}{2}]_{x}^{-1}(1-x)dx$ M1Integral for E(X^2) including limits (which may appear later).(iii) $F(x) = \int_{x}^{0} 2(1-x)dx$ $= \frac{1}{2}x^{-1}(1-\frac{1}{2}) - 0 = \frac{1}{4}$ M1Integral for E(X^2) including limits (which may appear later).(iii) $F(x) = \int_{x}^{0} 2(1-x)dx$ $= \frac{1}{4}$ M1Definition of cdf, including limits, method must be seen. [for $0 \le x \le 1$ ; do not insist on this.] For $1 - c's F(d)$ .(iiii) $F(x) = \int_{x}^{0} 2(1-x)^{2} - 0 = 2x - x^{2}$ M1Definition of cdf, including limits, method must be seen. [for $0 \le x \le 1$ ; do not insist on this.] For $1 - c's F(d)$ .M1(iv) $F(1-\frac{1}{42}) = 2(1-\frac{1}{42}) - 1 = -F(\frac{1}{2})$ $= 1 - \frac{1}{42} - \frac{1}{4} = \frac{1}{2}$ M1(iv) $F(1-\frac{1}{42}) = 2(1-\frac{1}{42}) - \frac{1}{4} = \frac{1}{42}$ $= 30$ M1(v) $\overline{x} - N(\frac{1}{3}, \frac{1}{100})$ B1(v) $\overline{x} - N(\frac{1}{3}, \frac{1}{100})$ B1 <tr <="" th=""><th>1</th><th></th><th>1</th><th></th><th></th></tr> <tr><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>Q1</td><td>$f(x) = k(1-x) \qquad 0 \le x \le 1$</td><td></td><td></td><td></td></tr> <tr><td>$k(1-\frac{1}{2})=0=1$$k=2$E1Convincingly shown. Beware printed answer.4(ii)$E(X) = \int_{a}^{1} 2x(1-x)dx$ $= [x^2 - \frac{2}{3}x^3]_{a}^{b} = (1-\frac{2}{3})=0=\frac{1}{3}$M1Intercepts labelled.4(iii)$E(X) = \int_{a}^{1} 2x^2(1-x)dx$ $= [\frac{2}{3}x^2 - \frac{2}{3}x^4]_{a}^{b} = (\frac{2}{3} - \frac{1}{2})=0=\frac{1}{3}$M1Integral for $E(X)$ including limits (which may appear later).4(iii)$E(X) = \int_{a}^{1} 2x^2(1-x)dx$ $= \frac{1}{3} = (\frac{2}{3} - \frac{1}{2})=0=\frac{1}{6}$M1Integral for $E(X^2)$ including limits (which may appear later).(iii)$F(x) = \int_{a}^{b} 2x^2(1-x)dx$ $= \frac{1}{38}$M1Convincingly shown. Beware printed answer.5(iii)$F(x) = \int_{a}^{b} 2(1-t)dt$ $= 1-(2x \frac{1}{3} - (2x - x^2) - 0 - 2x - x^2)$ $= 1-(2x \frac{1}{3} - (2x - x^2) - 0 - 2x - x^2)$M1Definition of cdf, including limits, possibly implied later. Some valid method must be seen. (for $0 \le x \le 1$; do not insist on this.] For $1 - cs = F(\mu)$.4(iv)$F(1-\frac{1}{32})=2(1-\frac{1}{32})-(1-\frac{1}{32})=\frac{1}{2}$M1Substitute $m = 1-\frac{1}{32}$ in $C's$ cdf. Convincingly shown. Beware printed answer.2(iv)$F(1-\frac{1}{32})=2(1-\frac{1}{32})-(1-\frac{1}{32})=\frac{1}{2}=\frac{1}{2}$M1Substitute $m = 1-\frac{1}{32}$ in $C's$ cdf. Convincingly shown. Beware printed answer.2(iv)$\overline{X} - N(\frac{1}{3}, \frac{1}{180})$B1Normal distribution.1(v)$\overline{X} - N(\frac{1}{3}, \frac{1}{180})$B1Normal distribution.3</td><td>(i)</td><td>$\int_0^1 k(1-x)\mathrm{d}x = 1$</td><td>M1</td><td>(possibly implied later), equated</td><td></td></tr> <tr><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td></td><td>$\therefore k[x - \frac{1}{2}x^2]_0^1 = 1$</td><td></td><td></td><td></td></tr> <tr><td>Image: Constraint of the segnent from (0,2) to (1,0).Image: Constraint of the segnent from (0,2) t</td><td></td><td>$\therefore k(1-\frac{1}{2})-0=1$</td><td></td><td></td><td></td></tr> <tr><td>Labelled sketch: straight line segment from (0,2) to (1,0).G1 (G1Correct shape. Intercepts labelled.4(ii)$E(X) = \int_{0}^{1} 2x(1-x)dx$ $= [x^2 - \frac{2}{3}x^2]_{0}^{1} = (1-\frac{2}{3}) - 0 = \frac{1}{3}$M1 (which may appear later).Integral for $E(X)$ including limits (which may appear later).A11 Integral for $E(X^2)$ including limits (which may appear later).(iii)$E(X^2) = \int_{0}^{1} 2x^2(1-x)dx$ $= [\frac{1}{6} - (\frac{1}{3})^2$ $= \frac{1}{6} - (\frac{1}{3})^2$M1 $= [\frac{1}{2}x^3 - \frac{2}{4}x^4]_{0}^{1} = (\frac{2}{3} - \frac{1}{2}) - 0 = \frac{1}{6}$M1 M1 M1 M1 Convincingly shown. Beware printed answer.5(iii)$F(x) = \int_{0}^{1} 2(1-t)dt$ $= [2t-t^2]_{0}^{1} = (2x-x^2) - 0 = 2x-x^2$ $= 1-(2x + \frac{1}{3} - (\frac{1}{3})^2) = 1 - \frac{5}{9} = \frac{4}{9}$M1 M1 M1 M1 M1 M2Definition of cdf, including limits, possibly implied later. Some valid method must be seen. If $0 \le 5 x \le 1$; do not insist on this.] For $1 - c's F(\mu)$. M1 For $1 - c's F(\mu)$.A1 M1 M1 For $1 - c's F(\mu)$.4(iv)$F\left(1 - \frac{1}{\sqrt{2}}\right) - \left(1 - \frac{1}{\sqrt{2}}\right)^{-} \left(1 - \frac{1}{\sqrt{2}}\right)^{-} = \frac{1}{9} = \frac{4}{9}$M1 M1 Substitute $m = 1 - \frac{1}{\sqrt{2}}$ in c's cdf. Convincingly shown. Beware printed answer.2(iv)$F\left(1 - \frac{1}{\sqrt{2}}\right) - \left(1 - \frac{1}{\sqrt{2}}\right)^{-} = \frac{1}{9} = \frac{1}{2}$M1 E1 So $m = 1 - \frac{1}{\sqrt{2}}$Substitute $m = 1 - \frac{1}{\sqrt{2}}$ in c's cdf. Convincingly shown. Beware printed answer.2(iv)$\overline{X} \sim N(\frac{1}{3}, \frac{1}{100}$B1 B1 Normal distribution.Normal distribution.3</td><td></td><td>$\therefore k = 2$</td><td>E1</td><td></td><td></td></tr> <tr><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td></td><td></td><td></td><td>Correct shape.</td><td>4</td></tr> <tr><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>(ii)</td><td>• 0</td><td></td><td></td><td></td></tr> <tr><td>$\begin{array}{ c c c c c } \hline P(X \rightarrow f) = \int_{0}^{\infty} P(X \rightarrow X) dX \\ &amp;= \left[\frac{1}{3}x^{3} - \frac{2}{4}x^{4}\right]_{0}^{1} = \left(\frac{2}{3} - \frac{1}{2}\right) - 0 = \frac{1}{6} \\ \hline Var(X) = \frac{1}{6} - \left(\frac{1}{3}\right)^{2} \\ &amp;= \frac{1}{18} \end{array} \qquad$</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>Var(X) = $\frac{1}{6} - (\frac{1}{3})^2$M1Convincingly shown. Beware printed answer.5(iii)$F(x) = \int_0^x 2(1-t)dt$M1Definition of cdf, including limits, possibly implied later. Some valid method must be seen. If or $0 \le x \le 1$; do not insist on this.]M1Definition of cdf, including limits, possibly implied later. Some valid method must be seen. If $0 \le x \le 1$; do not insist on this.]M1Definition of cdf, including limits, possibly implied later. Some valid method must be seen. If $0 \le x \le 1$; do not insist on this.]M1Definition of cdf, including limits, possibly implied later. Some valid method must be seen. If $0 \le x \le 1$; do not insist on this.]M1For $1 - c's F(\mu)$.A1If c's E(X) and F(X). If answer only seen in decimal expect 3 d.p. or better.4(iv)$F\left(1 - \frac{1}{\sqrt{2}}\right) = 2\left(1 - \frac{1}{\sqrt{2}}\right) - \left(1 - \frac{1}{\sqrt{2}}\right)^2$ $= 2 - \frac{2}{\sqrt{2}} - 1 + \frac{2}{\sqrt{2}} - \frac{1}{2} = \frac{1}{2}$M1Substitute $m = 1 - \frac{1}{\sqrt{2}}$ in c's cdf.2(iv)$F\left(1 - \frac{1}{\sqrt{2}}\right) = 2\left(1 - \frac{1}{\sqrt{2}}\right) - \frac{1}{\sqrt{2}} - \frac{1}{2} = \frac{1}{2}$M1Form a quadratic equation $F(m) = \frac{1}{2}$ and attempt to solve it. It c's cdf provided it leads to a quadratic. So $m = 1 - \frac{1}{\sqrt{2}}$E1Convincingly shown. Beware printed answer.2(v)$\overline{X} - N\left(\frac{1}{3}, \frac{1}{1800}\right)$B1Normal distribution. Mean. It c's $E(X)$. Correct variance.3</td><td></td><td>- 0</td><td>M1</td><td></td><td></td></tr> <tr><td>Image: point of the second second</td><td></td><td></td><td>M1</td><td></td><td></td></tr> <tr><td>Y$F(x) = \int_{0}^{1} 2(1-t)dt$possibly implied later. Some valid method must be seen. [for $0 \le x \le 1$; do not insist on this.] $F(x) = p(X &gt; \frac{1}{3}) = 1 - F(\frac{1}{3})$ $= 1 - (2 \times \frac{1}{3} - (\frac{1}{3})^{2}) = 1 - \frac{5}{9} = \frac{4}{9}$A1possibly implied later. Some valid method must be seen. [for $0 \le x \le 1$; do not insist on this.] For $1 - c$'s $F(\mu)$. A1A1For $1 - c$'s $F(\mu)$. A1A1(iv)$F(1 - \frac{1}{\sqrt{2}}) = 2(1 - \frac{1}{\sqrt{2}}) - (1 - \frac{1}{\sqrt{2}})^{2}$ $= 2 - \frac{2}{\sqrt{2}} - 1 + \frac{2}{\sqrt{2}} - \frac{1}{2} = \frac{1}{2}$M1Substitute $m = 1 - \frac{1}{\sqrt{2}}$ in c's cdf. E1Convincingly shown. Beware printed answer.2(iv)$F(1 - \frac{1}{\sqrt{2}}) = 2(1 - \frac{1}{\sqrt{2}}) - (1 - \frac{1}{\sqrt{2}})^{2}$ $= 2 - \frac{2}{\sqrt{2}} - 1 + \frac{2}{\sqrt{2}} - \frac{1}{2} = \frac{1}{2}$M1Substitute $m = 1 - \frac{1}{\sqrt{2}}$ in c's cdf. E12(iv)$F(1 - \frac{1}{\sqrt{2}}) = 2(1 - \frac{1}{\sqrt{2}}) - (1 - \frac{1}{\sqrt{2}})^{2}$ $= 2 - \frac{2}{\sqrt{2}} - 1 + \frac{2}{\sqrt{2}} - \frac{1}{2} = \frac{1}{2}$M1Substitute $m = 1 - \frac{1}{\sqrt{2}}$ in c's cdf.2$2m - m^{2} = \frac{1}{2}$ $\therefore m^{2} - 2m + \frac{1}{2} = 0$ $\therefore m = 1 + \frac{1}{\sqrt{2}}$ So $m = 1 - \frac{1}{\sqrt{2}}$M1Form a quadratic equation $F(m) = \frac{1}{2}$ and attempt to solve it. ft c's cdf provided it leads to a quadratic.(v)$\overline{X} \sim N(\frac{1}{3}, \frac{1}{1800})$B1Normal distribution.B1Mean. ft c's $E(X)$. Correct variance.3</td><td></td><td>× 0 (3)</td><td></td><td>0,</td><td>5</td></tr> <tr><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>(iii)</td><td>$\mathbf{F}(x) = \int_0^x 2(1-t) \mathrm{d}t$</td><td>M1</td><td>possibly implied later. Some valid</td><td></td></tr> <tr><td>$\begin{array}{ c c c } \hline (1,1) &amp; 1 \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,$</td><td></td><td></td><td></td><td>[for $0 \le x \le 1$; do not insist on this.]</td><td></td></tr> <tr><td>(iv)$F\left(1-\frac{1}{\sqrt{2}}\right) = 2\left(1-\frac{1}{\sqrt{2}}\right) - \left(1-\frac{1}{\sqrt{2}}\right)^2$M1Substitute $m = 1 - \frac{1}{\sqrt{2}}$ in c's cdf.(iv)$F\left(1-\frac{1}{\sqrt{2}}\right) = 2\left(1-\frac{1}{\sqrt{2}}\right) - \left(1-\frac{1}{\sqrt{2}}\right)^2$M1Substitute $m = 1 - \frac{1}{\sqrt{2}}$ in c's cdf.$= 2 - \frac{2}{\sqrt{2}} - 1 + \frac{2}{\sqrt{2}} - \frac{1}{2} = \frac{1}{2}$E1Convincingly shown. Beware printed answer.2<b>Alternatively:</b> $2m - m^2 = \frac{1}{2}$M1Form a quadratic equation $F(m) = \frac{1}{2}$ and attempt to solve it. ft c's cdf provided it leads to a quadratic.E1So$m = 1 - \frac{1}{\sqrt{2}}$E1Convincingly shown. Beware printed answer.E1(v)$\overline{X} \sim N(\frac{1}{3}, \frac{1}{100})$B1 B1 B1Normal distribution.B1 B1 B13</td><td></td><td></td><td></td><td>ŭ ,</td><td></td></tr> <tr><td>$= 2 - \frac{2}{\sqrt{2}} - 1 + \frac{2}{\sqrt{2}} - \frac{1}{2} = \frac{1}{2}$E1Convincingly shown. Beware printed answer.2<b>Alternatively:</b> $2m - m^2 = \frac{1}{2}$ $\therefore m^2 - 2m + \frac{1}{2} = 0$ $\therefore m = 1 \pm \frac{1}{\sqrt{2}}$E1Form a quadratic equation $F(m) = \frac{1}{2}$ and attempt to solve it. ft c's cdf provided it leads to a quadratic.2(V)$\overline{X} \sim N(\frac{1}{3}, \frac{1}{1800})$B1Normal distribution.B1B1Normal distribution.B1Mean. ft c's E(X). Correct variance.3</td><td></td><td>$= 1 - (2 \times \frac{1}{3} - (\frac{1}{3})^2) = 1 - \frac{5}{9} = \frac{4}{9}$</td><td>A1</td><td>only seen in decimal expect 3</td><td>4</td></tr> <tr><td>$= 2 - \frac{2}{\sqrt{2}} - 1 + \frac{2}{\sqrt{2}} - \frac{1}{2} = \frac{1}{2}$E1Convincingly shown. Beware printed answer.2<b>Alternatively:</b> $2m - m^2 = \frac{1}{2}$ $\therefore m^2 - 2m + \frac{1}{2} = 0$ $\therefore m = 1 \pm \frac{1}{\sqrt{2}}$E1Form a quadratic equation $F(m) = \frac{1}{2}$ and attempt to solve it. ft c's cdf provided it leads to a quadratic.2(V)$\overline{X} \sim N(\frac{1}{3}, \frac{1}{1800})$B1Normal distribution.B1B1Normal distribution.B1Mean. ft c's E(X). Correct variance.3</td><td>(iv)</td><td>$F(1-\frac{1}{\sqrt{2}}) = 2(1-\frac{1}{\sqrt{2}}) - (1-\frac{1}{\sqrt{2}})^2$</td><td>M1</td><td>Substitute $m = 1 - \frac{1}{\sqrt{2}}$ in c's cdf.</td><td></td></tr> <tr><td>$2m - m^2 = \frac{1}{2}$M1Form a quadratic equation $F(m) = \frac{1}{2}$ and attempt to solve it. ft c's cdf provided it leads to a quadratic. So $m = 1 - \frac{1}{\sqrt{2}}$(V)$\overline{X} \sim N(\frac{1}{3}, \frac{1}{1800})$B1Normal distribution. B1B1Normal distribution.B1B1Mean. ft c's E(X). Correct variance.3</td><td></td><td></td><td>E1</td><td></td><td>2</td></tr> <tr><td>$2m - m^2 = \frac{1}{2}$M1Form a quadratic equation $F(m) = \frac{1}{2}$ and attempt to solve it. ft c's cdf provided it leads to a quadratic. So $m = 1 - \frac{1}{\sqrt{2}}$(V)$\overline{X} \sim N(\frac{1}{3}, \frac{1}{1800})$B1Normal distribution. B1B1Normal distribution.B1B1Mean. ft c's E(X). Correct variance.3</td><td></td><td>Alternatively:</td><td></td><td></td><td></td></tr> <tr><td>$\therefore m = 1 \pm \frac{1}{\sqrt{2}}$C's cdf provided it leads to a quadratic. Convincingly shown. Beware printed answer.(V)$\overline{X} \sim N(\frac{1}{3}, \frac{1}{1800})$B1 B1 B1 B1Normal distribution. Mean. ft c's E(X). Correct variance.3</td><td></td><td>$2m-m^2=\frac{1}{2}$</td><td>M1</td><td>· ·</td><td></td></tr> <tr><td>SO $m = 1 - \frac{1}{\sqrt{2}}$E1Convincingly shown. Beware printed answer.(V)$\overline{X} \sim N(\frac{1}{3}, \frac{1}{1800})$B1Normal distribution.B1Mean. ft c's E(X). Correct variance.3</td><td></td><td>-</td><td></td><td>•</td><td></td></tr> <tr><td>B1 Mean. ft c's E(X). B1 Correct variance. 3</td><td></td><td><b>SO</b> $m = 1 - \frac{1}{\sqrt{2}}$</td><td>E1</td><td>Convincingly shown. Beware</td><td></td></tr> <tr><td>B1 Correct variance. 3</td><td>(v)</td><td>$\overline{X} \sim N(\frac{1}{3}, \frac{1}{1800})$</td><td>B1</td><td>Normal distribution.</td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td>3</td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td>18</td></tr>	1		1			$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Q1	$f(x) = k(1-x) \qquad 0 \le x \le 1$				$k(1-\frac{1}{2})=0=1$ $k=2$ E1Convincingly shown. Beware printed answer.4(ii) $E(X) = \int_{a}^{1} 2x(1-x)dx$ $= [x^2 - \frac{2}{3}x^3]_{a}^{b} = (1-\frac{2}{3})=0=\frac{1}{3}$ M1Intercepts labelled.4(iii) $E(X) = \int_{a}^{1} 2x^2(1-x)dx$ $= [\frac{2}{3}x^2 - \frac{2}{3}x^4]_{a}^{b} = (\frac{2}{3} - \frac{1}{2})=0=\frac{1}{3}$ M1Integral for $E(X)$ including limits (which may appear later).4(iii) $E(X) = \int_{a}^{1} 2x^2(1-x)dx$ $= \frac{1}{3} = (\frac{2}{3} - \frac{1}{2})=0=\frac{1}{6}$ M1Integral for $E(X^2)$ including limits (which may appear later).(iii) $F(x) = \int_{a}^{b} 2x^2(1-x)dx$ $= \frac{1}{38}$ M1Convincingly shown. Beware printed answer.5(iii) $F(x) = \int_{a}^{b} 2(1-t)dt$ $= 1-(2x \frac{1}{3} - (2x - x^2) - 0 - 2x - x^2)$ $= 1-(2x \frac{1}{3} - (2x - x^2) - 0 - 2x - x^2)$ M1Definition of cdf, including limits, possibly implied later. Some valid method must be seen. (for $0 \le x \le 1$ ; do not insist on this.] For $1 - cs = F(\mu)$ .4(iv) $F(1-\frac{1}{32})=2(1-\frac{1}{32})-(1-\frac{1}{32})=\frac{1}{2}$ M1Substitute $m = 1-\frac{1}{32}$ in $C's$ cdf. Convincingly shown. Beware printed answer.2(iv) $F(1-\frac{1}{32})=2(1-\frac{1}{32})-(1-\frac{1}{32})=\frac{1}{2}=\frac{1}{2}$ M1Substitute $m = 1-\frac{1}{32}$ in $C's$ cdf. Convincingly shown. Beware printed answer.2(iv) $\overline{X} - N(\frac{1}{3}, \frac{1}{180})$ B1Normal distribution.1(v) $\overline{X} - N(\frac{1}{3}, \frac{1}{180})$ B1Normal distribution.3	(i)	$\int_0^1 k(1-x)\mathrm{d}x = 1$	M1	(possibly implied later), equated		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\therefore k[x - \frac{1}{2}x^2]_0^1 = 1$				Image: Constraint of the segnent from (0,2) to (1,0).Image: Constraint of the segnent from (0,2) t		$\therefore k(1-\frac{1}{2})-0=1$				Labelled sketch: straight line segment from (0,2) to (1,0).G1 (G1Correct shape. Intercepts labelled.4(ii) $E(X) = \int_{0}^{1} 2x(1-x)dx$ $= [x^2 - \frac{2}{3}x^2]_{0}^{1} = (1-\frac{2}{3}) - 0 = \frac{1}{3}$ M1 (which may appear later).Integral for $E(X)$ including limits (which may appear later).A11 Integral for $E(X^2)$ including limits (which may appear later).(iii) $E(X^2) = \int_{0}^{1} 2x^2(1-x)dx$ $= [\frac{1}{6} - (\frac{1}{3})^2$ $= \frac{1}{6} - (\frac{1}{3})^2$ M1 $= [\frac{1}{2}x^3 - \frac{2}{4}x^4]_{0}^{1} = (\frac{2}{3} - \frac{1}{2}) - 0 = \frac{1}{6}$ M1 M1 M1 M1 Convincingly shown. Beware printed answer.5(iii) $F(x) = \int_{0}^{1} 2(1-t)dt$ $= [2t-t^2]_{0}^{1} = (2x-x^2) - 0 = 2x-x^2$ $= 1-(2x + \frac{1}{3} - (\frac{1}{3})^2) = 1 - \frac{5}{9} = \frac{4}{9}$ M1 M1 M1 M1 M1 M2Definition of cdf, including limits, possibly implied later. Some valid method must be seen. If $0 \le 5 x \le 1$ ; do not insist on this.] For $1 - c's F(\mu)$ . M1 For $1 - c's F(\mu)$ .A1 M1 M1 For $1 - c's F(\mu)$ .4(iv) $F\left(1 - \frac{1}{\sqrt{2}}\right) - \left(1 - \frac{1}{\sqrt{2}}\right)^{-} \left(1 - \frac{1}{\sqrt{2}}\right)^{-} = \frac{1}{9} = \frac{4}{9}$ M1 M1 Substitute $m = 1 - \frac{1}{\sqrt{2}}$ in c's cdf. Convincingly shown. Beware printed answer.2(iv) $F\left(1 - \frac{1}{\sqrt{2}}\right) - \left(1 - \frac{1}{\sqrt{2}}\right)^{-} = \frac{1}{9} = \frac{1}{2}$ M1 E1 So $m = 1 - \frac{1}{\sqrt{2}}$ Substitute $m = 1 - \frac{1}{\sqrt{2}}$ in c's cdf. Convincingly shown. Beware printed answer.2(iv) $\overline{X} \sim N(\frac{1}{3}, \frac{1}{100}$ B1 B1 Normal distribution.Normal distribution.3		$\therefore k = 2$	E1			$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Correct shape.	4	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(ii)	• 0				$\begin{array}{ c c c c c } \hline P(X \rightarrow f) = \int_{0}^{\infty} P(X \rightarrow X) dX \\ &= \left[\frac{1}{3}x^{3} - \frac{2}{4}x^{4}\right]_{0}^{1} = \left(\frac{2}{3} - \frac{1}{2}\right) - 0 = \frac{1}{6} \\ \hline Var(X) = \frac{1}{6} - \left(\frac{1}{3}\right)^{2} \\ &= \frac{1}{18} \end{array} \qquad $						Var(X) = $\frac{1}{6} - (\frac{1}{3})^2$ M1Convincingly shown. Beware printed answer.5(iii) $F(x) = \int_0^x 2(1-t)dt$ M1Definition of cdf, including limits, possibly implied later. Some valid method must be seen. If or $0 \le x \le 1$ ; do not insist on this.]M1Definition of cdf, including limits, possibly implied later. Some valid method must be seen. If $0 \le x \le 1$ ; do not insist on this.]M1Definition of cdf, including limits, possibly implied later. Some valid method must be seen. If $0 \le x \le 1$ ; do not insist on this.]M1Definition of cdf, including limits, possibly implied later. Some valid method must be seen. If $0 \le x \le 1$ ; do not insist on this.]M1For $1 - c's F(\mu)$ .A1If c's E(X) and F(X). If answer only seen in decimal expect 3 d.p. or better.4(iv) $F\left(1 - \frac{1}{\sqrt{2}}\right) = 2\left(1 - \frac{1}{\sqrt{2}}\right) - \left(1 - \frac{1}{\sqrt{2}}\right)^2$ $= 2 - \frac{2}{\sqrt{2}} - 1 + \frac{2}{\sqrt{2}} - \frac{1}{2} = \frac{1}{2}$ M1Substitute $m = 1 - \frac{1}{\sqrt{2}}$ in c's cdf.2(iv) $F\left(1 - \frac{1}{\sqrt{2}}\right) = 2\left(1 - \frac{1}{\sqrt{2}}\right) - \frac{1}{\sqrt{2}} - \frac{1}{2} = \frac{1}{2}$ M1Form a quadratic equation $F(m) = \frac{1}{2}$ and attempt to solve it. It c's cdf provided it leads to a quadratic. So $m = 1 - \frac{1}{\sqrt{2}}$ E1Convincingly shown. Beware printed answer.2(v) $\overline{X} - N\left(\frac{1}{3}, \frac{1}{1800}\right)$ B1Normal distribution. Mean. It c's $E(X)$ . Correct variance.3		- 0	M1			Image: point of the second			M1			Y $F(x) = \int_{0}^{1} 2(1-t)dt$ possibly implied later. Some valid method must be seen. [for $0 \le x \le 1$ ; do not insist on this.] $F(x) = p(X > \frac{1}{3}) = 1 - F(\frac{1}{3})$ $= 1 - (2 \times \frac{1}{3} - (\frac{1}{3})^{2}) = 1 - \frac{5}{9} = \frac{4}{9}$ A1possibly implied later. Some valid method must be seen. [for $0 \le x \le 1$ ; do not insist on this.] For $1 - c$ 's $F(\mu)$ . A1A1For $1 - c$ 's $F(\mu)$ . A1A1(iv) $F(1 - \frac{1}{\sqrt{2}}) = 2(1 - \frac{1}{\sqrt{2}}) - (1 - \frac{1}{\sqrt{2}})^{2}$ $= 2 - \frac{2}{\sqrt{2}} - 1 + \frac{2}{\sqrt{2}} - \frac{1}{2} = \frac{1}{2}$ M1Substitute $m = 1 - \frac{1}{\sqrt{2}}$ in c's cdf. E1Convincingly shown. Beware printed answer.2(iv) $F(1 - \frac{1}{\sqrt{2}}) = 2(1 - \frac{1}{\sqrt{2}}) - (1 - \frac{1}{\sqrt{2}})^{2}$ $= 2 - \frac{2}{\sqrt{2}} - 1 + \frac{2}{\sqrt{2}} - \frac{1}{2} = \frac{1}{2}$ M1Substitute $m = 1 - \frac{1}{\sqrt{2}}$ in c's cdf. E12(iv) $F(1 - \frac{1}{\sqrt{2}}) = 2(1 - \frac{1}{\sqrt{2}}) - (1 - \frac{1}{\sqrt{2}})^{2}$ $= 2 - \frac{2}{\sqrt{2}} - 1 + \frac{2}{\sqrt{2}} - \frac{1}{2} = \frac{1}{2}$ M1Substitute $m = 1 - \frac{1}{\sqrt{2}}$ in c's cdf.2 $2m - m^{2} = \frac{1}{2}$ $\therefore m^{2} - 2m + \frac{1}{2} = 0$ $\therefore m = 1 + \frac{1}{\sqrt{2}}$ So $m = 1 - \frac{1}{\sqrt{2}}$ M1Form a quadratic equation $F(m) = \frac{1}{2}$ and attempt to solve it. ft c's cdf provided it leads to a quadratic.(v) $\overline{X} \sim N(\frac{1}{3}, \frac{1}{1800})$ B1Normal distribution.B1Mean. ft c's $E(X)$ . Correct variance.3		× 0 (3)		0,	5	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(iii)	$\mathbf{F}(x) = \int_0^x 2(1-t) \mathrm{d}t$	M1	possibly implied later. Some valid		$\begin{array}{ c c c } \hline (1,1) & 1 \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,$				[for $0 \le x \le 1$ ; do not insist on this.]		(iv) $F\left(1-\frac{1}{\sqrt{2}}\right) = 2\left(1-\frac{1}{\sqrt{2}}\right) - \left(1-\frac{1}{\sqrt{2}}\right)^2$ M1Substitute $m = 1 - \frac{1}{\sqrt{2}}$ in c's cdf.(iv) $F\left(1-\frac{1}{\sqrt{2}}\right) = 2\left(1-\frac{1}{\sqrt{2}}\right) - \left(1-\frac{1}{\sqrt{2}}\right)^2$ M1Substitute $m = 1 - \frac{1}{\sqrt{2}}$ in c's cdf. $= 2 - \frac{2}{\sqrt{2}} - 1 + \frac{2}{\sqrt{2}} - \frac{1}{2} = \frac{1}{2}$ E1Convincingly shown. Beware printed answer.2 <b>Alternatively:</b> $2m - m^2 = \frac{1}{2}$ M1Form a quadratic equation $F(m) = \frac{1}{2}$ and attempt to solve it. ft c's cdf provided it leads to a quadratic.E1So $m = 1 - \frac{1}{\sqrt{2}}$ E1Convincingly shown. Beware printed answer.E1(v) $\overline{X} \sim N(\frac{1}{3}, \frac{1}{100})$ B1 B1 B1Normal distribution.B1 B1 B13				ŭ ,		$= 2 - \frac{2}{\sqrt{2}} - 1 + \frac{2}{\sqrt{2}} - \frac{1}{2} = \frac{1}{2}$ E1Convincingly shown. Beware printed answer.2 <b>Alternatively:</b> $2m - m^2 = \frac{1}{2}$ $\therefore m^2 - 2m + \frac{1}{2} = 0$ $\therefore m = 1 \pm \frac{1}{\sqrt{2}}$ E1Form a quadratic equation $F(m) = \frac{1}{2}$ and attempt to solve it. ft c's cdf provided it leads to a quadratic.2(V) $\overline{X} \sim N(\frac{1}{3}, \frac{1}{1800})$ B1Normal distribution.B1B1Normal distribution.B1Mean. ft c's E(X). Correct variance.3		$= 1 - (2 \times \frac{1}{3} - (\frac{1}{3})^2) = 1 - \frac{5}{9} = \frac{4}{9}$	A1	only seen in decimal expect 3	4	$= 2 - \frac{2}{\sqrt{2}} - 1 + \frac{2}{\sqrt{2}} - \frac{1}{2} = \frac{1}{2}$ E1Convincingly shown. Beware printed answer.2 <b>Alternatively:</b> $2m - m^2 = \frac{1}{2}$ $\therefore m^2 - 2m + \frac{1}{2} = 0$ $\therefore m = 1 \pm \frac{1}{\sqrt{2}}$ E1Form a quadratic equation $F(m) = \frac{1}{2}$ and attempt to solve it. ft c's cdf provided it leads to a quadratic.2(V) $\overline{X} \sim N(\frac{1}{3}, \frac{1}{1800})$ B1Normal distribution.B1B1Normal distribution.B1Mean. ft c's E(X). Correct variance.3	(iv)	$F(1-\frac{1}{\sqrt{2}}) = 2(1-\frac{1}{\sqrt{2}}) - (1-\frac{1}{\sqrt{2}})^2$	M1	Substitute $m = 1 - \frac{1}{\sqrt{2}}$ in c's cdf.		$2m - m^2 = \frac{1}{2}$ M1Form a quadratic equation $F(m) = \frac{1}{2}$ and attempt to solve it. ft c's cdf provided it leads to a quadratic. So $m = 1 - \frac{1}{\sqrt{2}}$ (V) $\overline{X} \sim N(\frac{1}{3}, \frac{1}{1800})$ B1Normal distribution. B1B1Normal distribution.B1B1Mean. ft c's E(X). Correct variance.3			E1		2	$2m - m^2 = \frac{1}{2}$ M1Form a quadratic equation $F(m) = \frac{1}{2}$ and attempt to solve it. ft c's cdf provided it leads to a quadratic. So $m = 1 - \frac{1}{\sqrt{2}}$ (V) $\overline{X} \sim N(\frac{1}{3}, \frac{1}{1800})$ B1Normal distribution. B1B1Normal distribution.B1B1Mean. ft c's E(X). Correct variance.3		Alternatively:				$\therefore m = 1 \pm \frac{1}{\sqrt{2}}$ C's cdf provided it leads to a quadratic. Convincingly shown. Beware printed answer.(V) $\overline{X} \sim N(\frac{1}{3}, \frac{1}{1800})$ B1 B1 B1 B1Normal distribution. Mean. ft c's E(X). Correct variance.3		$2m-m^2=\frac{1}{2}$	M1	· ·		SO $m = 1 - \frac{1}{\sqrt{2}}$ E1Convincingly shown. Beware printed answer.(V) $\overline{X} \sim N(\frac{1}{3}, \frac{1}{1800})$ B1Normal distribution.B1Mean. ft c's E(X). Correct variance.3		-		•		B1 Mean. ft c's E(X). B1 Correct variance. 3		<b>SO</b> $m = 1 - \frac{1}{\sqrt{2}}$	E1	Convincingly shown. Beware		B1 Correct variance. 3	(v)	$\overline{X} \sim N(\frac{1}{3}, \frac{1}{1800})$	B1	Normal distribution.							3						18
1		1																																																																																																																																																			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Q1	$f(x) = k(1-x) \qquad 0 \le x \le 1$																																																																																																																																																			
$k(1-\frac{1}{2})=0=1$ $k=2$ E1Convincingly shown. Beware printed answer.4(ii) $E(X) = \int_{a}^{1} 2x(1-x)dx$ $= [x^2 - \frac{2}{3}x^3]_{a}^{b} = (1-\frac{2}{3})=0=\frac{1}{3}$ M1Intercepts labelled.4(iii) $E(X) = \int_{a}^{1} 2x^2(1-x)dx$ $= [\frac{2}{3}x^2 - \frac{2}{3}x^4]_{a}^{b} = (\frac{2}{3} - \frac{1}{2})=0=\frac{1}{3}$ M1Integral for $E(X)$ including limits (which may appear later).4(iii) $E(X) = \int_{a}^{1} 2x^2(1-x)dx$ $= \frac{1}{3} = (\frac{2}{3} - \frac{1}{2})=0=\frac{1}{6}$ M1Integral for $E(X^2)$ including limits (which may appear later).(iii) $F(x) = \int_{a}^{b} 2x^2(1-x)dx$ $= \frac{1}{38}$ M1Convincingly shown. Beware printed answer.5(iii) $F(x) = \int_{a}^{b} 2(1-t)dt$ $= 1-(2x \frac{1}{3} - (2x - x^2) - 0 - 2x - x^2)$ $= 1-(2x \frac{1}{3} - (2x - x^2) - 0 - 2x - x^2)$ M1Definition of cdf, including limits, possibly implied later. Some valid method must be seen. (for $0 \le x \le 1$ ; do not insist on this.] For $1 - cs = F(\mu)$ .4(iv) $F(1-\frac{1}{32})=2(1-\frac{1}{32})-(1-\frac{1}{32})=\frac{1}{2}$ M1Substitute $m = 1-\frac{1}{32}$ in $C's$ cdf. Convincingly shown. Beware printed answer.2(iv) $F(1-\frac{1}{32})=2(1-\frac{1}{32})-(1-\frac{1}{32})=\frac{1}{2}=\frac{1}{2}$ M1Substitute $m = 1-\frac{1}{32}$ in $C's$ cdf. Convincingly shown. Beware printed answer.2(iv) $\overline{X} - N(\frac{1}{3}, \frac{1}{180})$ B1Normal distribution.1(v) $\overline{X} - N(\frac{1}{3}, \frac{1}{180})$ B1Normal distribution.3	(i)	$\int_0^1 k(1-x)\mathrm{d}x = 1$	M1	(possibly implied later), equated																																																																																																																																																	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\therefore k[x - \frac{1}{2}x^2]_0^1 = 1$																																																																																																																																																			
Image: Constraint of the segnent from (0,2) to (1,0).Image: Constraint of the segnent from (0,2) t		$\therefore k(1-\frac{1}{2})-0=1$																																																																																																																																																			
Labelled sketch: straight line segment from (0,2) to (1,0).G1 (G1Correct shape. Intercepts labelled.4(ii) $E(X) = \int_{0}^{1} 2x(1-x)dx$ $= [x^2 - \frac{2}{3}x^2]_{0}^{1} = (1-\frac{2}{3}) - 0 = \frac{1}{3}$ M1 (which may appear later).Integral for $E(X)$ including limits (which may appear later).A11 Integral for $E(X^2)$ including limits (which may appear later).(iii) $E(X^2) = \int_{0}^{1} 2x^2(1-x)dx$ $= [\frac{1}{6} - (\frac{1}{3})^2$ $= \frac{1}{6} - (\frac{1}{3})^2$ M1 $= [\frac{1}{2}x^3 - \frac{2}{4}x^4]_{0}^{1} = (\frac{2}{3} - \frac{1}{2}) - 0 = \frac{1}{6}$ M1 M1 M1 M1 Convincingly shown. Beware printed answer.5(iii) $F(x) = \int_{0}^{1} 2(1-t)dt$ $= [2t-t^2]_{0}^{1} = (2x-x^2) - 0 = 2x-x^2$ $= 1-(2x + \frac{1}{3} - (\frac{1}{3})^2) = 1 - \frac{5}{9} = \frac{4}{9}$ M1 M1 M1 M1 M1 M2Definition of cdf, including limits, possibly implied later. Some valid method must be seen. If $0 \le 5 x \le 1$ ; do not insist on this.] For $1 - c's F(\mu)$ . M1 For $1 - c's F(\mu)$ .A1 M1 M1 For $1 - c's F(\mu)$ .4(iv) $F\left(1 - \frac{1}{\sqrt{2}}\right) - \left(1 - \frac{1}{\sqrt{2}}\right)^{-} \left(1 - \frac{1}{\sqrt{2}}\right)^{-} = \frac{1}{9} = \frac{4}{9}$ M1 M1 Substitute $m = 1 - \frac{1}{\sqrt{2}}$ in c's cdf. Convincingly shown. Beware printed answer.2(iv) $F\left(1 - \frac{1}{\sqrt{2}}\right) - \left(1 - \frac{1}{\sqrt{2}}\right)^{-} = \frac{1}{9} = \frac{1}{2}$ M1 E1 So $m = 1 - \frac{1}{\sqrt{2}}$ Substitute $m = 1 - \frac{1}{\sqrt{2}}$ in c's cdf. Convincingly shown. Beware printed answer.2(iv) $\overline{X} \sim N(\frac{1}{3}, \frac{1}{100}$ B1 B1 Normal distribution.Normal distribution.3		$\therefore k = 2$	E1																																																																																																																																																		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Correct shape.	4																																																																																																																																																
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(ii)	• 0																																																																																																																																																			
$\begin{array}{ c c c c c } \hline P(X \rightarrow f) = \int_{0}^{\infty} P(X \rightarrow X) dX \\ &= \left[\frac{1}{3}x^{3} - \frac{2}{4}x^{4}\right]_{0}^{1} = \left(\frac{2}{3} - \frac{1}{2}\right) - 0 = \frac{1}{6} \\ \hline Var(X) = \frac{1}{6} - \left(\frac{1}{3}\right)^{2} \\ &= \frac{1}{18} \end{array} \qquad $																																																																																																																																																					
Var(X) = $\frac{1}{6} - (\frac{1}{3})^2$ M1Convincingly shown. Beware printed answer.5(iii) $F(x) = \int_0^x 2(1-t)dt$ M1Definition of cdf, including limits, possibly implied later. Some valid method must be seen. If or $0 \le x \le 1$ ; do not insist on this.]M1Definition of cdf, including limits, possibly implied later. Some valid method must be seen. If $0 \le x \le 1$ ; do not insist on this.]M1Definition of cdf, including limits, possibly implied later. Some valid method must be seen. If $0 \le x \le 1$ ; do not insist on this.]M1Definition of cdf, including limits, possibly implied later. Some valid method must be seen. If $0 \le x \le 1$ ; do not insist on this.]M1For $1 - c's F(\mu)$ .A1If c's E(X) and F(X). If answer only seen in decimal expect 3 d.p. or better.4(iv) $F\left(1 - \frac{1}{\sqrt{2}}\right) = 2\left(1 - \frac{1}{\sqrt{2}}\right) - \left(1 - \frac{1}{\sqrt{2}}\right)^2$ $= 2 - \frac{2}{\sqrt{2}} - 1 + \frac{2}{\sqrt{2}} - \frac{1}{2} = \frac{1}{2}$ M1Substitute $m = 1 - \frac{1}{\sqrt{2}}$ in c's cdf.2(iv) $F\left(1 - \frac{1}{\sqrt{2}}\right) = 2\left(1 - \frac{1}{\sqrt{2}}\right) - \frac{1}{\sqrt{2}} - \frac{1}{2} = \frac{1}{2}$ M1Form a quadratic equation $F(m) = \frac{1}{2}$ and attempt to solve it. It c's cdf provided it leads to a quadratic. So $m = 1 - \frac{1}{\sqrt{2}}$ E1Convincingly shown. Beware printed answer.2(v) $\overline{X} - N\left(\frac{1}{3}, \frac{1}{1800}\right)$ B1Normal distribution. Mean. It c's $E(X)$ . Correct variance.3		- 0	M1																																																																																																																																																		
Image: point of the second			M1																																																																																																																																																		
Y $F(x) = \int_{0}^{1} 2(1-t)dt$ possibly implied later. Some valid method must be seen. [for $0 \le x \le 1$ ; do not insist on this.] $F(x) = p(X > \frac{1}{3}) = 1 - F(\frac{1}{3})$ $= 1 - (2 \times \frac{1}{3} - (\frac{1}{3})^{2}) = 1 - \frac{5}{9} = \frac{4}{9}$ A1possibly implied later. Some valid method must be seen. [for $0 \le x \le 1$ ; do not insist on this.] For $1 - c$ 's $F(\mu)$ . A1A1For $1 - c$ 's $F(\mu)$ . A1A1(iv) $F(1 - \frac{1}{\sqrt{2}}) = 2(1 - \frac{1}{\sqrt{2}}) - (1 - \frac{1}{\sqrt{2}})^{2}$ $= 2 - \frac{2}{\sqrt{2}} - 1 + \frac{2}{\sqrt{2}} - \frac{1}{2} = \frac{1}{2}$ M1Substitute $m = 1 - \frac{1}{\sqrt{2}}$ in c's cdf. E1Convincingly shown. Beware printed answer.2(iv) $F(1 - \frac{1}{\sqrt{2}}) = 2(1 - \frac{1}{\sqrt{2}}) - (1 - \frac{1}{\sqrt{2}})^{2}$ $= 2 - \frac{2}{\sqrt{2}} - 1 + \frac{2}{\sqrt{2}} - \frac{1}{2} = \frac{1}{2}$ M1Substitute $m = 1 - \frac{1}{\sqrt{2}}$ in c's cdf. E12(iv) $F(1 - \frac{1}{\sqrt{2}}) = 2(1 - \frac{1}{\sqrt{2}}) - (1 - \frac{1}{\sqrt{2}})^{2}$ $= 2 - \frac{2}{\sqrt{2}} - 1 + \frac{2}{\sqrt{2}} - \frac{1}{2} = \frac{1}{2}$ M1Substitute $m = 1 - \frac{1}{\sqrt{2}}$ in c's cdf.2 $2m - m^{2} = \frac{1}{2}$ $\therefore m^{2} - 2m + \frac{1}{2} = 0$ $\therefore m = 1 + \frac{1}{\sqrt{2}}$ So $m = 1 - \frac{1}{\sqrt{2}}$ M1Form a quadratic equation $F(m) = \frac{1}{2}$ and attempt to solve it. ft c's cdf provided it leads to a quadratic.(v) $\overline{X} \sim N(\frac{1}{3}, \frac{1}{1800})$ B1Normal distribution.B1Mean. ft c's $E(X)$ . Correct variance.3		× 0 (3)		0,	5																																																																																																																																																
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(iii)	$\mathbf{F}(x) = \int_0^x 2(1-t) \mathrm{d}t$	M1	possibly implied later. Some valid																																																																																																																																																	
$\begin{array}{ c c c } \hline (1,1) & 1 \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,1) \ (1,$				[for $0 \le x \le 1$ ; do not insist on this.]																																																																																																																																																	
(iv) $F\left(1-\frac{1}{\sqrt{2}}\right) = 2\left(1-\frac{1}{\sqrt{2}}\right) - \left(1-\frac{1}{\sqrt{2}}\right)^2$ M1Substitute $m = 1 - \frac{1}{\sqrt{2}}$ in c's cdf.(iv) $F\left(1-\frac{1}{\sqrt{2}}\right) = 2\left(1-\frac{1}{\sqrt{2}}\right) - \left(1-\frac{1}{\sqrt{2}}\right)^2$ M1Substitute $m = 1 - \frac{1}{\sqrt{2}}$ in c's cdf. $= 2 - \frac{2}{\sqrt{2}} - 1 + \frac{2}{\sqrt{2}} - \frac{1}{2} = \frac{1}{2}$ E1Convincingly shown. Beware printed answer.2 <b>Alternatively:</b> $2m - m^2 = \frac{1}{2}$ M1Form a quadratic equation $F(m) = \frac{1}{2}$ and attempt to solve it. ft c's cdf provided it leads to a quadratic.E1So $m = 1 - \frac{1}{\sqrt{2}}$ E1Convincingly shown. Beware printed answer.E1(v) $\overline{X} \sim N(\frac{1}{3}, \frac{1}{100})$ B1 B1 B1Normal distribution.B1 B1 B13				ŭ ,																																																																																																																																																	
$= 2 - \frac{2}{\sqrt{2}} - 1 + \frac{2}{\sqrt{2}} - \frac{1}{2} = \frac{1}{2}$ E1Convincingly shown. Beware printed answer.2 <b>Alternatively:</b> $2m - m^2 = \frac{1}{2}$ $\therefore m^2 - 2m + \frac{1}{2} = 0$ $\therefore m = 1 \pm \frac{1}{\sqrt{2}}$ E1Form a quadratic equation $F(m) = \frac{1}{2}$ and attempt to solve it. ft c's cdf provided it leads to a quadratic.2(V) $\overline{X} \sim N(\frac{1}{3}, \frac{1}{1800})$ B1Normal distribution.B1B1Normal distribution.B1Mean. ft c's E(X). Correct variance.3		$= 1 - (2 \times \frac{1}{3} - (\frac{1}{3})^2) = 1 - \frac{5}{9} = \frac{4}{9}$	A1	only seen in decimal expect 3	4																																																																																																																																																
$= 2 - \frac{2}{\sqrt{2}} - 1 + \frac{2}{\sqrt{2}} - \frac{1}{2} = \frac{1}{2}$ E1Convincingly shown. Beware printed answer.2 <b>Alternatively:</b> $2m - m^2 = \frac{1}{2}$ $\therefore m^2 - 2m + \frac{1}{2} = 0$ $\therefore m = 1 \pm \frac{1}{\sqrt{2}}$ E1Form a quadratic equation $F(m) = \frac{1}{2}$ and attempt to solve it. ft c's cdf provided it leads to a quadratic.2(V) $\overline{X} \sim N(\frac{1}{3}, \frac{1}{1800})$ B1Normal distribution.B1B1Normal distribution.B1Mean. ft c's E(X). Correct variance.3	(iv)	$F(1-\frac{1}{\sqrt{2}}) = 2(1-\frac{1}{\sqrt{2}}) - (1-\frac{1}{\sqrt{2}})^2$	M1	Substitute $m = 1 - \frac{1}{\sqrt{2}}$ in c's cdf.																																																																																																																																																	
$2m - m^2 = \frac{1}{2}$ M1Form a quadratic equation $F(m) = \frac{1}{2}$ and attempt to solve it. ft c's cdf provided it leads to a quadratic. So $m = 1 - \frac{1}{\sqrt{2}}$ (V) $\overline{X} \sim N(\frac{1}{3}, \frac{1}{1800})$ B1Normal distribution. B1B1Normal distribution.B1B1Mean. ft c's E(X). Correct variance.3			E1		2																																																																																																																																																
$2m - m^2 = \frac{1}{2}$ M1Form a quadratic equation $F(m) = \frac{1}{2}$ and attempt to solve it. ft c's cdf provided it leads to a quadratic. So $m = 1 - \frac{1}{\sqrt{2}}$ (V) $\overline{X} \sim N(\frac{1}{3}, \frac{1}{1800})$ B1Normal distribution. B1B1Normal distribution.B1B1Mean. ft c's E(X). Correct variance.3		Alternatively:																																																																																																																																																			
$\therefore m = 1 \pm \frac{1}{\sqrt{2}}$ C's cdf provided it leads to a quadratic. Convincingly shown. Beware printed answer.(V) $\overline{X} \sim N(\frac{1}{3}, \frac{1}{1800})$ B1 B1 B1 B1Normal distribution. Mean. ft c's E(X). Correct variance.3		$2m-m^2=\frac{1}{2}$	M1	· ·																																																																																																																																																	
SO $m = 1 - \frac{1}{\sqrt{2}}$ E1Convincingly shown. Beware printed answer.(V) $\overline{X} \sim N(\frac{1}{3}, \frac{1}{1800})$ B1Normal distribution.B1Mean. ft c's E(X). Correct variance.3		-		•																																																																																																																																																	
B1 Mean. ft c's E(X). B1 Correct variance. 3		<b>SO</b> $m = 1 - \frac{1}{\sqrt{2}}$	E1	Convincingly shown. Beware																																																																																																																																																	
B1 Correct variance. 3	(v)	$\overline{X} \sim N(\frac{1}{3}, \frac{1}{1800})$	B1	Normal distribution.																																																																																																																																																	
					3																																																																																																																																																
					18																																																																																																																																																

Q2				
(i)	$\begin{array}{l} H_0: \ \mu = 0.6 \\ H_1: \ \mu < 0.6 \\ \text{Where } \mu \text{ is the (population) mean height of the saplings.} \end{array}$	B1 B1 B1	Allow absence of "population" if correct notation $\mu$ is used, but do	
			NOT allow " $\overline{X} =$ " or similar unless $\overline{X}$ is clearly and explicitly stated to be a <u>population</u> mean. Hypotheses in words only must include "population".	
	$\bar{x} = 0.5883$ , $s_{n-1} = 0.03664$ ( $s_{n-1}^2 = 0.00134$ )	B1	Do not allow $s_n = 0.03507$ ( $s_n^2 = 0.00123$ ).	
	Test statistic is $\frac{0.5883 - 0.6}{\left(\frac{0.03664}{\sqrt{12}}\right)}$	M1	Allow c's $\bar{x}$ and/or $s_{n-1}$ . Allow alternative: 0.6 ± (c's – 1.796) × $\frac{0.03664}{\sqrt{12}}$ (=0.5810,	
			0.6190) for subsequent comparison with $\overline{x}$ . (Or $\overline{x} \pm$ (c's –1.796) × $\frac{0.03664}{\sqrt{12}}$	
	= -1.103	A1	(=0.5693, 0.6073) for comparison with 0.6.) c.a.o. but ft from here in any case if wrong. Use of $0.6 - \overline{x}$ scores M1A0, but ft.	
	Refer to $t_{11}$ . Lower 5% point is $-1.796$ .	M1 A1	No ft from here if wrong. No ft from here if wrong. Must be –1·796 unless it is clear that absolute values are being used.	
	-1·103 > -1·796, ∴ Result is not significant.	E1	ft only c's test statistic.	
	Seems mean height of saplings meets the manager's requirements.	E1	ft only c's test statistic.	11
	Underlying population is Normal.	B1		
(ii)	Cl is given by 0.5883 ± 2.201	M1 B1	ft c's $\overline{x} \pm$ .	
	$\times \frac{0.03664}{\sqrt{12}}$	M1	ft c's <i>s_{n-1}</i> .	
	$= 0.5883 \pm 0.0233 = (0.565(0), 0.611(6))$	A1	c.a.o. Must be expressed as an interval.	
			ZERO if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0. Recovery to $t_{11}$ is OK.	

	In repeated sampling, 95% of intervals constructed in this way will contain the true population mean.	E1	5
(iii)	Could use the Wilcoxon test.	E1	
	Null hypothesis is "Median = 0.6".	E1	2
			18

Q3	$M \sim N(44, 4 \cdot 8^2)$ $H \sim N(32, 2 \cdot 6^2)$ $P \sim N(21, 3 \cdot 7^2)$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables, penalise the first occurrence only.	
(i)	$P(M < 50) = P(Z < \frac{50 - 44}{4 \cdot 8} = 1.25)$ = 0.8944	M1 A1 A1	For standardising. Award once, here or elsewhere.	
(ii)	$H + P \sim N(32 + 21 = 53, 2 \cdot 6^2 + 3 \cdot 7^2 = 20 \cdot 45)$ $P(H + P < 50) = P(Z < \frac{50 - 53}{\sqrt{20 \cdot 45}} = -0 \cdot 6634)$	B1 B1	Mean. Variance. Accept sd = √20·45 = 4·522	
	$\sqrt{20.45}$ = 1 - 0.7465 = 0.2535	A1	C.a.o.	
(iii)	Want $P(M > H + P)$ i.e. $P(M - (H + P) > 0)$ $M - (H + P) \sim N(44 - (32 + 21) = -9,$ $4 \cdot 8^2 + 2 \cdot 6^2 + 3 \cdot 7^2 =$ $43 \cdot 49)$	M1 B1 B1	Allow $H + P - M$ provided subsequent work is consistent. Mean. Variance. Accept sd = $\sqrt{43.49}$ = $6.594$	
	P(this > 0) = P(Z > $\frac{0 - (-9)}{\sqrt{43 \cdot 49}}$ = 1.365) = 1 - 0.9139 = 0.0861	A1	c.a.o.	
(iv)	Mean = $44 + 44 + 32 + 32 + 21 + 21$ = 194 Variance = $4 \cdot 8^2 + 4 \cdot 8^2 + 2 \cdot 6^2 + 2 \cdot 6^2 + 3 \cdot 7^2 + 3 \cdot 7^2$ = $86 \cdot 98$	B1 B1	(sd = 9·3263…)	
(v)	$C \sim N(194 \times 0.15 + 10 = 39.10,$	M1 M1 A1	c's mean in (iv) × 0·15 + 10 (or subtract 10 from 40 below) ft c's mean in (iv).	
	$86 \cdot 98 \times 0 \cdot 15^2 = 1 \cdot 957 \big)$	M1	c's variance in (iv) $\times 0.15^2$	
	$P(C \le 40) = P(Z \le \frac{40 - 39 \cdot 10}{\sqrt{1 \cdot 957}} = 0.6433)$	A1	ft c's variance in (iv).	
	= 0.7400	A1	c.a.o.	
	Alternatively: $P(C \le 40) = P(\text{total time} \le \frac{40-10}{0.15} = 200$ minutes)	M1 M1 A1	– 10 ÷ 0.15 c.a.o.	
	$= P(Z \le \frac{200 - 194}{\sqrt{86 \cdot 98}} = 0.6433)$	M1 A1	Correct use of c's variance in (iv). ft c's mean and variance in (iv).	

4768
------

	= 0.7400	A1	c.a.o.	
				18

				1
Q4				
α.				
(a)		-		
ζ-γ	Obs Exp	M1	Combine first two rows.	
	10 6.68			
	$(10-6.68)^2$			
	$\therefore X^2 = \frac{(10 - 6 \cdot 68)^2}{6 \cdot 68} + \text{etc}$	M1		
	= 1.6501 + 1.7740 + 3.3203 + 4.5018 +			
	0.4015 + 0.8135			
		A1		
	= 12·46(12)	AI		
	d.o.f. = $6 - 3 = 3$		Require d.o.f. = No. cells used –	
			3.	
	Refer to $\chi_3^2$ .	M1	No ft from here if wrong.	
	Upper 5% point is 7·815	A1	No ft from here if wrong.	
	12·46 > 7·815 ∴ Result is significant.	E1	ft only c's test statistic.	
	Seems the Normal model does not fit the	E1	ft only c's test statistic.	
	data at the 5% level.		-	
	E.g.			
	• The biggest discrepancy is in the class	E1		
	1.01 < a ≤ 1.02			
	• The model overestimates in classes,	E1	Any two suitable comments.	9
	but underestimates in classes			
(b)				
			-0.010 0.009 -0.005 -0.016	
	Rank of  diff          6         2         1         3         4	7	9 8 5 10	
		M1	For differences. ZERO in this	
			section if differences not used.	
		M1	For ranks of  difference .	
		A1	All correct.	
			ft from here if ranks wrong.	
	$W_{+} = 6 + 2 + 4 + 8 = 20$	B1	Or W ₋ = 1 + 3 + 7 + 9 + 5 + 10	
	-		= 35	
	Refer to Wilcoxon single sample (/paired)	M1	No ft from here if wrong.	
	tables for $n = 10$ .			
	Lower two-tail 10% point is	M1	Or, if 35 used, upper point is 45.	
	10.	A1	No ft from here if wrong.	
	20 > 10 ∴ Result is not significant.	E1	Or 35 < 45.	
			ft only c's test statistic.	
	Seems there is no reason to suppose the	E1	ft only c's test statistic.	9
	barometers differ.	- '		Ĭ
$\vdash$		+		18
				10

Mark Scheme 4771 January 2007



2.			
(i)	109; 32; 3; 523; 58		
	32; 3; 109; 58; 523 4 comparisons and 3 swaps	M1	
	3; 32; 58; 109; 523 3 and 2	A1	only if all iterations
	3; 32; 58; 109; 523 2 and 0		completed
	3; 32; 58; 109; 523 1 and 0		·
	10 and 5 in total		
		B1 B1	
(ii)	523; 109; 58; 32; 3		
. ,	10 swaps	B1	
	·	B1	
(iii)	$1.5 \times 100^2$ = 15000 seconds = 4 hrs 10 mins		
(,		M1	
		A1	hours and minutes

3.

3.		
(i)	e.g. 0, 1 $\rightarrow$ A 2, 3 $\rightarrow$ B 4, 5 $\rightarrow$ C 6, 7 $\rightarrow$ D 8, 9 $\rightarrow$ E	M1 A1 proportions OK B1 efficient
(ii)	e.g: 3, 4, 4, 4, 1	M1 A1
(iii)	In the above simulation mean = 3.2 (Correct expectation is 2.5 – geometric rand variable)	M1 A1
(iv)	More repetitions	B1
1		



4771

5.

Let x be the number of  $m^2$  of lawn. Let y be the number of  $m^2$  of flower beds. (i) B1  $x + y \ge 1000$ Β1  $0.80x + 0.40y \le 500$ , i.e.  $2x + y \le 1250$ Β1 B1 y ≥ 2x x ≥ 200 B1 Minimise 0.15x + 0.25yB1 B1 (ii) & (iii) y 1250 (200,850) **242.5** 1000 axes labelled + B1 scaled Β4 lines (200,800 230 B1 shading (250,750) **225** Х Lay 250 m² of lawn and 750 m² of flower beds. M1 Annual maintenance =  $\pounds$ 225. A1 Intersection of  $y \ge 2x \&$  area constraint is at (iv) (333.33,666.67) so max useful capital is £533.33. B1 (allow £533.33) So £33.33.

#### 4771



Mark Scheme 4776 January 2007

Jan 2007

			ls (4776) J					Mark scheme	
1	mpe:	[M1A1]							
	mpre:	[M1A1]							
	Extra digit	ts are used i	nternally so	that roundin	g errors will	not (usually)		[E1]	
	show in th	ne displayed	answer					[TOTAL 5]	
2 (i)	tan 0.2=	0.20271 0	approx =	0.20266 7				[A1A1]	
(-)	error:	-4.3E-05	rel error:	-0.00021				[A1A1]	
				0.13552				[subtotal 4]	
(ii)	k 0.2^5=	4.34E-05	hence k=	8	accept 0.	13 or 0.14		[M1A1A1]	
								[subtotal 3] [TOTAL 7]	
		_			_			[	
3	r	0	1	2 0.35646	3 0.35706				
	x _r	0.35	0.354767	2 0.00169	7 0.00060				
	Difference	es	0.004767	5	5			[M1A1]	
	Ratio of d	ifferences		0.35557 0	0.35693 2			[M1A1]	
				C C	_			[]	
	root =	0.35706 7	+0.000605	(0.356932 -	+ 0.356932 ²	+)		[M1A1]	
	=	0.35740 3		· ·		,			
	-	-	ems justified					[A1] [A1]	
								[TOTAL 8]	
4	Graph of	y = cos x an	$d y = x^2 shown$	wing one inte	ersection for	x > 0. (Or eo	quivalent.)	[G2]	
	x	0.7	0.9		change of s	sign so root			
	cos x -x ²	0.27484 2	-0.18839		-	-		[M1A1]	
	03 x -x	Z	-0.10039						
	r	0	1	2 0.81866	3 0.82390	4 0.82413	root		
	Xr	0.7	0.9	3	9	3	0.824	[M1A1A1]	
	f(x)	0.27484 2	-0.18839	0.01298 9	0.00053 1	-1.6E-06	to 3dp	[A1]	
							•	[TOTAL 8]	
5	x f(x)	0 1.1105	0.25 1.2446	0.5 1.4065					
	h f'(0)	0.5 0.5920	0.25 0.5364					[M1A1A1]	
	• •	poor accuracy: estimates very different, at most 1 dp reliable							
								[subtotal 4]	
	h	0.25							
	h f '(0.25)	0.25 0.5920						[M1A1]	

#### Mark Scheme

[E1] [subtotal 4] [TOTAL 8]	swer with.	are the answ	ng to compa	iere is nothii	p because th	ore than 1 d	nothing mo	
		1.5 1.15	1.4 0.78	1.2 0.15	1.1 -0.09	0.9 -0.43	x f(x)	6
[M1A1A1A1] [A1]	73	2.4 x - 2.73	(1.2 - 1.1) =	5 (x - 1.1) /	1 - 1.2) + 0.1 1.1375		y = -0.09 (: Estimate o	(i)
[M1A1] [M1A1] [A1] [subtotal 10]					nd 0.155 giv nd 0.145 giv	es -0.095 a	-	
[M1A1A1A1] [A1] [A1] [M1A1] [subtotal 8]				5x +1.54) +	1.4) / (1.1 - 1 3) - 7.5 (x ² - 2 57 (reject other	2.6x + 1.68 - 3.35x + 0.9	$y = -3 (x^2 - 2x^2)$ = 2.5 x ²	(ii)
[TOTAL 18]								
			S	T 0.625	М	x^-x 1 0.25	x 1 2	7 (i)
[M1A1A1]		(h=0.5)	0.57122 1	0.58466 6	0.544331	0.54433 1 <b>0.75659</b> 3	1.5 1.25	
[M1A1A1A1] [subtotal 7]		(h=0.25)	0.57227 4	0.57537 2	0.566078	0.37556 4	1.75	
[0001010117]				0.00105		0.57122 1 0.57227	a = b =	(ii)
[M1A1A1] [E1E1] [subtotal 5]	_	0.06647 7 agreement	ratio = 0625): good	3 7E-05 y 1/16 (= 0.0	b - a = c - b = Theoretical	4 0.57234 4	c =	
[M1A1] [A1]		3 ² +)	(1/16 + 1/16	0.0000699	0.572344 + 0.572349	=		(iii)
[A1E1] [E1] [subtotal 6]		ergence	ate of conve		pletely secur ding errors i			
[TOTAL 18]								

#### 7895-8,3895-3898 AS and A2 MEI Mathematics January 2007 Assessment Series

#### **Unit Threshold Marks**

Unit		Maximum Mark	Α	В	С	D	E	U
All units	UMS	100	80	70	60	50	40	0
4751	Raw	72	50	43	36	29	23	0
4752	Raw	72	52	45	38	31	25	0
4753	Raw	72	61	54	47	39	31	0
4753/02	Raw	18	14	12	10	9	8	0
4754	Raw	90	68	60	52	44	37	0
4755	Raw	72	59	51	43	35	27	0
4756	Raw	72	53	46	39	32	25	0
4758	Raw	72	58	50	42	33	24	0
4758/02	Raw	18	14	12	10	9	8	0
4761	Raw	72	56	48	40	33	26	0
4762	Raw	72	58	50	43	36	29	0
4763	Raw	72	53	46	39	32	25	0
4766	Raw	72	51	44	38	32	26	0
4767	Raw	72	59	52	45	38	31	0
4768	Raw	72	59	51	43	35	28	0
4771	Raw	72	55	47	40	33	26	0
4776	Raw	72	52	46	40	33	27	0
4776/02	Raw	18	13	11	9	8	7	0

### **Specification Aggregation Results**

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

	Maximum Mark	Α	В	С	D	E	U
7895-7898	600	480	420	360	300	240	0
3895-3898	300	240	210	180	150	120	0

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	Е	U	Total Number of Candidates
7895	28.9	59.8	83.5	95.9	96.9	100	97
7896	30.8	69.2	100	100	100	100	13
7897	100	100	100	100	100	100	1
7898							0
3895	18.0	39.1	61.6	78.4	94.4	100	445
3896	33.3	66.7	83.3	100	100	100	6
3897	100	100	100	100	100	100	2
3898	84.6	92.3	92.3	100	100	100	13

For a description of how UMS marks are calculated see; <u>http://www.ocr.org.uk/exam_system/understand_ums.html</u>

Statistics are correct at the time of publication

# OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

### **OCR Customer Contact Centre**

#### (General Qualifications)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: helpdesk@ocr.org.uk

#### www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2007

