Mathematics (MEI)

Advanced GCE A2 7895-8
Advanced Subsidiary GCE AS 3895-8

Mark Schemes for the Units

January 2007

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2007

Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annersley
NOTTINGHAM
NG15 0DL
Telephone: 08708706622
Facsimile: 08708706621
E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Further Mathematics (MEI) (7896)
Advanced GCE Further Mathematics (Additional) (MEI) (7897)
Advanced GCE Mathematics (MEI) (7895)
Advanced GCE Pure Mathematics (MEI) (7898)
Advanced Subsidiary GCE Further Mathematics (MEI) (3896)
Advanced Subsidiary GCE Further Mathematics (Additional) (MEI) (3897)
Advanced Subsidiary GCE Mathematics (MEI) (3895)
Advanced Subsidiary GCE Pure Mathematics (MEI) (3898)

MARK SCHEME ON THE UNITS

Unit	Content	Page
4751	Introduction to Advanced Mathematics (C1)	1
4752	Concepts for Advanced Mathematics (C2)	7
4753	Methods for Advanced Mathematics (C3)	11
4754	Applications of Advanced Mathematics (C4)	17
4755	Further Concepts for Advanced Mathematics (FP1)	23
4756	Further Methods for Advanced Mathematics (FP2)	31
4758	Differential Equations	39
4761	Mechanics 1	45
4762	Mechanics 2	51
4763	Mechanics 3	57
4766	Statistics 1	63
4767	Statistics 2	69
4768	Statistics 3	75
4771	Decision Mathematics 1	83
4776	Numerical Methods	89
*	Grade Thresholds	92

Mark Scheme 4751 January 2007

Section A

1	$y=2 x+4$	3	M1 for $m=2$ stated [M0 if go on to use $m=-1 / 2] \quad$ or M 1 for $y=2 x+k, k \neq 7$ and M1indep for $y-10=m(x-3)$ or $(3$, 10) subst in $y=m x+c$; allow 3 for $y=2 x$ $+k$ and $k=4$	3
2	neg quadratic curve intercept $(0,9)$ through $(3,0)$ and $(-3,0)$	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ 1 \end{array}$	condone (0,9) seen eg in table	3
3	$[a=] \frac{2 c}{2-f}$ or $\frac{-2 c}{f-2}$ as final answer	3	M1 for attempt to collect as and cs on different sides and M1 ft for a $(2-f)$ or dividing by $2-f$; allow M 2 for $\frac{7 c-5 c}{2-f}$ etc	3
4	$\begin{aligned} & \mathrm{f}(2)=3 \text { seen or used } \\ & 2^{3}+2 k+5=3 \text { o.e. } \\ & k=-5 \end{aligned}$	$\begin{aligned} & \hline \mathrm{M} 1 \\ & \\ & \mathrm{M} 1 \\ & \mathrm{~B} 1 \end{aligned}$	allow M1 for divn by $(x-2)$ with $x^{2}+2 x+$ $(k+4)$ or $x^{2}+2 x-1$ obtained alt: M1 for $(x-2)\left(x^{2}+2 x-1\right)+3$ (may be seen in division) then M1dep (and B1) for $x^{3}-5 x+5$ alt divn of $x^{3}+k x+2$ by $x-2$ with no rem.	3
5	375	3	allow $375 x^{4}$; M1 for 5^{2} or 25 used or seen with x^{4} and M1 for 15 or $\frac{6 \times 5}{2}$ oe eg $\frac{6!}{4!2!}$ or 1615 ... seen $\left[{ }^{6} \mathrm{C}_{4}\right.$ not sufft]	3
6	(i) 125 (ii) $\frac{9}{49}$ as final answer	2 2	M1 for $25^{\frac{1}{2}}=\sqrt{25}$ soi or for $\sqrt{25^{3}}$ M1 for $a^{-1}=\frac{1}{a}$ soi eg by $3 / 7$ or $3 / 49$	4
7	showing $a+b+c=6$ o.e $b c=\frac{9^{2}-17}{16}$ $=64 / 16$ o.e. correctly obtained completion showing $a b c=6$ o.e.	1 M1 A1 A1	simple equiv fraction eg 192/32 or 24/4 correct expansion of numerator; may be unsimplified 4 term expansion; M0 if get no further than $(\sqrt{17})^{2}$; M0 if no evidence before 64/16 o.e. may be implicit in use of factors in completion	4

8	$b^{2}-4 a c \text { soi }$ use of $b^{2}-4 a c<0$ $k^{2}<16$ [may be implied by $k<4$] $-4<k<4$ or $k>-4$ and $k<4$ isw	$\begin{array}{\|l} \hline \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{array}$	may be implied by $k^{2}<16$ deduct one mark in qn for \leq instead of <; allow equalities earlier if final inequalities correct; condone b instead of k; if M2 not earned, give SC2 for qn [or M1 SC1] for k [=] 4 and -4 as answer]	4
9	(i) $12 a^{5} b^{3}$ as final answer (ii) $\frac{(x+2)(x-2)}{(x-2)(x-3)}$ $\frac{x+2}{x-3}$ as final answer	2 M2 A1	1 for 2 'terms' correct in final answer M1 for each of numerator or denom. correct or M1, M1 for correct factors seen separately	5
10	correct expansion of both brackets seen (may be unsimplified), or difference of squares used $\begin{aligned} & 4 m^{2} \text { correctly obtained } \\ & {[p=][\pm] 2 m \text { cao }} \end{aligned}$	M2 A1 A1	M1 for one bracket expanded correctly; for M2, condone done together and lack of brackets round second expression if correct when we insert the pair of brackets	4

Section B

ii	$f(x-3)=(x-3)^{3}-5(x-3)+2$ $(x-3)\left(x^{2}-6 x+9\right)$ or other constructive attempt at expanding $(x-3)^{3}$ eg 1331 soi $\begin{aligned} & x^{3}-9 x^{2}+27 x-27 \\ & -5 x+15[+2] \end{aligned}$ 5 $2 \pm \sqrt{2}$ or ft	B1 M1 A1 B1 B1 B1	or $(x-5)(x-2+\sqrt{2})(x-2-\sqrt{2})$ soi or ft from their (i) for attempt at multiplying out 2 brackets or valid attempt at multiplying all 3 alt: A2 for correct full unsimplified expansion or A1 for correct 2 bracket expansion eg $(x-5)\left(x^{2}-4 x+2\right)$ condone factors here, not roots if B0 in this part, allow SC1 for their roots in (i) -3	4 2

Mark Scheme 4752 January 2007

Section A

1	$\frac{5}{2} \times 6 x^{\frac{3}{2}}$	1+1	- 1 if extra term	2
2	-0.2	3	M1 for $5=\frac{6}{1-r}$ and M1 dep for correct constructive step	3
3	$\sqrt{8}$ or $2 \sqrt{ } 2$ not $\pm \sqrt{ } 8$	3	M1 for use of $\sin ^{2} \theta+(1 / 3)^{2}=1$ and M 1 for $\sin \theta=\sqrt{8} / 3$ (ignore \pm) Diag.: hypot $=3$, one side $=1$ M1 3rd side $\sqrt{ } 8 \mathrm{M} 1$	3
4	(i) C (ii) B (iii) 2^{n-1}	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \end{aligned}$		3
5	(i) $-0.93,-0.930,-0.9297 \ldots$ (ii) answer strictly between 1.91 and 2 or 2 and 2.1 (iii) $y^{\prime}=-8 / x^{3}$, gradient $=-1$		M1 for grad $=\left(1-\right.$ their $\left.y_{\mathrm{B}}\right) /(2-2.1)$ if M0, SC1 for 0.93 don't allow 1.9 recurring	5
6	At least one cycle from (0,0) amplitude 1 and period $360\left[^{\circ}\right]$ indicated 222.8 to 223 and 317 to $317.2\left[^{\circ}\right]$	G1 G1dep 2	1 each, ignore extras	4
7	$x<0$ and $x>6$	3	B2 for one of these or for 0 and 6 identified or M1 for $\mathrm{x}^{2}-6 \mathrm{x}>0$ seen (M1 if y found correctly and sketch drawn)	3
8	$a+6 d=6$ correct $30=\frac{10}{2}(2 a+9 d)$ correct o.e. elimination using their equations $a=-6$ and $d=2$ 5th term $=2$	M1 M1f.t. A1 A1	Two equations in a and d	5
9	$(y=) 2 x^{3}+4 x^{2}-1$ accept $2 x^{3}+4 x^{2}+c$ and $c=-1$	4	M2 for ($y=$) $2 x^{3}+4 x^{2}+c$ (M1 if one error) and M1 for subst of $(1,5)$ dep on their $\mathrm{y}=,+\mathrm{c}$, integration attempt.	4
10	(i) $3 \log _{a} x$ ii) $b=\frac{1000}{c}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	M1 for $4 \log _{a} x$ or $-\log _{a} x$; or $\log x^{3}$ M1 for 1000 or 10^{3} seen	4

Section B

\begin{tabular}{|c|c|c|c|c|c|}
\hline 11 \& i
ii
iiiA
iiiB \& \begin{tabular}{l}
Correct attempt at cos rule correct full method for C \(\mathrm{C}=141.1 \ldots\) \\
bearing \(=[0] 38.8\) cao \\
\(1 / 2 \times 118 \times 82 \times\) sin their C or supp. \\
3030 to \(3050\left[\mathrm{~m}^{2}\right]\) \\
\(\sin (\theta / 2)=(1 / 2 \times 189) / 130\)
\[
1.6276 \rightarrow 1.63
\]
\[
\begin{aligned}
\& 0.5 \times 130^{2} \times \sin 1.63 \\
\& 0.5 \times 130^{2} \times 1.63
\end{aligned}
\] \\
their sector - their triangle AOB
\[
5315 \text { to } 5340
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
A1 \\
M1 \\
A1 \\
M1 \\
A1 \\
M1 \\
M1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
any vertex, any letter \\
or B4 \\
or correct use of angle \(A\) or angle \(B\)
\[
\begin{aligned}
\& \text { or } \cos \theta=\left(130^{2}+130^{2}-\right. \\
\& \left.189^{2}\right) /(2 \times 130 \times 130)
\end{aligned}
\] \\
In all methods, the more accurate number to be seen. condone their \(\theta\) (8435) condone their \(\theta\) in radians (13770) dep on sector \(>\) triangle
\end{tabular} \& 4
2
2

4

\hline 12 \& ii

iii \& \begin{tabular}{l}
$$
\begin{aligned}
& (2 x-3)(x-4) \\
& x=4 \text { or } 1.5 \\
& y^{\prime}=4 x-11 \\
& =5 \text { when } x=4 \text { c.a.o. } \\
& \text { grad of normal }=-1 / \text { their } y^{\prime} \\
& y[-0]=\text { their }-0.2(x-4)
\end{aligned}
$$

y-intercept for their normal area $=1 / 2 \times 4 \times 0.8$ c.a.o.
$$
\frac{2}{3} x^{3}-\frac{11}{2} x^{2}+12 x
$$

attempt difference between value at 4 and value at 1.5
$$
[-] 5 \frac{5}{24} \text { o.e. or [-]5.2(083..) }
$$

 \&

M1 A1A1

M1

A1

M1f.t.

M1

B1f.t.

A1

M1

M1

A1

 \&

or $(11 \pm \sqrt{ }(121-96)) / 4$

if M0, then B1 for showing $y=0$

when $x=4$ and B 2 for $\mathrm{x}=1.5$

condone one error

or $0=$ their $(-0.2) \times 4+c$ dep on normal attempt

s.o.i. normal must be linear or integrating their $f(x)$ from 0 to 4 M1

condone one error, ignore +c ft their (i), dep on integration attempt. c.a.o.
\end{tabular} \& 3

6

3

\hline 13 \& ii
iii
iv

v \& \begin{tabular}{l}
$$
\log _{10} y=\log _{10} k+\log _{10} 10^{a x}
$$

$\log _{10} y=a x+\log _{10} k$ compared to $y=m x+c$

2.9(0), 3.08, 3.28, 3.48, 3.68

plots [tol 1 mm]

ruled line of best fit drawn

intercept $=2.5$ approx

gradient $=0.2$ approx

$\mathrm{y}=$ their $300 \times 10^{x(\text { (their } 0.2)}$

or $y=10^{\text {(their } 2.5+\text { their } 0.2 x)}$

subst 75000 in any x / y eqn subst in a correct form of the relationship

11,12 or 13

"Profits change" or any reason for this.

 \&

M1

M1

T1

P1f.t

L1f.t.

M1

M1

M1f.t.

M1

M1

A1

R1

 \&

condone one error

or $\mathrm{y}-2.7=\mathrm{m}(\mathrm{x}-1)$

B3 with evidence of valid working too big, too soon
\end{tabular} \& 2

3
3
3
3
1

\hline
\end{tabular}

Mark Scheme 4753 January 2007

Section A

1 (i) P is $(2,1)$	B1	
$\begin{aligned} \text { (ii) } & \|x\|=1 \frac{1}{2} \\ \Rightarrow & x=\left(-1 \frac{1}{2}\right) \text { or } 1 \frac{1}{2} \\ & \|x-2\|+1=1 \frac{1}{2} \Rightarrow\|x-2\|=\frac{1}{2} \\ \Rightarrow x= & \left(2 \frac{1}{2}\right) \text { or } 1 \frac{1}{2} \end{aligned}$	M1 A1 M1 E1	allow $x=11 / 2$ unsupported or $\left\|1 \frac{1}{2}-2\right\|+1=\frac{1}{2}+1=1 \frac{1}{2}$
or by solving equation directly: $\begin{array}{cc} & \|x-2\|+1=\|x\| \\ \Rightarrow & 2-x+1=x \\ \Rightarrow & x=1^{1 / 2} \\ \Rightarrow & y=\|x\|=11 / 2 \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { E1 } \\ & {[4]} \end{aligned}$	equating from graph or listing possible cases
$\begin{aligned} \int_{1}^{2} & x^{2} \ln x d x \quad u=\ln x \quad d v / d x=x^{2} \Rightarrow v=\frac{1}{3} x^{3} \\ & =\left[\frac{1}{3} x^{3} \ln x\right]_{1}^{2}-\int_{1}^{2} \frac{1}{3} x^{3} \cdot \frac{1}{x} d x \\ & =\frac{8}{3} \ln 2-\int_{1}^{2} \frac{1}{3} x^{2} d x \\ & =\frac{8}{3} \ln 2-\left[\frac{1}{9} x^{3}\right]_{1}^{2} \\ & =\frac{8}{3} \ln 2-\frac{8}{9}+\frac{1}{9} \\ & =\frac{8}{3} \ln 2-\frac{7}{9} \end{aligned}$	M1 A1 A1 M1 A1 cao [5]	Parts with $u=\ln x \mathrm{~d} v / \mathrm{d} x=x^{2} \Rightarrow v=x^{3} / 3$ $\left[\frac{1}{9} x^{3}\right]$ substituting limits o.e. $-\operatorname{not} \ln 1$
$\begin{aligned} & 3 \text { (i) When } t=0, V=10000 \\ & \Rightarrow \quad 10000=A \mathrm{e}^{0}=A \\ & \\ & \quad \text { When } t=3, V=6000 \\ & \Rightarrow \quad 6000=10000 \mathrm{e}^{-3 k} \\ & \Rightarrow \quad-3 k=\ln (0.6)=-0.5108 \ldots \\ & \Rightarrow \quad k=0.17(02 \ldots) \end{aligned}$	M1 A1 M1 M1 A1 [5]	$\begin{aligned} & 10000=A \mathrm{e}^{0} \\ & A=10000 \end{aligned}$ taking lns (correctly) on their exponential equation - not logs unless to base 10 art 0.17 or $-(\ln 0.6) / 3$ oe
$\begin{array}{ll} \text { (ii) } & 2000=10000 \mathrm{e}^{-k t} \\ \Rightarrow & -k t=\ln 0.2 \\ \Rightarrow & t=-\ln 0.2 / k=9.45 \text { (years) } \end{array}$	M1 A1 [2]	taking lns on correct equation (consistent with their k) allow art 9.5, but not 9 .

4 Perfect squares are		
$0,1,4,9,16,25,36,49,64,81$ none of which end in a $2,3,7$ or 8 .	$\begin{array}{\|l\|} \text { M1 } \\ \text { E1 } \end{array}$	Listing all 1 - and 2-digit squares. Condone absence of 0^{2}, and listing squares of 2 digit nos (i.e. $0^{2}-19^{2}$)
Generalisation: no perfect squares end in a $2,3,7$ or 8 .	$\begin{array}{\|l} \mathrm{B} 1 \\ {[3]} \\ \hline \end{array}$	For extending result to include further square numbers.
$\text { 5 (i) } \begin{aligned} y & =\frac{x^{2}}{2 x+1} \\ \Rightarrow \quad \frac{d y}{d x} & =\frac{(2 x+1) 2 x-x^{2} \cdot 2}{(2 x+1)^{2}} \\ & =\frac{2 x^{2}+2 x}{(2 x+1)^{2}}=\frac{2 x(x+1)}{(2 x+1)^{2}} * \end{aligned}$	M1 A1 A1 E1 [4]	Use of quotient rule (or product rule) Correct numerator - condone missing bracket provided it is treated as present Correct denominator www -do not condone missing brackets
$\text { (ii) } \begin{aligned} & \frac{d y}{d x}=0 \text { when } 2 x(x+1)=0 \\ & \Rightarrow \quad \begin{array}{l} x=0 \text { or }-1 \\ y=0 \text { or }-1 \end{array} \end{aligned}$	B1 B1 B1 B1 [4]	Must be from correct working: $\mathrm{SC}-1$ if denominator $=0$
$\text { 6(i) } \begin{aligned} & \mathrm{QA}=3-y, \\ & \mathrm{PA}=6-(3-y)=3+y \\ & \text { By Pythagoras, } \mathrm{PA}^{2}=\mathrm{OP}^{2}+\mathrm{OA}^{2} \\ & \Rightarrow \quad(3+y)^{2}=x^{2}+3^{2}=x^{2}+9 . * \end{aligned}$	B1 B1 E1 [3]	must show some working to indicate Pythagoras (e.g. $x^{2}+$ 3^{2})
(ii) Differentiating implicitly: $\begin{aligned} & 2(y+3) \frac{d y}{d x}=2 x \\ \Rightarrow & \frac{d y}{d x}=\frac{x}{y+3} * \end{aligned}$	M1 E1	Allow errors in RHS derivative (but not LHS) notation should be correct brackets must be used
$\begin{aligned} & \text { or } 9+6 y+y^{2}=x^{2}+9 \\ & \Rightarrow 6 y+y^{2}=x^{2} \\ & \Rightarrow \quad(6+2 y) \frac{d y}{d x}=2 x \\ & \Rightarrow \frac{d y}{d x}=\frac{x}{y+3} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { E1 } \end{aligned}$	Allow errors in RHS derivative (but not LHS) notation should be correct brackets must be used
$\begin{aligned} & \text { or } y=\sqrt{\left(x^{2}+9\right)-3 \Rightarrow} \mathrm{~d} y / \mathrm{d} x=1 / 2\left(x^{2}+9\right)^{-1 / 2} \cdot 2 x \\ &=\frac{x}{\sqrt{x^{2}+9}}=\frac{x}{y+3} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{E} 1 \end{aligned}$	(cao)
$\text { (iii) } \begin{aligned} {\left[\frac{d y}{d t}\right.} & =\frac{d y}{d x} \cdot \frac{d x}{d t} \\ & =\frac{4}{2+3} \times 2 \\ & =\frac{8}{5} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	chain rule (soi)

Section B

7(i) When $x=-1, y=-1 \sqrt{ } 0=0$ Domain $x \geq-1$	$\begin{aligned} & \text { E1 } \\ & \text { B1 } \end{aligned}$ [2]	Not $y \geq-1$
$\text { (ii) } \begin{aligned} \frac{d y}{d x} & =x \cdot \frac{1}{2}(1+x)^{-1 / 2}+(1+x)^{1 / 2} \\ & =1 / 2(1+x)^{-1 / 2}[x+2(1+x)] \\ & =\frac{2+3 x}{2 \sqrt{1+x}} * \end{aligned}$	B1 B1 M1 E1	$\begin{aligned} & x \cdot \frac{1}{2}(1+x)^{-1 / 2} \\ & \ldots+(1+x)^{1 / 2} \end{aligned}$ taking out common factor or common denominator www
$\begin{aligned} & \text { or } u=x+1 \Rightarrow \mathrm{~d} u / \mathrm{d} x=1 \\ & \Rightarrow y=(u-1) u^{1 / 2}=u^{3 / 2}-u^{1 / 2} \\ & \Rightarrow \begin{aligned} \Rightarrow \frac{d y}{d u} & =\frac{3}{2} u^{\frac{1}{2}}-\frac{1}{2} u^{-\frac{1}{2}} \\ \Rightarrow \frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x} & =\frac{3}{2}(x+1)^{\frac{1}{2}}-\frac{1}{2}(x+1)^{-\frac{1}{2}} \\ & =\frac{1}{2}(x+1)^{-\frac{1}{2}}(3 x+3-1) \\ & =\frac{2+3 x}{2 \sqrt{1+x}} * \end{aligned} \end{aligned}$	M1 A1 M1 E1 [4]	taking out common factor or common denominator
$\begin{aligned} & \text { (iii) } \mathrm{d} y / \mathrm{d} x=0 \text { when } 3 x+2=0 \\ & \Rightarrow \quad x=-2 / 3 \\ & \Rightarrow \quad y=-\frac{2}{3} \sqrt{\frac{1}{3}} \\ & \text { Range is } y \geq-\frac{2}{3} \sqrt{\frac{1}{3}} \end{aligned}$	M1 Alca o A1 B1 ft [4]	o.e. not $x \geq-\frac{2}{3} \sqrt{\frac{1}{3}}$ (ft their y value, even if approximate)
(iv) $\int_{-1}^{0} x \sqrt{1+x} d x$ let $u=1+x, \mathrm{~d} u / \mathrm{d} x=1 \Rightarrow \mathrm{~d} u=\mathrm{d} x$ when $x=-1, u=0$, when $x=0, u=1$ $\begin{aligned} & =\int_{0}^{1}(u-1) \sqrt{u} d u \\ & =\int_{0}^{1}\left(u^{3 / 2}-u^{1 / 2}\right) d u^{*} \end{aligned}$	M1 B1 M1 E1	$\mathrm{d} u=\mathrm{d} x$ or $\mathrm{d} u / \mathrm{d} x=1$ or $\mathrm{d} x / \mathrm{d} u=1$ changing limits - allow with no working shown provided limits are present and consistent with $\mathrm{d} x$ and $\mathrm{d} u$. $(u-1) \sqrt{ } u$ www - condone only final brackets missing, otherwise notation must be correct
$\begin{array}{r} =\left[\frac{2}{5} u^{5 / 2}-\frac{2}{3} u^{3 / 2}\right]_{0}^{1} \\ = \pm \frac{4}{15} \end{array}$	B1 B1 M1 A1ca o $[8]$	$\frac{2}{5} u^{5 / 2},-\frac{2}{3} u^{3 / 2}(\mathrm{oe})$ substituting correct limits (can imply the zero limit) $\pm \frac{4}{15}$ or ± 0.27 or better, not 0.26

8 (i) $f^{\prime}(x)=2\left(e^{x}-1\right) e^{x}$ When $x=0, \mathrm{f}^{\prime}(0)=0$ When $x=\ln 2, \mathrm{f}^{\prime}(\ln 2)=2(2-1) 2$ $=4$	M1 A1 B1dep M1 A1cao [5]	$\begin{aligned} & \text { or } \mathrm{f}(x)=\mathrm{e}^{2 x}-2 \mathrm{e}^{x}+1 \mathrm{M} 1 \\ & \text { (or } \left.\left(\mathrm{e}^{x}\right)^{2}-2 \mathrm{e}^{x}+1 \text { plus correct deriv of }\left(\mathrm{e}^{x}\right)^{2}\right) \\ & \Rightarrow \mathrm{f}^{\prime}(x)=2 \mathrm{e}^{2 x}-2 \mathrm{e}^{x} \mathrm{~A} 1 \\ & \text { derivative must be correct, www } \\ & \mathrm{e}^{\mathrm{ln} 2}=2 \text { soi } \end{aligned}$
$\begin{aligned} \text { (ii) } & y=\left(\mathrm{e}^{x}-1\right)^{2} \quad x \leftrightarrow y \\ & x=\left(\mathrm{e}^{y}-1\right)^{2} \\ \Rightarrow & \sqrt{ }=\mathrm{e}^{y}-1 \\ \Rightarrow & 1+\sqrt{x}=\mathrm{e}^{y} \\ \Rightarrow & y=\ln (1+\sqrt{ }) \end{aligned}$	M1 M1 E1	reasonable attempt to invert formula taking lns similar scheme of inverting $y=\ln (1+\sqrt{ } x)$
$\text { or } \begin{aligned} \mathrm{gf}(x) & =\mathrm{g}\left(\left(\mathrm{e}^{x}-1\right)^{2}\right) \\ & =\ln \left(1+\mathrm{e}^{x}-1\right) \\ & =x \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { E1 } \end{aligned}$	constructing gf or fg $\ln \left(\mathrm{e}^{x}\right)=x \text { or } \mathrm{e}^{\ln (1+\sqrt{x})}=1+\sqrt{ } x$
 Gradient at $(1, \ln 2)=1 / 4$	B1 B1ft [5]	reflection in $y=x$ (must have infinite gradient at origin)
$\text { (iii) } \begin{aligned} & \int\left(e^{x}-1\right)^{2} d x=\int\left(e^{2 x}-2 e^{x}+1\right) d x \\ &= \frac{1}{2} e^{2 x}-2 e^{x}+x+c^{*} \\ & \int_{0}^{\ln 2}\left(e^{x}-1\right)^{2} d x=\left[\frac{1}{2} e^{2 x}-2 e^{x}+x\right]_{0}^{\ln 2} \\ &= 1 / 2 \mathrm{e}^{2 \ln 2}-2 \mathrm{e}^{\ln 2}+\ln 2-(1 / 2-2) \\ &= 2-4+\ln 2-1 / 2+2 \\ &= \ln 2-1 / 2 \end{aligned}$	M1 E1 M1 M1 A1 [5]	expanding brackets (condone $e^{x^{2}}$) substituting limits $\mathrm{e}^{\ln 2}=2$ used must be exact
(iv) $\text { Area }=1 \times \ln 2-(\ln 2-1 / 2)$ $=1 / 2$	M1 B1 A1cao [3]	subtracting area in (iii) from rectangle rectangle area $=1 \times \ln 2$ must be supported

Mark Scheme 4754 January 2007

Paper A - Section A

$\begin{aligned} & 5 \quad(1+3 x)^{\frac{1}{3}}= \\ & =1+\frac{1}{3}(3 x)+\frac{\frac{1}{3} \cdot\left(-\frac{2}{3}\right)}{2!}(3 x)^{2}+\frac{\frac{1}{3}\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}(3 x)^{3}+\ldots \\ & =1+x-x^{2}+\frac{5}{3} x^{3}+\ldots \\ & \quad \text { Valid for }-1<3 x<1 \Rightarrow-1 / 3<x<1 / 3 \end{aligned}$	M1 B1 A2,1,0 B1 [5]	binomial expansion (at least 3 terms) correct binomial coefficients (all) $x,-x^{2}, 5 x^{3} / 3$
$\begin{aligned} & \text { 6(i) } \frac{1}{(2 x+1)(x+1)}=\frac{A}{2 x+1}+\frac{B}{x+1} \\ & \Rightarrow \quad 1=A(x+1)+B(2 x+1) \\ & x=-1: 1=-B \Rightarrow B=-1 \\ & x=-1 / 2: 1=1 / 2 A \Rightarrow A=2 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[3]} \end{gathered}$	or cover up rule for either value
	M1 A1 B1ft M1 E1 [5]	separating variables correctly condone omission of $\mathrm{c} . \mathrm{ft} \mathrm{A}, \mathrm{B}$ from (i) calculating c, no incorrect \log rules combining lns www

Section B

	B1 B1 M1 A1 [4]	or subst in both x and y allow 180°
$\text { (ii) } \begin{aligned} & \frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta} \\ &=\frac{\cos \theta-\frac{1}{4} \cos 2 \theta}{-\sin \theta} \\ &=\frac{\cos 2 \theta-4 \cos \theta}{4 \sin \theta} \\ & \Rightarrow \quad d y / \mathrm{d} x=0 \text { when } \cos 2 \theta-4 \cos \theta=0 \\ & \Rightarrow \quad 2 \cos ^{2} \theta-1-4 \cos \theta=0 \\ & \Rightarrow \quad 2 \cos ^{2} \theta-4 \cos \theta-1=0^{*} \end{aligned}$	M1 A1 A1 M1 E1 [5]	finding $d y / d \theta$ and $d x / d \theta$ correct numerator correct denominator $=0$ or their num $=0$
$\begin{aligned} & \text { (iii) } \cos \theta=\frac{4 \pm \sqrt{16+8}}{4}=1 \pm \frac{1}{2} \sqrt{6} \\ &(1+1 / 2 \sqrt{ } 6>1 \text { so no solution }) \\ & \Rightarrow \theta=1.7975 \\ & y=\sin \theta-\frac{1}{8} \sin 2 \theta=1.0292 \end{aligned}$	M1 A1ft A1 cao M1 A1 cao [5]	$1 \pm \frac{1}{2} \sqrt{6}$ or (2.2247,-. 2247) both or - ve their quadratic equation 1.80 or 103° their angle 1.03 or better
$\text { (iv) } \begin{aligned} V & =\int_{-1}^{1} \pi y^{2} d x \\ & =\frac{1}{16} \pi \int_{-1}^{1}\left(16-8 x+x^{2}\right)\left(1-x^{2}\right) d x \\ & =\frac{1}{16} \pi \int_{-1}^{1}\left(16-8 x+x^{2}-16 x^{2}+8 x^{3}-x^{4}\right) d x \\ & =\frac{1}{16} \pi \int_{-1}^{1}\left(16-8 x-15 x^{2}+8 x^{3}-x^{4}\right) d x \\ & =\frac{1}{16} \pi\left[16 x-4 x^{2}-5 x^{3}+2 x^{4}-\frac{1}{5} x^{5}\right]_{-1}^{1} \\ & =\frac{1}{16} \pi\left(32-10-\frac{2}{5}\right) \\ & =1.35 \pi=4.24 \end{aligned}$	M1 M1 E1 B1 M1 A1cao [6]	correct integral and limits expanding brackets correctly integrated substituting limits

	M1 A1 [2]	
$\begin{aligned} & \text { (ii) } \overrightarrow{B A}=\left(\begin{array}{l} -40 \\ -40 \\ 20 \end{array}\right)=20\left(\begin{array}{l} -2 \\ -2 \\ 1 \end{array}\right) \\ & \cos \theta=\frac{\left(\begin{array}{l} -2 \\ -2 \\ 1 \end{array}\right) \cdot\left(\begin{array}{l} 3 \\ 4 \\ 1 \end{array}\right)}{\sqrt{9} \sqrt{26}}=-\frac{13}{3 \sqrt{26}} \\ & \Rightarrow \quad \theta=148^{\circ} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	$\begin{aligned} & \text { or } \overrightarrow{A B} \\ & -13 \text { oe eg }-260 \\ & \sqrt{ } 9 \sqrt{ } 26 \text { oe eg } 60 \sqrt{ } 26 \\ & \text { cao (or radians) } \end{aligned}$
(iii) $\mathbf{r}=\left(\begin{array}{l}40 \\ 0 \\ -20\end{array}\right)+\lambda\left(\begin{array}{l}3 \\ 4 \\ 1\end{array}\right)$ $\begin{aligned} & \text { At C, } z=0 \Rightarrow \lambda=20 \\ & \Rightarrow \quad a=40+3 \times 20=100 \\ & \\ & b=0+4 \times 20=80 \end{aligned}$	B1 B1 M1 A1 A1 [5]	$\begin{aligned} & \left(\begin{array}{l} 40 \\ 0 \\ -20 \end{array}\right)+\ldots \\ & \ldots+\lambda\left(\begin{array}{l} 3 \\ 4 \\ 1 \end{array}\right) \quad \text { or } \ldots+\lambda\left(\begin{array}{l} a-40 \\ b \\ 20 \end{array}\right) \end{aligned}$
(iv) $\left(\begin{array}{l}6 \\ -5 \\ 2\end{array}\right) \cdot\left(\begin{array}{l}-2 \\ -2 \\ 1\end{array}\right)=-12+10+2=0$ $\left(\begin{array}{l}6 \\ -5 \\ 2\end{array}\right) \cdot\left(\begin{array}{l}3 \\ 4 \\ 1\end{array}\right)=18-20+2=0$ $\Rightarrow \quad\left(\begin{array}{l}6 \\ -5 \\ 2\end{array}\right)$ is perpendicular to plane. Equation of plane is $6 x-5 y+2 z=c$ At B (say) $6 \times 40-5 \times 0+2 \times-20=c$ $\Rightarrow c=200$ so $6 x-5 y+2 z=200$	B1 B1 M1 M1 A1 [5]	(alt. method finding vector equation of plane M1 eliminating both parameters DM1 correct equation A1 stating Normal hence perpendicular B2)

Paper B Comprehension

Mark Scheme 4755 January 2007

Qu	Answer	Mark	Comment
Section A			
1	The statement is false. The 'if' part is true, but the 'only if' is false since $x=-2$ also satisfies the equation.	M1 A1 [2]	'False', with attempted justification (may be implied) Correct justification
2(i)	$\begin{aligned} & \frac{4 \pm \sqrt{16-28}}{2} \\ & =\frac{4 \pm \sqrt{12}}{2} j=2 \pm \sqrt{3} j \end{aligned}$	M1 A1 A1 A1 [4] B1 (ft) B1 (ft) [2]	Attempt to use quadratic formula or other valid method Correct Unsimplified form. Fully simplified form. One correct, with correct labelling Other in correct relative position s.c. give B1 if both points consistent with (i) but no/incorrect labelling
3(i) 3(ii)	$\left(\begin{array}{ll} 2 & 0 \\ 0 & \frac{1}{2} \end{array}\right)\left(\begin{array}{lll} 1 & 1 & 2 \\ 2 & 0 & 2 \end{array}\right)=\left(\begin{array}{lll} 2 & 2 & 4 \\ 1 & 0 & 1 \end{array}\right)$ Stretch, factor 2 in x-direction, stretch factor half in y-direction.	B3 B1 ELSE M1 A1 [4] B1 B1 B1 [3]	Points correctly plotted Points correctly labelled Applying matrix to points Minus 1 each error 1 mark for stretch (withhold if rotation, reflection or translation mentioned incorrectly) 1 mark for each factor and direction

4	$\begin{aligned} & \sum_{r=1}^{n} r\left(r^{2}+1\right)=\sum_{r=1}^{n} r^{3}+\sum_{r=1}^{n} r \\ & =\frac{1}{4} n^{2}(n+1)^{2}+\frac{1}{2} n(n+1) \\ & =\frac{1}{4} n(n+1)[n(n+1)+2] \\ & =\frac{1}{4} n(n+1)\left(n^{2}+n+2\right) \end{aligned}$	M1 M1 A1 M1 A1 A1 [6]	Separate into two sums (may be implied by later working) Use of standard results Correct Attempt to factorise (dependent on previous M marks) Factor of $n(n+1)$ c.a.o.
5	$\begin{aligned} & \omega=2 x+1 \Rightarrow x=\frac{\omega-1}{2} \\ & 2\left(\frac{\omega-1}{2}\right)^{3}-3\left(\frac{\omega-1}{2}\right)^{2}+\left(\frac{\omega-1}{2}\right)-4=0 \\ & \Rightarrow \frac{1}{4}\left(\omega^{3}-3 \omega^{2}+3 \omega-1\right)-\frac{3}{4}\left(\omega^{2}-2 \omega+1\right) \\ & +\frac{1}{2}(\omega-1)-4=0 \\ & \Rightarrow \omega^{3}-6 \omega^{2}+11 \omega-22=0 \end{aligned}$	M1 A1 M1 A1(ft) A1(ft) A2 [7]	Attempt to give substitution Correct Substitute into cubic Cubic term Quadratic term Minus 1 each error (missing ' $=0$ ' is an error)
5	OR $\begin{aligned} & \alpha+\beta+\gamma=\frac{3}{2} \\ & \alpha \beta+\alpha \gamma+\beta \gamma=\frac{1}{2} \\ & \alpha \beta \gamma=2 \end{aligned}$ Let new roots be k, I, m then $\begin{aligned} & k+l+m=2(\alpha+\beta+\gamma)+3=6=\frac{-B}{A} \\ & k l+k m+l m=4(\alpha \beta+\alpha \gamma+\beta \gamma)+ \\ & 4(\alpha+\beta+\gamma)+3=11=\frac{C}{A} \\ & k l m=8 \alpha \beta \gamma+4(\alpha \beta+\beta \gamma+\beta \gamma) \\ & +2(\alpha+\beta+\gamma)+1=22=\frac{-D}{A} \\ & \Rightarrow \omega^{3}-6 \omega^{2}+11 \omega-22=0 \end{aligned}$	M1 A1 M1 M1 M1 A2 [7]	Attempt to find sums and products of roots All correct Use of sum of roots Use of sum of product of roots in pairs Use of product of roots Minus 1 each error (missing ' $=0$ ' is an error)

\begin{tabular}{|c|c|c|c|}
\hline 6 \& \begin{tabular}{l}
\[
\begin{aligned}
\& \sum_{r=1}^{n} r^{2}=\frac{1}{6} n(n+1)(2 n+1) \\
\& n=1, \text { LHS }=\text { RHS }=1 \\
\& \text { Assume true for } n=k
\end{aligned}
\] \\
Next term is \((k+1)^{2}\) \\
Add to both sides
\[
\begin{aligned}
\& \text { RHS }=\frac{1}{6} k(k+1)(2 k+1)+(k+1)^{2} \\
\& =\frac{1}{6}(k+1)[k(2 k+1)+6(k+1)] \\
\& =\frac{1}{6}(k+1)\left[2 k^{2}+7 k+6\right] \\
\& =\frac{1}{6}(k+1)(k+2)(2 k+3) \\
\& =\frac{1}{6}(k+1)((k+1)+1)(2(k+1)+1)
\end{aligned}
\] \\
But this is the given result with \(k+1\) replacing \(k\). Therefore if it is true for \(k\) it is true for \(k+1\). Since it is true for \(k=1\), it is true for \(k=1,2,3\) and so true for all positive integers.
\end{tabular} \& B1
M1
B1
M1
M1
A1
A1
E1

E1

[8] \& | Assuming true for k. $(k+1)$ th term. |
| :--- |
| Add to both sides |
| Attempt to factorise |
| Correct brackets required - also allow correct unfactorised form Showing this is the expression with $n=k+1$ |
| Only if both previous E marks awarded |

\hline
\end{tabular}

Mark Scheme 4756 January 2007

1(a)(i)		$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$ 2	Correct shape for $0 \leq \theta \leq \frac{1}{2} \pi$ Correct shape for $\frac{1}{2} \pi \leq \theta \leq \pi$ Requires decreasing r on at least one axis Ignore other values of θ
(ii)	$\begin{aligned} & \text { Area is } \int \frac{1}{2} r^{2} \mathrm{~d} \theta=\int_{0}^{\pi} \frac{1}{2} a^{2}\left(\mathrm{e}^{-k \theta}\right)^{2} \mathrm{~d} \theta \\ & \quad=\left[-\frac{a^{2}}{4 k} \mathrm{e}^{-2 k \theta}\right]_{0}^{\pi} \\ & =\frac{a^{2}}{4 k}\left(1-\mathrm{e}^{-2 k \pi}\right) \end{aligned}$	M1 A1 M1 A1 4	For $\int\left(\mathrm{e}^{-k \theta}\right)^{2} \mathrm{~d} \theta$ For a correct integral expression including limits (may be implied by later work) (Condone reversed limits) Obtaining a multiple of $\mathrm{e}^{-2 k \theta}$ as the integral
(b)	$\begin{aligned} \int_{0}^{\frac{1}{2}} \frac{1}{3+4 x^{2}} \mathrm{~d} x & =\left[\frac{1}{2 \sqrt{3}} \arctan \left(\frac{2 x}{\sqrt{3}}\right)\right]_{0}^{\frac{1}{2}} \\ & =\frac{1}{2 \sqrt{3}} \arctan \left(\frac{1}{\sqrt{3}}\right) \\ & =\frac{\pi}{12 \sqrt{3}} \end{aligned}$	M1 A1A1 M1 A1	For arctan For $\frac{1}{2 \sqrt{3}}$ and $\frac{2 x}{\sqrt{3}}$ Dependent on first M1
	OR Putting $2 x=\sqrt{3} \tan \theta$ Integral is $\int_{0}^{\frac{1}{6} \pi} \frac{1}{2 \sqrt{3}} \mathrm{~d} \theta$ $=\frac{\pi}{12 \sqrt{3}}$		For any tan substitution For $\int \frac{1}{2 \sqrt{3}} \mathrm{~d} \theta$ For changing to limits of θ Dependent on first M1
(c)(i)	$\begin{aligned} & \mathrm{f}(x)=\tan x, \quad \mathrm{f}(0)=0 \\ & \mathrm{f}^{\prime}(x)=\sec ^{2} x, \quad \mathrm{f}^{\prime}(0)=1 \\ & \mathrm{f}^{\prime \prime}(x)=2 \sec ^{2} x \tan x, \quad \mathrm{f}^{\prime \prime}(0)=0 \\ & \mathrm{f}^{\prime \prime \prime}(x)=2 \sec ^{4} x+4 \sec ^{2} x \tan ^{2} x, \quad \mathrm{f}^{\prime \prime \prime}(0)=2 \\ & \tan x=x+\frac{x^{3}}{3!}(2)+\ldots \quad\left(=x+\frac{1}{3} x^{3}+\ldots\right) \end{aligned}$	B1 M1 A1 B1 ft 4	Obtaining $\mathrm{f}^{\prime \prime \prime}(x)$ For $\mathrm{f}^{\prime \prime}(0)$ and $\mathrm{f}^{\prime \prime \prime}(0)$ correct ft requires x^{3} term and at least one other to be non-zero
(ii)	$\begin{aligned} \int_{h}^{4 h} & \frac{\tan x}{x} \mathrm{~d} x \approx \int_{h}^{4 h}\left(1+\frac{1}{3} x^{2}\right) \mathrm{d} x \\ & =\left[x+\frac{1}{9} x^{3}\right]_{h}^{4 h} \\ & =\left(4 h+\frac{64}{9} h^{3}\right)-\left(h+\frac{1}{9} h^{3}\right) \\ & =3 h+7 h^{3} \end{aligned}$	M1 A1 ft A1 ag 3	Obtaining a polynomial to integrate For $x+\frac{1}{9} x^{3}$ ft requires at least two non-zero terms

2(a)(i)	$\begin{aligned} & \|w\|=3, \quad \arg w=-\frac{1}{12} \pi \\ & \|z\|=2, \quad \arg z=-\frac{1}{3} \pi \\ & \left\|\frac{w}{z}\right\|=\frac{3}{2}, \quad \arg \frac{w}{z}=\left(-\frac{1}{12} \pi\right)-\left(-\frac{1}{3} \pi\right)=\frac{1}{4} \pi \end{aligned}$	B1 B1B1 B1B1 ft 5	Deduct 1 mark if answers given in form $r(\cos \theta+\mathrm{j} \sin \theta)$ but modulus and argument not stated. Accept degrees and decimal approxs
(ii)	$\begin{aligned} \frac{w}{z} & =\frac{3}{2}\left(\cos \frac{1}{4} \pi+\mathrm{j} \sin \frac{1}{4} \pi\right) \\ & =\frac{3}{2 \sqrt{2}}+\frac{3}{2 \sqrt{2}} \mathrm{j} \end{aligned}$	M1 A1 2	Accept $\sqrt{1.125}+\sqrt{1.125} \mathrm{j}$
(b)(i)	$\begin{aligned} \mathrm{e}^{-\frac{1}{2} \mathrm{j} \theta} & +\mathrm{e}^{\frac{1}{2} \theta} \\ & =\left(\cos \frac{1}{2} \theta-\mathrm{j} \sin \frac{1}{2} \theta\right)+\left(\cos \frac{1}{2} \theta+\mathrm{j} \sin \frac{1}{2} \theta\right) \\ & =2 \cos \frac{1}{2} \theta \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	For either bracketed expression
	$\begin{aligned} 1+\mathrm{e}^{\mathrm{j} \theta} & =\mathrm{e}^{\frac{1}{2} \mathrm{j} \theta}\left(\mathrm{e}^{-\frac{1}{2} \mathrm{j} \theta}+\mathrm{e}^{\frac{1}{2} \mathrm{j} \theta}\right) \\ & =\mathrm{e}^{\frac{1}{2} \mathrm{j} \theta}\left(2 \cos \frac{1}{2} \theta\right) \end{aligned}$	M1 A1 ag 4	
	$\text { OR } \begin{align*} 1+\mathrm{e}^{\mathrm{j} \theta} & =1+\cos \theta+\mathrm{j} \sin \theta \\ & =2 \cos ^{2} \frac{1}{2} \theta+2 \mathrm{j} \sin \frac{1}{2} \theta \cos \frac{1}{2} \theta \tag{M1}\\ & =2 \cos \frac{1}{2} \theta\left(\cos \frac{1}{2} \theta+\mathrm{j} \sin \frac{1}{2} \theta\right) \\ & =2 \mathrm{e}^{\frac{1}{2} \theta} \cos \frac{1}{2} \theta \end{align*}$		
(ii)	$\begin{aligned} & C+\mathrm{j} S=1+\binom{n}{1} \mathrm{e}^{\mathrm{j} \theta}+\binom{n}{2} \mathrm{e}^{2 \mathrm{j} \theta}+\ldots+\binom{n}{n} \mathrm{e}^{n \mathrm{j} \theta} \\ & =\left(1+\mathrm{e}^{\mathrm{j} \theta}\right)^{n} \\ & \quad=2^{n} \mathrm{e}^{\frac{1}{2} n \theta \mathrm{j}} \cos ^{n} \frac{1}{2} \theta \\ & C=2^{n} \cos \left(\frac{1}{2} n \theta\right) \cos ^{n} \frac{1}{2} \theta \\ & S=2^{n} \sin \left(\frac{1}{2} n \theta\right) \cos ^{n} \frac{1}{2} \theta \\ & \frac{S}{C}=\frac{2^{n} \sin \left(\frac{1}{2} n \theta\right) \cos ^{n} \frac{1}{2} \theta}{2^{n} \cos \left(\frac{1}{2} n \theta\right) \cos ^{n} \frac{1}{2} \theta}=\frac{\sin \left(\frac{1}{2} n \theta\right)}{\cos \left(\frac{1}{2} n \theta\right)}=\tan \left(\frac{1}{2} n \theta\right) \end{aligned}$	M1 M1A1 M1 A1 A1 B1 ag	Using (i) to obtain a form from which the real and imaginary parts can be written down Allow ft from $C+\mathrm{j} S=\mathrm{e}^{\frac{1}{2} n \theta \mathrm{j}} \times$ any real function of n and θ

3 (i)	$\begin{aligned} \operatorname{det} \mathbf{P} & =1(6-k)-1(4-2) \\ & =4-k \\ \mathbf{P}^{-1} & =\frac{1}{4-k}\left(\begin{array}{ccc} -1 & 2 & 6-k \\ 4 & -4-k & k-12 \\ -1 & 2 & 2 \end{array}\right) \end{aligned}$ When $k=2, \quad \mathbf{P}^{-1}=\frac{1}{2}\left(\begin{array}{ccc}-1 & 2 & 4 \\ 4 & -6 & -10 \\ -1 & 2 & 2\end{array}\right)$	M1 A1 M1 M1 A1 ft B1 ag	Evaluating at least three cofactors Fully correct method for inverse Ft from wrong determinant Correctly obtained
(ii)	$\begin{aligned} & \mathbf{M}\left(\begin{array}{l} 4 \\ 1 \\ 1 \end{array}\right)=\left(\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right)=0\left(\begin{array}{l} 4 \\ 1 \\ 1 \end{array}\right) \quad \mathbf{M}\left(\begin{array}{l} 2 \\ 1 \\ 0 \end{array}\right)=\left(\begin{array}{l} 2 \\ 1 \\ 0 \end{array}\right)=1\left(\begin{array}{l} 2 \\ 1 \\ 0 \end{array}\right) \\ & \mathbf{M}\left(\begin{array}{c} 2 \\ 3 \\ -1 \end{array}\right)=\left(\begin{array}{c} 4 \\ 6 \\ -2 \end{array}\right)=2\left(\begin{array}{c} 2 \\ 3 \\ -1 \end{array}\right) \end{aligned}$ Eigenvalues are 0, 1, 2	M1 A1A1A1	For one evaluation
	OR M1 Eigenvalues are 0, 1, 2		Obtaining an eigenvalue (e.g. by solving $-\lambda^{3}+3 \lambda^{2}-2 \lambda=0$) Give A1 for one correct Verifying given eigenvectors, linking with eigenvalues correctly
(iii)	$\begin{aligned} \mathbf{M}^{n} & =\left(\begin{array}{ccc} 4 & 2 & 2 \\ 1 & 1 & 3 \\ 1 & 0 & -1 \end{array}\right)\left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^{n} \end{array}\right) \frac{1}{2}\left(\begin{array}{ccc} -1 & 2 & 4 \\ 4 & -6 & -10 \\ -1 & 2 & 2 \end{array}\right) \\ & =\frac{1}{2}\left(\begin{array}{ccc} 0 & 2 & 2^{n+1} \\ 0 & 1 & 3 \times 2^{n} \\ 0 & 0 & -2^{n} \end{array}\right)\left(\begin{array}{ccc} -1 & 2 & 4 \\ 4 & -6 & -10 \\ -1 & 2 & 2 \end{array}\right) \\ & =\left(\begin{array}{ccc} 4-2^{n} & -6+2^{n+1} & -10+2^{n+1} \\ 2-3 \times 2^{n-1} & -3+3 \times 2^{n} & -5+3 \times 2^{n} \\ 2^{n-1} & -2^{n} & -2^{n} \end{array}\right) \\ & =\left(\begin{array}{ccc} 4 & -6 & -10 \\ 2 & -3 & -5 \\ 0 & 0 & 0 \end{array}\right)+2^{n-1}\left(\begin{array}{ccc} -2 & 4 & 4 \\ -3 & 6 & 6 \\ 1 & -2 & -2 \end{array}\right) \end{aligned}$	B1B1 M1A1 B1 ft M1 A1 A1 ag 8	For $\left(\begin{array}{ccc}4 & 2 & 2 \\ 1 & 1 & 3 \\ 1 & 0 & -1\end{array}\right)$ and $\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^{n}\end{array}\right)$ seen (for B2, these must be consistent) For $\mathbf{S D}^{n} \mathbf{S}^{-1}$ (M1A0 if order wrong) $\operatorname{or} \frac{1}{2}\left(\begin{array}{ccc}4 & 2 & 2 \\ 1 & 1 & 3 \\ 1 & 0 & -1\end{array}\right)\left(\begin{array}{ccc}0 & 0 & 0 \\ 4 & -6 & -10 \\ -2^{n} & 2^{n+1} & 2^{n+1}\end{array}\right)$ Evaluating product of 3 matrices Any correct form

OR Prove $\mathbf{M}^{n}=\mathbf{A}+2^{n-1} \mathbf{B}$ by induction When $n=1, \mathbf{A}+\mathbf{B}=\mathbf{M}$
Assuming $\mathbf{M}^{k}=\mathbf{A}+2^{k-1} \mathbf{B}$, $\mathbf{M}^{k+1}=\mathbf{A} \mathbf{M}+2^{k-1} \mathbf{B} \mathbf{M} \quad$ M1A2
$=\mathbf{A}+2^{k-1}(2 \mathbf{B})$
$=\mathbf{A}+2^{k} \mathbf{B}$
True for $n=k \Rightarrow$ True for $n=k+1$;
hence
true for all positive integers n
B1
M1A2
A1A1
A1
A1

4 (i)	Since $y \geq 0, \mathrm{e}^{y} \geq 1$, so $\mathrm{e}^{y}=x+\sqrt{x^{2}-1}$ $\operatorname{arcosh} x=y=\ln \left(x+\sqrt{x^{2}-1}\right)$	M1 M1 M1 A1 A1 ag 5	$\frac{1}{2}$ and + must be correct
(ii)	$\begin{aligned} & \int_{2.5}^{3.9} \frac{1}{\sqrt{4 x^{2}-9}} \mathrm{~d} x=\left[\frac{1}{2} \operatorname{arcosh}\left(\frac{2 x}{3}\right)\right]_{2.5}^{3.9} \\ & =\frac{1}{2}\left(\operatorname{arcosh} 2.6-\operatorname{arcosh} \frac{5}{3}\right) \\ & =\frac{1}{2}\left(\ln \left(2.6+\sqrt{2.6^{2}-1}\right)-\ln \left(\frac{5}{3}+\sqrt{\frac{25}{9}-1}\right)\right) \\ & =\frac{1}{2}(\ln 5-\ln 3) \\ & =\frac{1}{2} \ln \frac{5}{3} \end{aligned}$	M1 A1A1 M1 A1	For arcosh (or any cosh substitution) For $\frac{1}{2}$ and $\frac{2 x}{3}$ (or $2 x=3 \cosh u$ and $\int \frac{1}{2} \mathrm{~d} u$) (or limits of u in logarithmic form)
	$\begin{gathered} {\left[\frac{1}{2} \ln \left(2 x+\sqrt{4 x^{2}-9}\right)\right]_{2.5}^{3.9}} \\ =\frac{1}{2} \ln 15-\frac{1}{2} \ln 9 \\ =\frac{1}{2} \ln \frac{5}{3} \end{gathered}$ A1A1		For $\ln \left(k x+\sqrt{k^{2} x^{2}-\ldots}\right)$ Give M1 for $\ln \left(k_{1} x+\sqrt{k_{2}{ }^{2} x^{2}-\ldots}\right)$ For $\frac{1}{2}$ and $\ln \left(2 x+\sqrt{4 x^{2}-9}\right)$ (or $\ln \left(x+\sqrt{x^{2}-\frac{9}{4}}\right)$
(iii)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(2+\sinh x) \sinh x-(\cosh x)(\cosh x)}{(2+\sinh x)^{2}} \\ &=\frac{2 \sinh x-1}{(2+\sinh x)^{2}} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{9} \text { when } 18 \sinh x-9=(2+\sinh x)^{2} \\ & \sinh ^{2} x-14 \sinh x+13=0 \\ & \sinh x=1,13 \end{aligned}$ When $\sinh x=1, \cosh x=\sqrt{2}, x=\ln (1+\sqrt{2})$ Point is $\left(\ln (1+\sqrt{2}), \frac{\sqrt{2}}{3}\right)$ When $\sinh x=13, \cosh x=\sqrt{170}, x=\ln (13+\sqrt{170})$ Point is $\left(\ln (13+\sqrt{170}), \frac{\sqrt{170}}{15}\right)$	M1 A1 M1 M1 M1 A1 ag A1A1	Using quotient rule Any correct form Quadratic in $\sinh x$ (or product of two quadratics in e^{x}) Solving quadratic to obtain at least one value of $\sinh x\left(\right.$ or $\left.\mathrm{e}^{x}\right)$ Obtaining x in logarithmic form (must use a correct formula for arsinh) $S R$ B1B1 for verifying $y=\frac{1}{3} \sqrt{2}$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{9} \text { when } x=\ln (1+\sqrt{2})$

Alternatives for Q4 (i)

	$\begin{aligned} \cosh \ln \left(x+\sqrt{x^{2}-1}\right) & =\frac{1}{2}\left(\mathrm{e}^{\ln \left(x+\sqrt{x^{2}-1}\right)}+\mathrm{e}^{-\ln \left(x+\sqrt{x^{2}-1}\right)}\right) \\ & =\frac{1}{2}\left(x+\sqrt{x^{2}-1}+\frac{1}{x+\sqrt{x^{2}-1}}\right) \\ & =\frac{1}{2}\left(x+\sqrt{x^{2}-1}+x-\sqrt{x^{2}-1}\right) \\ & =x \end{aligned}$ Since $\ln \left(x+\sqrt{x^{2}-1}\right)>0$, arcosh $x=\ln \left(x+\sqrt{x^{2}-1}\right)$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~A} 1 \end{aligned}$	5
	If $y=\operatorname{arcosh} x$ then $\begin{aligned} \ln \left(x+\sqrt{x^{2}-1}\right)= & \ln \left(\cosh y+\sqrt{\cosh ^{2} y-1}\right) \\ & =\ln (\cosh y+\sinh y) \\ \sinh y>0 & \\ & =\ln \left(e^{y}\right) \\ & =y \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	5

5 (i)			General shape correct Cusp at O clearly shown General shape correct 'Dimple’ correctly shown
(ii)	Cusp	B1 1	
(iii)	When $k=1$, there are 3 points When $k=1.5$, there are 4 points When $k=4$, there are 2 points	B2 $\quad 2$	Give B1 for two cases correct
(iv)	$\begin{aligned} x & =k \cos \theta+\cos ^{2} \theta \\ \frac{\mathrm{~d} x}{\mathrm{~d} \theta} & =-k \sin \theta-2 \cos \theta \sin \theta \\ & =-\sin \theta(k+2 \cos \theta) \\ & =0 \text { when } \theta=0, \pi, \text { or } \cos \theta=-\frac{1}{2} k \end{aligned}$ For just two points, $k \geq 2$	B1 B1 M1 A1 4	Allow $k>2$
(v)	$\begin{aligned} d^{2} & =r^{2}+1^{2}-2 r \cos \theta \\ & =(k+\cos \theta)^{2}+1-2(k+\cos \theta) \cos \theta \\ & =k^{2}+1-\cos ^{2} \theta \quad\left(=k^{2}+\sin ^{2} \theta\right) \end{aligned}$ Since $0 \leq \cos ^{2} \theta \leq 1$, $k^{2} \leq d^{2} \leq k^{2}+1$	M1 A1 M1 A1 ag	or $0 \leq \sin ^{2} \theta \leq 1$
(vi)	When k is large, $\sqrt{k^{2}+1} \approx k$, so $d \approx k$ Curve is very nearly a circle, with centre $(1,0)$ and radius k	M1 A1	

Mark Scheme 4758 January 2007

1(i)	$\begin{aligned} & \lambda^{2}-\lambda-2=0 \\ & \lambda=-1 \text { or } 2 \\ & \text { CF } y=A \mathrm{e}^{-t}+B \mathrm{e}^{2 t} \\ & \text { PI } y=a \mathrm{e}^{-2 t} \\ & \dot{y}=-2 a \mathrm{e}^{-2 t}, \ddot{y}=4 a \mathrm{e}^{-2 t} \\ & 4 a \mathrm{e}^{-2 t}-\left(-2 a \mathrm{e}^{-2 t}\right)-2 a \mathrm{e}^{-2 t}=\mathrm{e}^{-2 t} \\ & 4 a=1 \\ & a=\frac{1}{4} \\ & y=A \mathrm{e}^{-t}+B \mathrm{e}^{2 t}+\frac{1}{4} \mathrm{e}^{-2 t} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~F} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~F} 1 \end{aligned}$	Auxiliary equation CF for their roots Differentiate twice Substitute Compare and solve Their CF with 2 constants + their PI	
(ii)	$\begin{aligned} & 0=A+B+\frac{1}{4} \\ & t \rightarrow \infty \Rightarrow \mathrm{e}^{-t} \rightarrow 0, \mathrm{e}^{-2 t} \rightarrow 0, \mathrm{e}^{2 t} \rightarrow \infty \text { so } y \rightarrow 0 \Rightarrow B=0 \\ & y=\frac{1}{4}\left(\mathrm{e}^{-2 t}-\mathrm{e}^{-t}\right) \\ & y=0 \Leftrightarrow \mathrm{e}^{-t}=\mathrm{e}^{-2 t} \Leftrightarrow \mathrm{e}^{t}=1 \Leftrightarrow t=0 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { E1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Use initial condition Use asymptotic condition cao Valid method to establish 0 is only root Complete argument Curve satisfies both conditions $y \neq 0$ for $t>0$ and consistent with their solution	7
(iii)	$\begin{aligned} & \text { CF } y=C \mathrm{e}^{-t}+D \mathrm{e}^{2 t} \\ & \text { PI } y=b t \mathrm{e}^{-t} \\ & \dot{y}=b \mathrm{e}^{-t}-b t \mathrm{e}^{-t}, \ddot{y}=-2 b \mathrm{e}^{-t}+b t \mathrm{e}^{-t} \\ & -2 b \mathrm{e}^{-t}+b t \mathrm{e}^{-t}-\left(b \mathrm{e}^{-t}-b t \mathrm{e}^{-t}\right)-2 b \mathrm{e}^{-t}=\mathrm{e}^{-t} \\ & \Rightarrow-2 b-b=1 \Rightarrow b=-\frac{1}{3} \\ & \mathrm{GS} y=C \mathrm{e}^{-t}+D \mathrm{e}^{2 t}-\frac{1}{3} t \mathrm{e}^{-t} \\ & y=0, t=0 \Rightarrow C+D=0 \\ & y \rightarrow 0 \Rightarrow D=0 \\ & y=-\frac{1}{3} t \mathrm{e}^{-t} \end{aligned}$	F1 B1 M1 A1 F1 M1 M1 A1	Correct or same as in (i) Differentiate (product) and substitute cao Their CF + their non-zero PI Use condition Use condition cao	8

2(i)	$\frac{\mathrm{d}}{\mathrm{~d} x}(\ln \sin x)=\frac{1}{\sin x} \cos x=\cot x$	E1	Differentiate (chain rule)	1
(ii)	$\begin{aligned} & \frac{1}{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}=-2 \cot 2 x \\ & \int \frac{1}{y} \mathrm{~d} y=\int-2 \cot 2 x \mathrm{~d} x \\ & \ln \|y\|=-\ln \|\sin 2 x\|+c \\ & y=A \operatorname{cosec} 2 x \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Rearrange Integrate One side correct (ignore constant) All correct, including constant Rearrange, dealing properly with constant	6
(iii)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}+2 y \cot 2 x=k \\ & I=\exp \left(\int 2 \cot 2 x \mathrm{~d} x\right) \\ & =\exp (\ln \sin 2 x) \\ & =\sin 2 x \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x} \sin 2 x+2 y \cos 2 x=k \sin 2 x \\ & y \sin 2 x=\int k \sin 2 x \mathrm{~d} x \\ & =-\frac{1}{2} k \cos 2 x+A \\ & y=A \operatorname{cosec} 2 x-\frac{1}{2} k \cot 2 x \end{aligned}$	M1 M1 A1 M1 M1 A1 E1	Attempt integrating factor Integrate Simplified form of IF Multiply by their IF Integrate both sides cao	7
(iv)	$\begin{aligned} & x=\frac{1}{4} \pi, y=0 \Rightarrow 0=A \\ & y=-\frac{1}{2} k \cot 2 x \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Use condition Increasing and through $\left(\frac{1}{4} \pi, 0\right)$ Asymptote $x=0$	4
(v)	$\begin{aligned} & y=\frac{A-\frac{1}{2} k \cos 2 x}{\sin 2 x}=\frac{A-\frac{1}{2} k\left(1-2 \sin ^{2} x\right)}{2 \sin x \cos x} \\ & A=\frac{1}{2} k \Rightarrow y=\frac{\frac{1}{2} k \sin x}{\cos x} \end{aligned}$ which tends to zero as $x \rightarrow 0$	B1 M1 A1 M1 E1 B1	Both double angle formulae correct (or small angle approximations or series expansion) Use expressions in general solution Identify value of A Correct solution, fully justified Must be from correct solution	6

3(i)	$\begin{aligned} & m \frac{\mathrm{~d} v}{\mathrm{~d} t}=m g-R \\ & \frac{\mathrm{~d} v}{\mathrm{~d} t}=g-k_{1} v \\ & \int \frac{1}{g-k_{1} v} \mathrm{~d} v=\int \mathrm{d} t \\ & -\frac{1}{k_{1}} \ln \left\|g-k_{1} v\right\|=t+c_{1} \\ & g-k_{1} v=A \mathrm{e}^{-k_{1} t} \end{aligned}$ Alternatively Alternatively $\begin{aligned} & t=0, v=0 \Rightarrow A=g \\ & v=\frac{g}{k_{1}}\left(1-\mathrm{e}^{-k_{1} t}\right) \end{aligned}$	B1 E1 M1 A1 M1 M1 A1 M1 M1 A1 M1 M1 E1	N2L equation (accept ma, allow sign errors) Must follow from correct N2L Separate and integrate LHS Rearrange (dealing properly with constant) Attempt integrating factor $\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{k_{1} t} v\right)=g \mathrm{e}^{k_{1} t}$ Integrate Auxiliary equation CF $A \mathrm{e}^{-k_{1} t}$ Constant PI $\left(g / k_{1}\right)$ Use condition	7
(ii)	$\begin{aligned} & x=\int v \mathrm{~d} t=\frac{g}{k_{1}}\left(t+\frac{1}{k_{1}} \mathrm{e}^{-k_{1} t}+B\right) \\ & t=0, x=0 \Rightarrow B=-\frac{1}{k_{1}} \\ & x=\frac{g}{k_{1}}\left(t+\frac{1}{k_{1}} \mathrm{e}^{-k_{1} t}-\frac{1}{k_{1}}\right) \end{aligned}$	M1 A1 M1 A1	Integrate v cao (including constant) Use condition cao	4
(iii)	$\begin{aligned} & m v \frac{\mathrm{~d} v}{\mathrm{~d} x}=m g-m k_{2} v^{2} \\ & \frac{v}{g-k_{2} v^{2}} \frac{\mathrm{~d} v}{\mathrm{~d} x}=1 \\ & \int \frac{v}{g-k_{2} v^{2}} \mathrm{~d} v=\int \mathrm{d} x \\ & -\frac{1}{2 k_{2}} \ln \left\|g-k_{2} v^{2}\right\|=x+c_{2} \\ & g-k_{2} v^{2}=C \mathrm{e}^{-2 k_{2} x} \\ & x=0, v=0 \Rightarrow C=g \\ & v=\sqrt{\frac{g}{k_{2}}\left(1-\mathrm{e}^{-2 k_{2} x}\right)} \end{aligned}$	B1 E1 M1 A1 M1 M1 A1	N2L with $m k_{2} v^{2}$ (accept $m a$ or $m \frac{\mathrm{~d} v}{\mathrm{~d} t}$) Must follow from correct N2L Integrate LHS Rearrange (dealing properly with constant) Use condition cao	7
(iv)	t v \dot{v} 0 0 9.8 0.1 0.98 8.6115 7 0.2 1.8411 6	B1 M1 A1 M1 A1	First line Use algorithm 0.98 Use algorithm 1.84116 (accept 3sf or better)	

(v) $\left\lvert\, g-k_{3} v^{\frac{3}{2}}=0\right.$ when $v=4 \Rightarrow k_{3}=\frac{g}{4^{\frac{3}{2}}}=1.225$ E1	Deduce or verify value (must relate to
resultant force or acceleration being zero)	

4(i)	$\begin{aligned} & \text { subtracting } \Rightarrow-5 x+5=0 \\ & x=1 \\ & y=7 \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Solve simultaneously	
(ii)	$\begin{aligned} & \ddot{x}=-3 \dot{x}-\dot{y} \\ & =-3 \dot{x}-(2 x-y+5) \\ & =-3 \dot{x}-2 x+(-\dot{x}-3 x+10)-5 \\ & \ddot{x}+4 \dot{x}+5 x=5 \end{aligned}$	M1 M1 M1 M1 E1	Differentiate Substitute for \dot{y} y in terms of x, \dot{x} Substitute	
(iii)	$\begin{aligned} & \lambda^{2}+4 \lambda+5=0 \\ & \lambda=-2 \pm j \\ & \text { CF } x=\mathrm{e}^{-2 t}(A \cos t+B \sin t) \\ & \mathrm{PI} x=\frac{5}{5}=1 \\ & \text { GS } x=\mathrm{e}^{-2 t}(A \cos t+B \sin t)+1 \\ & y=-\dot{x}-3 x+10 \\ & =-\mathrm{e}^{-2 t}(-A \sin t+B \cos t)+2 \mathrm{e}^{-2 t}(A \cos t+B \sin t) \\ & \quad-3 \mathrm{e}^{-2 t}(A \cos t+B \sin t)-3+10 \\ & =\mathrm{e}^{-2 t}((-A-B) \cos t+(A-B) \sin t)+7 \end{aligned}$	M1 M1 A1 F1 B1 F1 M1 M1 M1 A1	Auxiliary equation Solve to get complex roots CF for their roots Their CF with 2 constants + their PI y in terms of x, \dot{x} Differentiate their x Substitute cao	
(iv)	$\begin{aligned} & t=0, x=0 \Rightarrow A+1=0 \\ & t=0, y=0 \Rightarrow-A+B+7=0 \\ & A=-1, B=8 \\ & x=\mathrm{e}^{-2 t}(8 \sin t-\cos t)+1 \\ & y=-\mathrm{e}^{-2 t}(7 \cos t+9 \sin t)+7 \end{aligned}$	M1 M1 A1	Use condition on x Use condition on y Both correct	
(v)	scale due to small amplitude	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Through origin Positive gradient at $t=0$ Asymptote $x=1$, or their non-zero constant Pl (accept oscillatory or non-oscillatory)	

Mark Scheme 4761 January 2007

Q1		mark		sub
	either 70 V obtained So $70 V=1400$ and $V=20$ or $V=20$	M1 A1 M1 A1 M1 A1 M1 A1	Attempt at area. If not trapezium method at least one part area correct. Accept equivalent. Or equivalent - need not be evaluated. Equate their 70 V to 1400 . Must have attempt at complete areas or equations. cao Attempt to find areas in terms of ratios (at least one correct) Correct total ratio - need not be evaluated. (Evidence may be 800 or 400 or 200 seen). Complete method. (Evidence may be 800/40 or 400/20 or 200/10 seen). cao [Award $3 / 4$ for 20 seen WWW]	
				4

Q2		mark		sub
	$(v=) 12-3 t^{2}$	M1	Differentiating	
	$v=0 \Rightarrow 12-3 t^{2}=0$	A1	Allow confusion of notation, including $x=$	
	so $t^{2}=4$ and $t= \pm 2$	M1	Dep on 1 ${ }^{\text {st }}$ M1. Equating to zero.	
Accept one answer only but no extra answers. FT				
	$x= \pm 16$	A1		
	only			
if quadratic or higher degree.				
cao. Must have both and no extra answers.				
				5

Q 3		mark		sub
(i)	$R=m g$ so 49 N	B1	Equating to weight. Accept $5 g$ (but not $m g$)	1
(ii)		B1 B1	All except F correct (arrows and labels) (Accept $m g, W$ etc and no angle). Accept cpts instead of 10N. No extra forces. F clearly marked and labelled	2
(iii)	$\begin{aligned} & \uparrow \quad R+10 \cos 40-49=0 \\ & R=41.339 \ldots \text { so } 41.3 \mathrm{~N} \text { (3 s. f.) } \\ & F=10 \sin 40=6.4278 \ldots \text { so } 6.43 \mathrm{~N} \text { (3 s. f.) } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	Resolve vertically. All forces present and 10 N resolved Resolution correct and seen in an equation. (Accept $R= \pm 10 \cos 40$ as an equation) Allow -ve if consistent with the diagram.	4
				7

Q 4		mark		sub
(i)	$\downarrow \quad 20+16 \cos 60=28$	B1		1
(ii)	either $\rightarrow 16 \sin 60$ $\text { Mag } \sqrt{28^{2}+192}=31.2409 \ldots$ $\text { so } 31.2 \text { N (3 s.f.) }$ or Cos rule $\begin{aligned} & \text { mag }^{2}=16^{2}+20^{2}-2 \times 16 \times 20 \times \cos 120 \\ & 31.2 \mathrm{~N}(3 \text { s. f.) } \end{aligned}$	B1 M1 F1 M1 A1 A1	Any form. May be seen in (i). Accept any appropriate equivalent resolution. Use of Pythag with 2 distinct cpts (but not 16 and ± 20) Allow 34.788... only as FT Must be used with $20 \mathrm{~N}, 16 \mathrm{~N}$ and 60° or 120° Correct substitution	3
(iii)	Magnitude of accn is $15.620 \ldots \mathrm{~m} \mathrm{~s}^{-2}$ so $15.6 \mathrm{~m} \mathrm{~s}^{-2}$ (3 s. f.) angle with 20 N force is $\arctan \left(\frac{16 \sin 60}{28}\right)$ $\text { so } 26.3295 \ldots \text { so } 26.3^{\circ} \text { (3 s. f.) }$	B1 M1 A1	Award only for their $F \div 2$ Or equiv. May use force or acceleration. Allow use of sine or cosine rules. FT only $\mathrm{s} \leftrightarrow \mathrm{c}$ and sign errors. Accept reciprocal of the fraction. cao	3
				7
Q 5		mark		sub
(i)	sphere $\quad 19.6-T=2 a$ block $\quad T-14.8=4 a$	M1 A1 A1	N2L. All forces attempted in one equation. Allow sign errors. No extra forces. Don't condone $F=$ mga. Accept $2 g$ for 19.6	3
(ii)	Solving $T=18 a=0.8$	M1 A1 F1	Attempt to solve. Award only if two equations present both containing a and T. Either variable eliminated. Either found cao Other value. Allow wrong equation(s) and wrong working for $1^{\text {st }}$ value [If combined equation used award: M1 as in (i) for the equation with mass of 6 kg ; A1 for $a=0.8$; M1 as in (i) for equation in T and a for either sphere or block; A1 equation correct; F1 for T, FT their a; B1 Second equation in T and a.]	3
				6

Q 6		mark		sub
(i)	$\begin{aligned} & t=2.5 \Rightarrow \mathbf{v}=\binom{-5}{10}+2.5\binom{6}{-8}=\binom{10}{-10} \\ & \text { speed is } \sqrt{10^{2}+10^{2}}=14.14 \ldots \\ & \text { so } 14.1 \mathrm{~m} \mathrm{~s}^{-1}(3 \text { s. f. }) \end{aligned}$	B1 E1 F1	Need not be in vector form Accept diag and/or correct derivation of just $\pm 45^{\circ}$ FT their v	3
(ii)	$\mathbf{s}=2.5\binom{-5}{10}+\frac{1}{2} \times 2.5^{2} \times\binom{ 6}{-8}$ $\begin{aligned} & =\binom{6.25}{0} \\ & \text { so } 090^{\circ} \end{aligned}$	M1 A1 A1 A1	Consideration of \mathbf{s} (const accn or integration) Correct sub into uvast with \mathbf{u} and a. (If integration used it must be correct but allow no arb constant) cao. CWO.	4
				7

Q 7		mark		sub
(i)	acceleration is $\frac{24}{12}$ so $2 \mathrm{~m} \mathrm{~s}^{-2}$	B1		1
(ii)	$\begin{aligned} & 24-15=12 a \\ & a=0.75 \mathrm{~m} \mathrm{~s}^{-2} \\ & 1^{\text {st }} \text { distance is } 0.5 \times 2 \times 16=16 \\ & 2^{\text {nd }} \text { distance is } 0.5 \times 0.75 \times 16=6 \\ & \text { Difference is } 10 \mathrm{~m} \end{aligned}$	M1 A1 M1 A1 A1	Use of N2L. Both forces present. Must be $F=$ ma. No extra forces. Appropriate uvast applied at least once. Need not evaluate. Both found. May be implied. FT (i) cao	5
(iii)	$12 g \sin 5-15=12 a$ $\begin{aligned} & a=-0.39587 \ldots \\ & \text { so }-0.396 \mathrm{~m} \mathrm{~s}^{-2}(3 \mathrm{~s} . \mathrm{f} .) \end{aligned}$	M1 M1 A1 A1	Use of $F=$ ma, allow 15 N missing or weight not resolved. No extra forces. Allow use of $12 \sin 5$. Attempt at weight cpt. Allow sin $\leftrightarrow \cos$. Accept seen on diagram. Accept the use of 12 instead of $12 g$. Weight cpt correct. Accept seen on diagram. Allow not used. Correct direction must be made clear	4
(iv)	time $0=1.5+a t \Rightarrow t=3.789 \ldots$ so 3.79 s (3 s. f.) distance $s=0.5 \times(1.5+0) \times 3.789 \ldots(\text { or } \ldots)$ giving $s=2.8418 \ldots$ so $2.84 \mathrm{~m}(3 \mathrm{~s} . \mathrm{f}$.)	M1 A1 M1 A1	Correct uvast . Use of 0, 1.5 and their a from (iii) or their s from (iv). Allow sign errors. Condone $u \leftrightarrow v$. Correct uvast. Use of 0, 1.5 and their a from (iii) or their t from (iv). Allow sign errors. Condone $u \leftrightarrow v$. [The first A1 awarded for t or s has FT their a if signs correct; the second awarded is cao]	4
(v)	accn is given by $\begin{aligned} & 0=1.5+3.5 a \Rightarrow a=-\frac{3}{7}=-0.42857 \ldots \\ & 12 g \sin 5-R=12 \times-0.42857 \ldots \\ & \text { so } R=15.39 \ldots \text { so } 15.4 \mathrm{~N} \text { (3 s. f.) } \end{aligned}$	M1 A1 M1 A1	Use of $0,1.5$ and 3.5 in correct uvast. Condone $u \leftrightarrow v$. Allow \pm N2L. Must use their new accn. Allow only sign errors. cao	4
				18

Q 8		mark		sub
	$\begin{aligned} & \text { Using } s=u t+0.5 a t^{2} \text { with } u=10 \text { and } a \\ & =-10 \end{aligned}$	E1	Must be clear evidence of derivation of -5 . Accept one calculation and no statement about the other.	1
(ii)	either $\begin{aligned} & s=0 \text { gives } 10 t-5 t^{2}=0 \\ & \text { so } 5 t(2-t)=0 \\ & \text { so } t=0 \text { or } 2 \text {. Clearly need } t=2 \\ & \text { or } \\ & \text { Time to highest point is given by } 0=10- \\ & 10 t \\ & \text { Time of flight is } 2 \times 1 \\ & =2 \mathrm{~s} \end{aligned}$ horizontal range is 40 m as $40<70$, hits the ground	B1 M1 A1 M1 M1 A1 B1 E1	Factorising Award 3 marks for $t=2$ seen WWW Dep on $1^{\text {st }} \mathrm{M} 1$. Doubling their t. Properly obtained FT $20 \times$ their t Must be clear. FT their range.	5
(iii)	need $10 t-5 t^{2}=-15$ Solving $t^{2}-2 t-3=0$ so $(t-3)(t+1)=0$ and $t=3$ range is 60 m	M1 M1 A1 M1 A1	[May divide flight into two parts] Equate $s=-15$ or equivalent. Allow use of ± 15. Method leading to solution of a quadratic. Equivalent form will do. Obtaining $t=3$. Allow no reference to the other root. [Award SC3 if $t=3$ seen WWW] Range is $20 \times$ their t (provided $t>0$) cao. CWO.	5
(iv)	Using (ii) \& (iii), since $40+60>70$, paths cross (For $0<t \leq 2$) both have same vertical motion so B is always 15 m above A	E1 E1	Must be convincing. Accept sketches. Do not accept evaluation at one or more points alone. That B is always above A must be clear.	2
(v)	Need x components summing to 70 $20 \times 0.75+20 \times 2.75=15+55=70$ so true Need y components the same $\begin{aligned} & 10 \times 2.75-5 \times 2.75^{2}+15=4.6875 \\ & 10 \times 0.75-5 \times 0.75^{2}=4.6875 \end{aligned}$	M1 E1 M1 B1 E1	May be implied. Or correct derivation of 0.75 s or 2.75 s Attempt to use 0.75 and 2.75 in two vertical height equations (accept same one or wrong one) 0.75 and 2.75 each substituted in the appropriate equn Both values correct. [Using cartesian equation: B1, B1 each equation: M1 solving: A1 correct point of intersection: E1 Verify times]	5
				18

Mark Scheme 4762 January 2007

Q 1		mark		sub
(i)	$\begin{aligned} & v_{1}=0.3 \text { so } V_{1}=0.3 \\ & v_{2}=-7.7 \text { so } V_{2}=7.7 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ in opposite to original direction	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { F1 } \end{aligned}$	PCLM and two terms on RHS All correct. Any form. NEL Any form Speed. Accept \pm. Must be correct interpretation of clear working	7
$\begin{aligned} & \hline \text { (ii) } \\ & (\mathrm{A}) \end{aligned}$	$10 \times 0.5=30 \mathrm{~V}$ so $V=\frac{1}{6}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	PCLM and coalescence All correct. Any form. Clearly shown. Accept decimal equivalence. Accept no direction.	3
(B)	Same velocity No force on sledge in direction of motion	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$	Accept speed	2
(iii)	$\begin{aligned} & 2 \times 40=0.5 u+39.5 V \\ & u-V=10 \\ & \text { Hence } V=1.875 \end{aligned}$	B1 M1 A1 B1 A1	PCLM, masses correct Any form May be seen on the diagram. Accept no reference to direction.	5
		17		

Q 2		mark	comment	sub
(i)	$\begin{align*} & X=R \cos 30 \tag{1}\\ & Y+R \sin 30=L \tag{2} \end{align*}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Attempt at resolution	3
(ii)	ac moments about A $\quad R-2 L=0$ Subst in (1) and (2) $\begin{aligned} & X=2 L \frac{\sqrt{3}}{2} \text { so } X=\sqrt{3} L \\ & Y+2 L \times \frac{1}{2}=L \text { so } Y+L=L \text { and } Y=0 \end{aligned}$	B1 M1 E1 E1	Subst their $R=2 L$ into their (1) or (2) Clearly shown Clearly shown	4
(iii)	(Below all are taken as tensions e. g. T_{AB} in AB)	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Attempt at all forces (allow one omitted) Correct. Accept internal forces set as tensions or thrusts or a mix	2
(iv)	$\begin{aligned} & \downarrow \mathrm{A} \quad T_{\mathrm{AD}} \cos 30(-Y)=0 \\ & \text { so } T_{\mathrm{AD}}=0 \end{aligned}$	M1 E1	Vert equilibrium at A attempted. $Y=0$ need not be explicit	2
(v)	Consider the equilibrium at pin-joints $\begin{align*} & \mathrm{A} \rightarrow \quad T_{\mathrm{AB}}-X=0 \text { so } T_{\mathrm{AB}}=\sqrt{3} L \tag{T}\\ & \mathrm{C} \downarrow \quad L+T_{\mathrm{CE}} \cos 30=0 \\ & \text { so } T_{\mathrm{CE}}=\frac{-2 L}{\sqrt{3}} \text { so } \frac{2 \mathrm{~L}}{\sqrt{3}}\left(=\frac{2 L \sqrt{3}}{3}\right) \tag{C}\\ & \mathrm{C} \leftarrow T_{\mathrm{BC}}+T_{\mathrm{CE}} \cos 60=0 \\ & \text { so } T_{\mathrm{BC}}=-\left(-\frac{2 \sqrt{3} L}{3}\right) \times \frac{1}{2}=\frac{\sqrt{3} L}{3} \tag{T} \end{align*}$	M1 B1 B1 B1 B1 B1 F1	At least one relevant equilib attempted (T) not required Or equiv from their diagram Accept any form following from their equation. (C) not required. Or equiv from their diagram FT their T_{CE} or equiv but do not condone inconsistent signs even if right answer obtained. (T) not required. T and C consistent with their answers and their diagram	7
(vi)	$\downarrow \mathrm{B} \quad T_{\mathrm{BD}} \cos 30+T_{\mathrm{BE}} \cos 30=0$ so $T_{\mathrm{BD}}=-T_{\mathrm{BE}}$ so mag equal and opp sense	$\begin{aligned} & \text { M1 } \\ & \text { E1 } \end{aligned}$	Resolve vert at B A statement required	2
		20		

Q 3		mark		sub
(i)	(10, 2, 2.5)	B1		1
(ii)	$\begin{aligned} & \text { By symmetry } \\ & \bar{x}=10, \\ & \bar{y}=2 \\ & (240+80) \bar{z}=80 \times 0+240 \times 2.5 \\ & \text { so } \bar{z}=1.875 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Total mass correct Method for c.m. Clearly shown	5
(iii)	$\begin{aligned} & \bar{x}=10 \text { by symmetry } \\ & (320+80)\left(\begin{array}{c} \bar{x} \\ \bar{y} \\ \bar{z} \end{array}\right)=320\left(\begin{array}{c} 10 \\ 2 \\ 1.875 \end{array}\right)+80\left(\begin{array}{c} 10 \\ 4 \\ 3 \end{array}\right) \\ & \bar{y}=2.4 \\ & \bar{z}=2.1 \end{aligned}$	E1 M1 B1 B1 E1 E1	Could be derived Method for c.m. y coord c.m. of lid z coord c.m. of lid shown shown	6
(iv)	c.w moments about X $\begin{aligned} & 40 \times 0.024 \cos 30-40 \times 0.021 \sin 30 \\ & =0.41138 \ldots \text { so } 0.411 \mathrm{~N} \mathrm{~m}(3 \mathrm{s.f} .) \end{aligned}$	B1 B1 B1 E1	Award for correct use of dimensions 2.1 and 2.4 or equivalent $1^{\text {st }}$ term o.e. (allow use of 2.4 and 2.1) $2^{\text {nd }}$ term o.e. (allow use of 2.4 and 2.1) Shown [Perpendicular method: M1 Complete method: A1 Correct lengths and angles E1 Shown]	4
(v)	$\begin{aligned} & 0.41138 \ldots-0.05 P=0 \\ & P=8.22768 \ldots \ldots \text { so } 8.23(3 \text { s. f. }) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Allow use of 5 Allow if cm used consistently	2
		18		

Q 4		mark		sub
(i)	$\begin{aligned} & F_{\max }=\mu R \\ & R=2 g \cos 30 \\ & \text { so } F_{\max }=0.75 \times 2 \times 9.8 \times \cos 30=12.730 \ldots \\ & \text { so } 12.7 \mathrm{~N}(3 \text { s. f. }) \end{aligned}$ either Weight cpt down plane is $2 g \sin 30=9.8 \mathrm{~N}$ so no as $9.8<12.7$ or Slides if $\mu<\tan 30$ But $0.75>0.577 \ldots$ so no	M1 B1 A1 B1 E1 B1 E1	Must have attempt at R with $m g$ resolved [Award $2 / 3$ retrospectively for limiting friction seen below] The inequality must be properly justified The inequality must be properly justified	5
(ii) (A)	Increase in GPE is $2 \times 9.8 \times(6+4 \sin 30)=156.8 \mathrm{~J}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \end{aligned}$	Use of $m g h$ $6+4 \sin 30$	3
(B)	WD against friction is $4 \times 0.75 \times 2 \times 9.8 \times \cos 30=50.9222 \ldots \mathrm{~J}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Use of WD $=$ Fd	2
(C)	Power is $10 \times(156.8+50.9222 \ldots) / 60$ $=34.620 \ldots \text { so } 34.6 \mathrm{~W}(3 \mathrm{s.} \mathrm{f.})$	M1 A1	Use $P=\mathrm{WD} / t$	2
(iii)	$\begin{aligned} & 0.5 \times 2 \times 9^{2} \\ & =2 \times 9.8 \times(6+x \sin 30) \\ & +0.5 \times 2 \times 4^{2} \\ & -90 \\ & \text { so } x=3.8163 \ldots \text { so } 3.82 \text { (3 s. f.) } \end{aligned}$	M1 B1 A1 A1 A1	Equating KE to GPE and WD term. Allow sign errors and one KE term omitted. Allow 'old' friction as well. Both KE terms. Allow wrong signs. All correct but allow sign errors All correct, including signs. cao	5
		17		

Mark Scheme 4763 January 2007

1 (i)	$\begin{aligned} & {[\text { Velocity }]=\mathrm{LT}^{-1}} \\ & {[\text { Acceleration }]=\mathrm{LT}^{-2}} \\ & {[\text { Force }]=\mathrm{MLT}^{-2}} \end{aligned}$	$\left.\begin{array}{\|ll} \hline \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & \\ & 3 \end{array} \right\rvert\,$	Deduct 1 mark if answers given as $\mathrm{ms}^{-1}, \mathrm{~ms}^{-2}, \mathrm{kgms}^{-2}$
(ii)	$\begin{aligned} {[G] } & =\frac{[F]\left[r^{2}\right]}{\left[m_{1}\right]\left[m_{2}\right]}=\frac{\left(\mathrm{MLT}^{-2}\right)\left(\mathrm{L}^{2}\right)}{\mathrm{M}^{2}} \\ & =\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2} \end{aligned}$	$\left.\begin{array}{ll} \text { M1 } & \\ \text { E1 } & 2 \end{array} \right\rvert\,$	
(iii)	$\begin{aligned} G & =6.67 \times 10^{-11} \times 0.4536 \times \frac{1}{(0.3048)^{3}} \\ & =1.07 \times 10^{-9} \quad\left(\mathrm{lb}^{-1} \mathrm{ft}^{3} \mathrm{~s}^{-2}\right) \end{aligned}$	M1M1 A1	For $\times 0.4536$ and $\times \frac{1}{(0.3048)^{3}}$ SC Give M1 for $\begin{gathered} 6.67 \times 10^{-11} \times \frac{1}{0.4536} \times(0.3048)^{3} \\ \left(=4.16 \times 10^{-12}\right) \end{gathered}$
(iv)	$\begin{aligned} {[\text { RHS }] } & =\sqrt{\frac{\left(\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right)(\mathrm{M})}{\mathrm{L}}} \\ & =\sqrt{\mathrm{L}^{2} \mathrm{~T}^{-2}}=\mathrm{LT}^{-1} \end{aligned}$ which is the same as [LHS]	$\begin{array}{ll} \text { M1A1 } & \\ & \\ \text { E1 } & \\ & 3 \end{array}$	
(v)	$\begin{aligned} & \mathrm{T}=\left(\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right)^{\alpha} \mathrm{M}^{\beta} \mathrm{L}^{\gamma} \\ & \text { Powers of } \mathrm{M}: \quad-\alpha+\beta=0 \\ & \text { of } \mathrm{L}: \quad 3 \alpha+\gamma=0 \\ & \text { of } \mathrm{T}: \quad-2 \alpha=1 \\ & \alpha=-\frac{1}{2}, \quad \beta=-\frac{1}{2}, \quad \gamma=\frac{3}{2} \end{aligned}$	M1 M1 A1 M1 A1 5	At least two equations Three correct equations Obtaining at least one of α, β, γ

2(a)(i)	At the highest point, $T+5 \times 9.8=5 \times \frac{v^{2}}{1.8}$ For least speed, $T=0, \quad v^{2}=1.8 \times 9.8$ Speed is at least $4.2 \mathrm{~m} \mathrm{~s}^{-1}$	M1 A1 E1 3	Using acceleration $v^{2} / 1.8$ T may be omitted
(ii)	For least tension, speed at top is $4.2 \mathrm{~ms}^{-1}$ By conservation of energy, $\begin{gathered} \frac{1}{2} \times 5 \times\left(w^{2}-4.2^{2}\right)=5 \times 9.8 \times 3.6 \\ w^{2}=88.2 \quad(w=9.39) \\ T-5 \times 9.8=5 \times \frac{88.2}{1.8} \end{gathered}$ Tension is at least 294 N	M1 A1 M1 A1 ft A1	Energy equation with 3 terms Equation of motion with 3 terms
(b)(i)	$R \sin \theta=0.02 \times 9.8$ $\begin{aligned} R \cos \theta & =0.02 \times 0.32 \times 8.75^{2} \\ \tan \theta & =\frac{0.02 \times 9.8}{0.02 \times 0.32 \times 8.75^{2}}=0.4 \end{aligned}$	B1 M1 A1 E1	Using acceleration 0.32×8.75^{2} SC If $\sin \theta$ and $\cos \theta$ interchanged, award B0M1A1E0
(ii)		B1 B1 2	For R and $m g$ For F acting down the slope
(iii)	$\begin{aligned} & R \sin \theta=0.02 \times 9.8+F \cos \theta \\ & R \cos \theta+F \sin \theta=0.02 \times 0.32 \omega^{2} \\ & \text { For maximum } \omega, \quad F=\mu R \\ & R(\sin \theta-\mu \cos \theta)=0.02 \times 9.8 \\ & R(\cos \theta+\mu \sin \theta)=0.02 \times 0.32 \omega^{2} \\ & \omega^{2}=\frac{9.8(\cos \theta+\mu \sin \theta)}{0.32(\sin \theta-\mu \cos \theta)}=\frac{9.8(1+\mu \tan \theta)}{0.32(\tan \theta-\mu)} \\ & \quad=\frac{9.8(1+0.11 \times 0.4)}{0.32(0.4-0.11)} \\ & \omega=10.5 \end{aligned}$	M1 A1 A1 M1 M1 A1 cao	Resolving F and R [or $m g$ and accn] Can give A1A1 for sin / cos interchanged consistent with (i) Dependent on first M1 Obtaining a numerical value for ω^{2} Dependent on M1M1

3 (i)	$k \times 0.8=60 \times 9.8$ Stiffness is $735 \mathrm{Nm}^{-1}$	$\left\|\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}\right\|$	
(ii)	Loss of PE is $60 \times 9.8(32+x)$ Gain in EE is $\frac{1}{2} \times 735 x^{2}$ $\begin{aligned} \frac{1}{2} \times 735 x^{2} & =60 \times 9.8(32+x) \\ x^{2} & =1.6(32+x) \\ x^{2}-1.6 x-51.2 & =0 \\ (x-8)(x+6.4) & =0 \\ x & =8 \end{aligned}$ Length of rope is 40 m	B1 B1 M1 E1 M1 A1 6	If x is measured from equilibrium position, treat as MR Obtaining a value of x
(iii)	$\begin{aligned} & \text { Tension } T=735 x \\ & m g-T=m \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}} \\ & 60 \times 9.8-735 x=60 \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}} \\ & \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}+12.25 x=9.8 \end{aligned}$	B1 M1 A1 E1 4	Equation of motion with 3 terms
(iv)	SHM with $\omega^{2}=12.25 \quad(\omega=3.5)$ Time taken is $\frac{1}{4} \times \frac{2 \pi}{\omega}$ $=\frac{1}{7} \pi=0.449 \mathrm{~s}$	M1 M1 A1 3	or $\omega t=\frac{1}{2} \pi$
(v)	When $x=8, \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}=9.8-12.25 \times 8$ $=-88.2$ Acceleration is $88.2 \mathrm{~m} \mathrm{~s}^{-2} \quad$ (upwards) This acceleration $(9 \mathrm{~g})$ is too large for comfort	M1 A1 B1 3	or $735 \times 8-60 \times 9.8=60 a$

4 (i)	Area is $\mathrm{s} \int_{1}^{a} \frac{1}{x^{2}} \mathrm{~d} x=\left[-\frac{1}{x}\right]_{1}^{a}$ $=1-\frac{1}{a}$ $\int x y \mathrm{~d} x=\int_{1}^{a} \frac{1}{x} \mathrm{~d} x \quad(=\ln a)$ $\bar{x}=\frac{\int x y \mathrm{~d} x}{\int y \mathrm{~d} x}$ $=\frac{\ln a}{1-\frac{1}{a}} \quad\left(=\frac{a \ln a}{a-1}\right)$ $\int \frac{1}{2} y^{2} \mathrm{~d} x=\int_{1}^{a} \frac{1}{2 x^{4}} \mathrm{~d} x=\left[-\frac{1}{6 x^{3}}\right]_{1}^{a}$ $=\frac{1}{6}\left(1-\frac{1}{a^{3}}\right)$ $\bar{y}=\frac{\int \frac{1}{2} y^{2} \mathrm{~d} x}{\int y \mathrm{~d} x}$ $=\frac{\frac{1}{6}\left(1-\frac{1}{a^{3}}\right)}{1-\frac{1}{a}}=\frac{a^{3}-1}{6\left(a^{3}-a^{2}\right)}$		Condone omission of $\frac{1}{2}$ ($\frac{1}{2}$ needed for this mark)
(ii)	$\begin{aligned} & \text { When } a=2, \bar{x}=2 \ln 2, \bar{y}=\frac{7}{24} \\ & \begin{aligned} \tan \theta & =\frac{\bar{x}-1}{1-\bar{y}} \\ = & \frac{2 \ln 2-1}{1-\frac{7}{24}} \\ \theta & =28.6^{\circ} \end{aligned} \end{aligned}$	M1 A1 A1	CM vertically below A Correct expression for $\tan \theta$ or $\tan (90-\theta)$

(iii) Volume is $\int \pi y^{2} \mathrm{~d} x=\pi \int_{1}^{a} \frac{1}{x^{4}} \mathrm{~d} x$

$$
=\pi\left[-\frac{1}{3 x^{3}}\right]_{1}^{a}=\frac{\pi}{3}\left(1-\frac{1}{a^{3}}\right)
$$

$$
\int \pi x y^{2} \mathrm{~d} x=\pi \int_{1}^{a} \frac{1}{x^{3}} \mathrm{~d} x=\pi\left[-\frac{1}{2 x^{2}}\right]_{1}^{a}
$$

$$
=\frac{\pi}{2}\left(1-\frac{1}{a^{2}}\right)
$$

$$
\bar{x}=\frac{\int \pi x y^{2} \mathrm{~d} x}{\int \pi y^{2} \mathrm{~d} x}
$$

$$
=\frac{\frac{\pi}{2}\left(1-\frac{1}{a^{2}}\right)}{\frac{\pi}{3}\left(1-\frac{1}{a^{3}}\right)}=\frac{3\left(a^{3}-a\right)}{2\left(a^{3}-1\right)}
$$

Since $a>1, \quad a^{3}-a<a^{3}-1$
Hence $\bar{x}<\frac{3}{2}$, i.e. $\bar{x}<1.5$

	M1
A1	
M1 may be omitted throughout	
M1	
A1	Any correct form
M1	or $\bar{x} \rightarrow 1.5$ as $a \rightarrow \infty$ E1lly convincing argument

Mark Scheme 4766 January 2007

GENERAL INSTRUCTIONS

Marks in the mark scheme are explicitly designated as $\mathbf{M}, \mathbf{A}, \mathbf{B}, \mathbf{E}$ or \mathbf{G}.
M marks ("method") are for an attempt to use a correct method (not merely for stating the method).
A marks ("accuracy") are for accurate answers and can only be earned if corresponding M mark(s) have been earned. Candidates are expected to give answers to a sensible level of accuracy in the context of the problem in hand. The level of accuracy quoted in the mark scheme will sometimes deliberately be greater than is required, when this facilitates marking.

B marks are independent of all others. They are usually awarded for a single correct answer.
E marks ("explanation") are for explanation and/or interpretation. These will frequently be sub divisible depending on the thoroughness of the candidate's answer.

G marks ("graph") are for completing a graph or diagram correctly.

- Insert part marks in right-hand margin in line with the mark scheme. For fully correct parts tick the answer. For partially complete parts indicate clearly in the body of the script where the marks have been gained or lost, in line with the mark scheme.
- Please indicate incorrect working by ringing or underlining as appropriate.
- Insert total in right-hand margin, ringed, at end of question, in line with the mark scheme.
- Numerical answers which are not exact should be given to at least the accuracy shown. Approximate answers to a greater accuracy may be condoned.
- Probabilities should be given as fractions, decimals or percentages.
- FOLLOW-THROUGH MARKING SHOULD NORMALLY BE USED WHEREVER POSSIBLE. There will, however, be an occasional designation of 'c.a.o.' for "correct answer only".
- Full credit MUST be given when correct alternative methods of solution are used. If errors occur in such methods, the marks awarded should correspond as nearly as possible to equivalent work using the method in the mark scheme.
- The following notation should be used where applicable:
FT Follow-through marking

BOD Benefit of doubt
ISW Ignore subsequent working

$\begin{aligned} & \mathbf{Q} \\ & 1 \\ & \text { (i) } \end{aligned}$	$\begin{aligned} & \text { Mean }=127.6 / 13=9.8 \\ & \text { Median }=8.6 \\ & \text { Midrange }=14.5 \end{aligned}$	M1 for 127.6/13 soi A1 CAO B1 CAO B1 CAO	4
(ii)	Mean slightly inflated due to the outlier Median good since it is not affected by the outlier Midrange poor as it is highly inflated due to the outlier	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	3
		TOTAL	7
$\begin{aligned} & \mathbf{Q} \\ & \mathbf{2} \\ & \text { (i) } \end{aligned}$		G1 labelled linear scales on both axes G1 heights	2
(ii)	$\begin{aligned} & \text { Mean }=\frac{99}{50}=1.98 \\ & S_{x x}=315-\frac{99^{2}}{50} \quad(=118.98) \\ & r m s d=\sqrt{\frac{118.98}{50}}=1.54 \end{aligned}$ NB full marks for correct results from recommended method which is use of calculator functions	B1 for mean M1 for attempt at $S_{x x}$ A1 CAO	3
(iii)	New mean $=30-1.98=28.02$ New rmsd $=1.54$ (unchanged)	B1 FT their mean B1 FT their rmsd	2
		TOTAL	7
$\begin{aligned} & \mathbf{Q} \\ & \mathbf{3} \\ & \text { (i) } \end{aligned}$	 time freq width f dens $0-$ 34 5 6.8 $5-$ 153 5 30.6 $10-$ 188 10 18.8 $20-$ 73 10 7.3 $30-$ 27 10 2.7 $40-$ 5 20 0.25	M1 for fds A1 CAO Accept any suitable unit for fd such as eg freq per 5 mins. G1 linear scales on both axes and label G1 width of bars G1 height of bars	5
(ii)	Positive skewness	B1 CAO (indep)	1
		TOTAL	6

\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
\& \mathbf{Q} \\
\& \mathbf{6} \\
\& \text { (i) }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { Median }=3370 \\
\& Q_{1}=3050 \quad Q_{3}=3700 \\
\& \text { Inter-quartile range }=3700-3050=650
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
\(B 1\) for \(Q_{3}\) or \(Q_{1}\) B1 for IQR
\end{tabular} \& 3 \\
\hline (ii) \& \begin{tabular}{l}
Lower limit 3050-1.5 \(\times 650=2075\) \\
Upper limit \(3700+1.5 \times 650=4675\) \\
Approx 40 babies below 2075 and 5 above 4675 so total 45
\end{tabular} \& \[
\begin{aligned}
\& \hline \text { B1 } \\
\& \text { B1 } \\
\& \text { M1 (for either) } \\
\& \text { A1 }
\end{aligned}
\] \& 4 \\
\hline (iii) \& Decision based on convincing argument: eg 'no, because there is nothing to suggest that they are not genuine data items and these data may influence health care provision' \& E2 for convincing argument \& 2 \\
\hline (iv) \& All babies below 2600 grams in weight \& B2 CAO \& 2 \\
\hline (v) \& \begin{tabular}{l}
(A)
\[
\begin{aligned}
\& X \sim \mathrm{~B}(17,0.12) \\
\& \mathrm{P}(X=2)=\binom{17}{2} \times 0.12^{2} \times 0.88^{15}=0.2878
\end{aligned}
\] \\
(B)
\[
\begin{aligned}
\& P(X>2) \\
\& =1-\left(0.2878+\binom{17}{1} \times 0.12 \times 0.88^{16}+0.88^{17}\right) \\
\& =1-(0.2878+0.2638+0.1138)=0.335
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \(\binom{17}{2} \times p^{2} \times q^{15}\) \\
M1 indep \(0.12^{2} \times 0.88^{15}\) \\
A1 CAO \\
M1 for \(P(X=1)+P(X=0)\) \\
M1 for \(1-P(X \leq 2)\) \\
A1 CAO
\end{tabular} \& 3

3

\hline (vi) \& Expected number of occasions is 33.5 \& B1 FT \& 1

\hline \& \& TOTAL \& 18

\hline
\end{tabular}

Q 7 (i)	(A) $\quad \mathrm{P}($ both $)=\left(\frac{2}{3}\right)^{2}=\frac{4}{9}$ (B) $\quad \mathrm{P}($ one $)=2 \times \frac{2}{3} \times \frac{1}{3}=\frac{4}{9}$ (C) $\quad \mathrm{P}$ (neither) $=\left(\frac{1}{3}\right)^{2}=\frac{1}{9}$	B1 CAO B1 CAO B1 CAO	3
(ii)	Independence necessary because otherwise, the probability of one seed germinating would change according to whether or not the other one germinates. May not be valid as the two seeds would have similar growing conditions eg temperature, moisture, etc. NB Allow valid alternatives	E1 E1	2
(iii)	$\begin{aligned} & \text { Expected number }=2 \times \frac{2}{3}=\frac{4}{3}(=1.33) \\ & E\left(X^{2}\right)=0 \times \frac{1}{9}+1 \times \frac{4}{9}+4 \times \frac{4}{9}=\frac{20}{9} \\ & \operatorname{Var}(X)=\frac{20}{9}-\left(\frac{4}{3}\right)^{2}=\frac{4}{9}=0.444 \end{aligned}$ NB use of npq scores M1 for product, A1CAO	B1 FT M1 for $E\left(X^{2}\right)$ A1 CAO	3
(iv)	Expect $200 \times \frac{8}{9}=177.8$ plants So expect $0.85 \times 177.8=151$ onions	M1 for $200 \times \frac{8}{9}$ M1 dep for $\times 0.85$ A1 CAO	3
(v)	Let $X \sim \mathrm{~B}(18, p)$ Let $p=$ probability of germination (for population) $\mathrm{H}_{0}: p=0.90$ $\mathrm{H}_{1}: p<0.90$ $P(X \leq 14)=0.0982>5 \%$ So not enough evidence to reject H_{0} Conclude that there is not enough evidence to indicate that the germination rate is below 90%. Note: use of critical region method scores M1 for region $\{0,1,2, \ldots, 13\}$ M1 for 14 does not lie in critical region then A1 E1 as per scheme	B1 for definition of p B1 for H_{0} B1 for H_{1} M1 for probability M1 dep for comparison A1 E1 for conclusion in context	7
		TOTAL	18

Mark Scheme 4767 January 2007

Question 1

(i)	$\begin{aligned} & \bar{t}=112.8, \bar{v}=0.6 \\ & b=\frac{S v t}{S v v}=\frac{405.2-3 \times 564 / 5}{2.20-3^{2} / 5}=\frac{66.8}{0.4}=167 \\ & \text { OR } \quad b=\frac{405.2 / 5-0.6 \times 112.8}{2.20 / 5-0.6^{2}}=\frac{13.36}{0.08}=167 \end{aligned}$ hence least squares regression line is: $\begin{aligned} & t-\bar{t}=b(v-\bar{v}) \\ \Rightarrow & t-112.8=167(v-0.6) \\ \Rightarrow & t=167 v+12.6 \end{aligned}$	B1 for \bar{t} and \bar{v} used (SOI) M1 for attempt at gradient (b) A1 for 167 CAO M1 for equation of line A1 FT	5
(ii)	(A) For 0.5 litres, predicted time $=$ $=167 \times 0.5+12.6=96.1$ seconds (B) For 1.5 litres, predicted time $=$ $=167 \times 1.5+12.6=263.1 \text { seconds }$ Any valid relevant comment relating to each prediction such as eg: 'First prediction is fairly reliable as it is interpolation and the data is a good fit' 'Second prediction is less certain as it is an extrapolation'	M1 for at least one prediction attempted A1 for both answers (FT their equation if $b>0$) NB for reading predictions off the graph only award A1 if accurate to nearest whole number E1 (first prediction) E1 (second prediction)	4
(iii)	The v-coefficient is the number of additional seconds required for each extra litre of water	E1 for indication of rate wrt v E1 dep for specifying ito units	2
(iv)	```\(v=0.8 \Rightarrow\) predicted \(t=167 \times 0.8+12.6=146.2\) Residual \(=156-146.2=9.8\) \(v=1.0 \Rightarrow\) predicted \(t=167 \times 1.0+12.6=179.6\) Residual \(=172-179.6=-7.6\)```	M1 for either prediction M1 for either subtraction A1 CAO for absolute value of both residuals B1 for both signs correct.	4
(v)	The residuals can be measured by finding the vertical distance between the plotted point and the regression line. The sign will be negative if the point is below the regression line (and positive if above).	E1 for distance E1 for vertical E1 for sign	3
			18

Question 2

$\begin{aligned} & \text { (a) } \\ & \text { (i) } \end{aligned}$		M1 for standardizing A1 for 1.25 and -1 M1 for prob. with tables and correct structure A1 CAO (min 3 s.f., to include use of difference column)	4
(ii)	$\begin{aligned} & 25000 \times 0.7357 \times 0.1=£ 1839 \\ & 25000 \times 0.1587 \times 0.05=£ 198 \\ & \text { Total }=£ 1839+£ 198=£ 2037 \end{aligned}$	M1 for either product, (with or without price) M1 for sum of both products with price A1 CAO awrt $£ 2040$	3
(iii)	$X \sim \mathrm{~N}(k, 16)$ From tables $\Phi^{-1}(0.95)=1.645$ $\begin{aligned} & \frac{33-k}{4}=1.645 \\ & 33-k=1.645 \times 4 \\ & k=33-6.58 \\ & k=26.42 \text { (4 s.f.) or } 26.4 \text { (to } 3 \text { s.f.) } \end{aligned}$	B1 for ± 1.645 seen M1 for correct equation in k with positive z-value A1 CAO	3
(b) (i)	$\mathrm{H}_{0}: \mu=0.155 ; \quad \mathrm{H}_{1}: \mu>0.155$ Where μ denotes the mean weight in kilograms of the population of onions of the new variety	B1 for both correct \& ito μ B1 for definition of μ	2
(ii)	$\begin{aligned} \text { Mean weight } & =4.77 / 25=0.1908 \\ \text { Test statistic } & =\frac{0.1908-0.155}{\sqrt{0.005} / \sqrt{25}}=\frac{0.0358}{0.01414} \\ & =2.531 \end{aligned}$ 1\% level 1-tailed critical value of $z=2.326$ $2.531>2.236$ so significant. There is sufficient evidence to reject H_{0} It is reasonable to conclude that the new variety has a higher mean weight.	B1 M1 must include $\sqrt{ } 25$ A1FT B1 for 2.326 M1 For sensible comparison leading to a conclusion A1 for correct, consistent conclusion in words and in context	6
			18

Question 3

(i)	$\text { Mean }=\frac{\Sigma x f}{n}=\frac{0+20+12+3}{80}=\frac{35}{80}(=0.4375)$	B1 for mean NB answer given	1
(ii)	$\text { Variance }=0.6907^{2}=0.4771$ So Poisson distribution may be appropriate, since mean is close to variance	B1 for variance E1dep on squaring s	2
(iii)	$\begin{gathered} P(X=1)=e^{-0.4375} \frac{0.4375^{1}}{1!} \\ =0.282(3 \text { s.f. }) \end{gathered}$ Either: Thus the expected number of 1's is 22.6 which is reasonably close to the observed value of 20. Or: This probability compares reasonably well with the relative frequency 0.25	M1 for probability calc. MO for tables unless interpolated (0.2813) A1 B1 for expectation of 22.6 or r.f. of 0.25 E1 for comparison	4
(iv)	$\lambda=8 \times 0.4375=3.5$ Using tables: $\mathrm{P}(X \geq 12)=1-\mathrm{P}(X \leq 11)$ $=1-0.9997=0.0003$	B1 for mean (SOI) M1 for using tables to find 1 $-\mathrm{P}(X \leq 11)$ A1 FT	3
(v)	The probability of at least 12 free repairs is very low, so the model is not appropriate. This is probably because the mean number of free repairs in the launderette will be much higher since the machines will get much more use than usual.	E1 for 'at least 12' E1 for very low E1	3
(vi)	(A) $\begin{aligned} & \lambda=0.4375+0.15=0.5875 \\ & \mathrm{P}(X=3)=\mathrm{e}^{-0.5875} \frac{0.5875^{3}}{3!} \\ & =0.0188(3 \text { s.f. }) \end{aligned}$ $\text { (B) } \begin{aligned} & \mathrm{P}(\text { Drier needs } 1)=\mathrm{e}^{-0.15} \frac{0.15^{1}}{1!}=0.129 \\ & \mathrm{P}(\text { Each needs just } 1)=0.282 \times 0.129 \\ &=0.036 \end{aligned}$	B1 for mean (SOI) M1 A1 B1 for 0.129 (SOI) B1FT for 0.036	3 2
			18

Question 4

Mark Scheme 4768 January 2007

Q1	$\mathrm{f}(x)=k(1-x) \quad 0 \leq x \leq 1$			
(i)	$\begin{aligned} & \int_{0}^{1} k(1-x) \mathrm{d} x=1 \\ & \therefore k\left[x-\frac{1}{2} x^{2}\right]_{0}^{1}=1 \\ & \therefore k\left(1-\frac{1}{2}\right)-0=1 \\ & \therefore k=2 \end{aligned}$ Labelled sketch: straight line segment from $(0,2)$ to $(1,0)$.	M1 E1 G1 G1	Integral of $f(x)$, including limits (possibly implied later), equated to 1 . Convincingly shown. Beware printed answer. Correct shape. Intercepts labelled.	4
(ii)	$\begin{aligned} \mathrm{E}(X)= & \int_{0}^{1} 2 x(1-x) \mathrm{d} x \\ & =\left[x^{2}-\frac{2}{3} x^{3}\right]_{0}^{1}=\left(1-\frac{2}{3}\right)-0=\frac{1}{3} \\ \mathrm{E}\left(X^{2}\right) & =\int_{0}^{1} 2 x^{2}(1-x) \mathrm{d} x \\ & =\left[\frac{2}{3} x^{3}-\frac{2}{4} x^{4}\right]_{0}^{1}=\left(\frac{2}{3}-\frac{1}{2}\right)-0=\frac{1}{6} \\ \operatorname{Var}(X) & =\frac{1}{6}-\left(\frac{1}{3}\right)^{2} \\ & =\frac{1}{18} \end{aligned}$	M1 A1 M1 M1 A1	Integral for $\mathrm{E}(X)$ including limits (which may appear later). Integral for $\mathrm{E}\left(\mathrm{X}^{2}\right)$ including limits (which may appear later). Convincingly shown. Beware printed answer.	5
(iii)	$\begin{aligned} \mathrm{F}(x) & =\int_{0}^{x} 2(1-t) \mathrm{d} t \\ & =\left[2 t-t^{2}\right]_{0}^{x}=\left(2 x-x^{2}\right)-0=2 x-x^{2} \\ \mathrm{P}(X & >\mu)=\mathrm{P}\left(X>\frac{1}{3}\right)=1-\mathrm{F}\left(\frac{1}{3}\right) \\ & =1-\left(2 \times \frac{1}{3}-\left(\frac{1}{3}\right)^{2}\right)=1-\frac{5}{9}=\frac{4}{9} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Definition of cdf, including limits, possibly implied later. Some valid method must be seen. [for $0 \leq x \leq 1$; do not insist on this.] For 1 - c's $F(\mu)$. ft c's $E(X)$ and $F(x)$. If answer only seen in decimal expect 3 d.p. or better.	4
(iv)	$\begin{aligned} F\left(1-\frac{1}{\sqrt{2}}\right)= & 2\left(1-\frac{1}{\sqrt{2}}\right)-\left(1-\frac{1}{\sqrt{2}}\right)^{2} \\ & =2-\frac{2}{\sqrt{2}}-1+\frac{2}{\sqrt{2}}-\frac{1}{2}=\frac{1}{2} \end{aligned}$ Alternatively: $\begin{aligned} & 2 m-m^{2}=\frac{1}{2} \\ & \therefore m^{2}-2 m+\frac{1}{2}=0 \\ & \therefore m=1 \pm \frac{1}{\sqrt{2}} \end{aligned}$ SO $m=1-\frac{1}{\sqrt{2}}$	M1 E1 M1 E1	Substitute $m=1-\frac{1}{\sqrt{2}}$ in c's cdf. Convincingly shown. Beware printed answer. Form a quadratic equation $\mathrm{F}(m)=\frac{1}{2}$ and attempt to solve it. ft c's cdf provided it leads to a quadratic. Convincingly shown. Beware printed answer.	2
(v)	$\bar{X} \sim \mathrm{~N}\left(\frac{1}{3}, \frac{1}{1800}\right)$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Normal distribution. Mean. ft c's $\mathrm{E}(X)$. Correct variance.	3
				18

Q2				
(i)	$\begin{aligned} & \mathrm{H}_{0}: \mu=0.6 \\ & \mathrm{H}_{1}: \mu<0.6 \end{aligned}$ Where μ is the (population) mean height of the saplings. $\bar{x}=0.5883, s_{n-1}=0.03664 \quad\left(s_{n-1}^{2}=0.00134\right)$ Test statistic is $\frac{0.5883-0.6}{\left(\frac{0.03664}{\sqrt{12}}\right)}$ $=-1 \cdot 103$ Refer to t_{11}. Lower 5\% point is $-1 \cdot 796$. $-1 \cdot 103>-1 \cdot 796, \therefore$ Result is not significant. Seems mean height of saplings meets the manager's requirements. Underlying population is Normal.	B1 B1 B1 B1 M1 A1 M1 A1 E1 E1 B1	Allow absence of "population" if correct notation μ is used, but do NOT allow " $\bar{X}=$..." or similar unless \bar{X} is clearly and explicitly stated to be a population mean. Hypotheses in words only must include "population". Do not allow $s_{n}=0.03507\left(s_{n}{ }^{2}=\right.$ $0 \cdot 00123$). Allow c's \bar{x} and/or s_{n-1}. Allow alternative: $0.6 \pm$ (c's $1.796) \times \frac{0.03664}{\sqrt{12}}(=0.5810$, 0.6190) for subsequent comparison with \bar{x}. (Or $\bar{x} \pm(\mathrm{c}$'s -1.796$) \times \frac{0.03664}{\sqrt{12}}$ ($=0.5693,0.6073$) for comparison with 0.6.) c.a.o. but ft from here in any case if wrong. Use of $0.6-\bar{x}$ scores M1A0, but ft. No ft from here if wrong. No ft from here if wrong. Must be -1.796 unless it is clear that absolute values are being used. ft only c's test statistic. ft only c's test statistic.	11
(ii)	$\begin{aligned} & \text { CI is given by } 0.5883 \pm \\ & \quad 2.201 \\ & \quad \times \frac{0.03664}{\sqrt{12}} \\ & \quad=0.5883 \pm 0.0233=(0.565(0), 0.611(6)) \end{aligned}$	M1 B1 M1 A1	ft c's $\bar{x} \pm$. ft c's s_{n-1}. c.a.o. Must be expressed as an interval. ZERO if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0. Recovery to t_{11} is OK.	

	In repeated sampling, 95\% of intervals constructed in this way will contain the true population mean.	E1		5
(iii)	Could use the Wilcoxon test. Null hypothesis is "Median $=0.6 "$.	E1		
		E1		2

Q3	$\begin{aligned} & M \sim N(44, \\ & \left.H \sim 8^{2}\right) \\ & H \sim N(32, \\ & P \sim N(21, \\ & \left.3 \cdot 6^{2}\right) \end{aligned}$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables, penalise the first occurrence only.	
(i)	$\begin{array}{r} \mathrm{P}(M<50)=\mathrm{P}\left(Z<\frac{50-44}{4.8}=1.25\right) \\ =0.8944 \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	For standardising. Award once, here or elsewhere.	3
(ii)	$\begin{gathered} H+P \sim \mathrm{~N}(32+21=53 \\ \left.2 \cdot 6^{2}+3.7^{2}=20 \cdot 45\right) \\ \mathrm{P}(H+P<50)=P\left(Z<\frac{50-53}{\sqrt{20.45}}=-0.6634\right) \\ =1-0.7465=0.2535 \end{gathered}$	B1 B1 A1	Mean. Variance. Accept sd $=\sqrt{ } 20 \cdot 45=$ 4.522... c.a.o.	3
(ii)	Want $\mathrm{P}(M>H+P)$ i.e. $\mathrm{P}(M-(H+P)>0)$ $\begin{aligned} & M-(H+P) \sim \mathrm{N}(44-(32+21)=-9 \\ & 4 \cdot 8^{2}+2 \cdot 6^{2}+3 \cdot 7^{2}= \end{aligned}$ 43.49) $\begin{aligned} P(\text { this }>0) & =P\left(Z>\frac{0-(-9)}{\sqrt{43 \cdot 49}}=1.365\right) \\ & =1-0.9139=0.0861 \end{aligned}$	M1 B1 B1 A1	Allow $H+P-M$ provided subsequent work is consistent. Mean. Variance. Accept sd $=\sqrt{ } 43 \cdot 49=$ 6.594... c.a.o.	4
(iv)	$\begin{aligned} & \text { Mean }=44+44+32+32+21+21 \\ & =194 \\ & \begin{aligned} & \text { Variance }=4 \cdot 8^{2}+4 \cdot 8^{2}+2 \cdot 6^{2}+2 \cdot 6^{2}+3 \cdot 7^{2}+ \\ & 3 \cdot 7^{2} \\ &=86 \cdot 98 \end{aligned} \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	(sd = 9.3263 \ldots)	2
(v)	$\begin{aligned} & C \sim \mathrm{~N}(194 \times 0 \cdot 15+10=39 \cdot 10, \\ & \left.86 \cdot 98 \times 0 \cdot 15^{2}=1 \cdot 957\right) \end{aligned} \begin{array}{r} \mathrm{P}(C \leq 40)=\mathrm{P}\left(Z \leq \frac{40-39 \cdot 10}{\sqrt{1 \cdot 957}}=0.6433\right) \\ =0.7400 \end{array}$ Alternatively: $P(C \leq 40)=P\left(\text { total time } \leq \frac{40-10}{0.15}=200\right.$ minutes) $=P\left(Z \leq \frac{200-194}{\sqrt{86 \cdot 98}}=0.6433\right)$	M1 M1 A1 M1 A1 A1 M1 M1 A1 M1 A1	c's mean in (iv) $\times 0.15$ +10 (or subtract 10 from 40 below) ft c's mean in (iv). c's variance in (iv) $\times 0.15^{2}$ ft c's variance in (iv). c.a.o. - 10 $\div 0.15$ c.a.o. Correct use of c's variance in (iv). ft c's mean and variance in (iv).	6

	$=0.7400$	A1	c.a.o.	
				18

Q4						
(a)	Obs Exp 10 6.68$\begin{aligned} & \therefore X^{2}=\frac{(10-6 \cdot 68)^{2}}{6 \cdot 68}+\text { etc } \\ & =1 \cdot 6501+1 \cdot 7740+3 \cdot 3203+4 \cdot 5018+ \\ & 0 \cdot 4015+0 \cdot 8135 \\ & =12 \cdot 46(12) \end{aligned}$$\text { d.o.f. }=6-3=3$ Refer to χ_{3}^{2}. Upper 5\% point is 7.815 $12.46>7.815 \quad \therefore$ Result is significant. Seems the Normal model does not fit the data at the 5% level. E.g. - The biggest discrepancy is in the class $1.01<a \leq 1.02$ - The model overestimates in classes ..., but underestimates in classes ...	M1 A1 M1 A1 E1 E1 E1 E1	Combine first two rows. Require d.o.f. $=$ No. cells used 3. No ft from here if wrong. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic. Any two suitable comments.	9		
(b)	Old - New: 0.007 0.002 -0.001 -0.003 0.004 Rank of \|diff	6 2 1 3 4$W_{+}=6+2+4+8=20$ Refer to Wilcoxon single sample (/paired) tables for $n=10$. Lower two-tail 10\% point is ... $\ldots 10 .$ $20>10 \therefore$ Result is not significant. Seems there is no reason to suppose the barometers differ.	$\begin{aligned} & \begin{array}{r} -0.008 \\ 7 \end{array} \\ & \left\lvert\, \begin{array}{l} \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { E1 } \\ \text { E1 } \end{array}\right. \end{aligned}$	$\begin{array}{rrrr} -0.010 & 0.009 & -0.005 & -0.016 \\ 9 & 8 & 5 & 10 \end{array}$ For differences. ZERO in this section if differences not used. For ranks of \|difference	. All correct. ft from here if ranks wrong. $\begin{aligned} & \text { Or } W_{-}=1+3+7+9+5+10 \\ & =35 \end{aligned}$ No ft from here if wrong. Or, if 35 used, upper point is 45 . No ft from here if wrong. Or $35<45$. ft only c's test statistic. ft only c's test statistic.	9
				18		

Mark Scheme 4771 January 2007
1.

(i) \longrightarrow		B1	
(ii) Any two of 1 or 2 or 3 or 5 or 7		B1 B1	
(iii)	-	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	branching tree
(iv)			branching tree
(v)	A tree	B1	

2.

3.

(i)		$\begin{aligned} & 0,1 \rightarrow A \\ & 6,7 \rightarrow D \end{aligned}$	$\begin{aligned} & 2,3 \rightarrow B \\ & 8,9 \rightarrow E \end{aligned}$	$4,5 \rightarrow C$	M1 A1 proportions OK B1 efficient
	e.g:	4, 4, 4, 1			
(iii)	In the above simulation mean $=3.2$ (Correct expectation is 2.5 - geometric rand variable)				M1 A1
(iv)	Mor	petitions			B1

4.

5.
(i) Let x be the number of m^{2} of lawn.

Let y be the number of m^{2} of flower beds.
$x+y \geq 1000$
$0.80 x+0.40 y \leq 500$, i.e. $2 x+y \leq 1250$
$y \geq 2 x$
$x \geq 200$
Minimise $0.15 x+0.25 y$
(ii) \& (iii)

Lay $250 \mathrm{~m}^{2}$ of lawn and $750 \mathrm{~m}^{2}$ of flower beds.
Annual maintenance $=£ 225$.
(iv) Intersection of $y \geq 2 x \&$ area constraint is at ($333.33,666.67$) so max useful capital is $£ 533.33$. So £33.33.

B1

B1

B1

B1
B1
B1 B1

B1 axes labelled + scaled

B4 lines
B1 shading

M1
A1

B1 (allow £533.33)
6.
(i) DtoE; BtoD; CtoE; DtoF; AtoB

Mark Scheme 4776 January 2007
$1 \mathrm{mpe}: 0.00000005 \times 10^{98}=5 \times 10^{90}$
mpre: $0.00000005 / 1.7112245=\quad 2.92 \times 10^{-8}$
Extra digits are used internally so that rounding errors will not (usually)
[E1]
show in the displayed answer
[TOTAL 5]
2
$2 \quad 0.20271$
(i) $\begin{array}{rccc}\tan 0.2= & 0 & \text { approx }= & 7 \\ \text { error: } & -4.3 \mathrm{E}-05 & \text { rel error: } & -0.00021\end{array}$
[A1A1]
[A1A1]
[subtotal 4]
(ii) $\mathrm{k} 0.2^{\wedge} 5=4.34 \mathrm{E}-05$ hence $\mathrm{k}=\begin{gathered}0.13552 \\ 8\end{gathered} \quad$ accept 0.13 or 0.14
[M1A1A1]
[subtotal 3]
[TOTAL 7]
3

r	0	1	2	3
			0.35646	0.35706
x_{r}	0.35	0.354767	2	7
			0.00169	0.00060
Differences		0.004767	5	5
			0.35557	0.35693
Ratio of diff	ferences		0	2
root $=$	0.35706	$+0.000605\left(0.356932+0.356932^{2}+\ldots\right)$ms justified		
	0.35740			
	3			
0.3574 seems justified				

4 Graph of $\mathrm{y}=\cos \mathrm{x}$ and $\mathrm{y}=\mathrm{x}^{2}$ showing one intersection for $\mathrm{x}>0$. (Or equivalent.)

x	0.7	0.9	change of sign so root				[M1A1]
	0.274842						
$\cos x-x^{2}$		-0.18839					
r	0	1	2	3	4	root	
			0.81866	0.82390	0.82413		
x_{r}	0.7	0.9	3	9	3	0.824	[M1A1A1]
	0.27484		0.01298	0.00053			
$f(x)$	2	-0.18839	9	1	-1.6E-06	to 3dp	[A1]

$\mathbf{5}$	x	0	0.25	0.5
	$\mathrm{f}(\mathrm{x})$	1.1105	1.2446	1.4065

h	0.5	0.25
$\mathrm{f}(0)$	0.5920	0.5364

poor accuracy: estimates very different, at most 1 dp reliable

h	0.25
$\mathrm{f}^{\prime}(0.25)$	0.5920

nothing more than 1 dp because there is nothing to compare the answer with.
[E1]
[subtotal 4]
[TOTAL 8]

6

x	0.9	1.1	1.2	1.4	1.5
$f(x)$	-0.43	-0.09	0.15	0.78	1.15

(i) $y=-0.09(x-1.2) /(1.1-1.2)+0.15(x-1.1) /(1.2-1.1)=2.4 x-2.73$

Estimate of α : $\quad 1.1375$
Using values -0.085 and 0.155 gives α as 1.1354
Using values -0.095 and 0.145 gives α as 1.1396
Hence quote 1.14
(ii) $y=-0.09(x-1.2)(x-1.4) /(1.1-1.2)(1.1-1.4)+$ two similar terms
[M1A1A1A1]
$y=-3\left(x^{2}-2.6 x+1.68\right)-7.5\left(x^{2}-2.5 x+1.54\right)+13\left(x^{2}-2.3 x+1.32\right)$
$=2.5 x^{2}-3.35 x+0.57$
$y=0$ gives $\alpha=1.14$ (reject other root)

7
(i)

[M1A1A1]
[M1A1A1A1]
[subtotal 7]

Theoretically $1 / 16(=0.0625)$: good agreement with theory.
[M1A1A1]
[E1E1]
[subtotal 5]
(iii) $0.572344+0.0000699\left(1 / 16+1 / 16^{2}+\ldots\right)$
[M1A1]
$=0.572349$
[A1]
0.57235 appears completely secure from the rate of convergence
but there may be rounding errors in the 6th dp

7895-8,3895-3898 AS and A2 MEI Mathematics
 January 2007 Assessment Series

Unit Threshold Marks

Unit	Maximum Mark	A	B	C	\mathbf{D}	\mathbf{E}	\mathbf{U}	
All units	UMS	100	80	70	60	50	40	0
$\mathbf{4 7 5 1}$	Raw	72	50	43	36	29	23	0
$\mathbf{4 7 5 2}$	Raw	72	52	45	38	31	25	0
$\mathbf{4 7 5 3}$	Raw	72	61	54	47	39	31	0
$\mathbf{4 7 5 3 / 0 2}$	Raw	18	14	12	10	9	8	0
$\mathbf{4 7 5 4}$	Raw	90	68	60	52	44	37	0
$\mathbf{4 7 5 5}$	Raw	72	59	51	43	35	27	0
$\mathbf{4 7 5 6}$	Raw	72	53	46	39	32	25	0
$\mathbf{4 7 5 8}$	Raw	72	58	50	42	33	24	0
$\mathbf{4 7 5 8 / 0 2}$	Raw	18	14	12	10	9	8	0
$\mathbf{4 7 6 1}$	Raw	72	56	48	40	33	26	0
$\mathbf{4 7 6 2}$	Raw	72	58	50	43	36	29	0
$\mathbf{4 7 6 3}$	Raw	72	53	46	39	32	25	0
$\mathbf{4 7 6 6}$	Raw	72	51	44	38	32	26	0
$\mathbf{4 7 6 7}$	Raw	72	59	52	45	38	31	0
$\mathbf{4 7 6 8}$	Raw	72	59	51	43	35	28	0
$\mathbf{4 7 7 1}$	Raw	72	55	47	40	33	26	0
$\mathbf{4 7 7 6}$	Raw	72	52	46	40	33	27	0
$\mathbf{4 7 7 6 / 0 2}$	Raw	18	13	11	9	8	7	0

Specification Aggregation Results

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	U
$\mathbf{7 8 9 5 - 7 8 9 8}$	600	480	420	360	300	240	0
$3895-3898$	300	240	210	180	150	120	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	\mathbf{U}	Total Number of Candidates
$\mathbf{7 8 9 5}$	28.9	59.8	83.5	95.9	96.9	100	97
$\mathbf{7 8 9 6}$	30.8	69.2	100	100	100	100	13
$\mathbf{7 8 9 7}$	100	100	100	100	100	100	1
$\mathbf{7 8 9 8}$							0
$\mathbf{3 8 9 5}$	18.0	39.1	61.6	78.4	94.4	100	445
$\mathbf{3 8 9 6}$	33.3	66.7	83.3	100	100	100	6
$\mathbf{3 8 9 7}$	100	100	100	100	100	100	2
$\mathbf{3 8 9 8}$	84.6	92.3	92.3	100	100	100	13

For a description of how UMS marks are calculated see;
http://www.ocr.org.uk/exam system/understand ums.html
Statistics are correct at the time of publication

OCR (Oxford Cambridge and RSA Examinations)

1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

(General Qualifications)
Telephone: 01223553998
Facsimile: 01223552627
Email: helpdesk@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

