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Section A (54 marks)

Answer all the questions

1 (a) A curve has polar equation for where a and k are positive constants.
The points A and B on the curve correspond to and respectively.

(i) Sketch the curve. [2]

(ii) Find the area of the region enclosed by the curve and the line AB. [4]

(b) Find the exact value of  [5]

(c) (i) Find the Maclaurin series for up to the term in [4]

(ii) Use this Maclaurin series to show that, when h is small, [3]

2 (a) You are given the complex numbers and 

(i) Find the modulus and argument of each of the complex numbers w, z and [5]

(ii) Hence write in the form giving the exact values of a and b. [2]

(b) In this part of the question, n is a positive integer and q is a real number with 

(i) Express in simplified trigonometric form, and hence, or otherwise, show
that

[4]

Series C and S are defined by

(ii) Find C and S, and show that [7]
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3 Let (where )  and 

(i) Find in terms of k, and show that, when [6] 

(ii) Verify that are eigenvectors of M, and find the corresponding eigenvalues.

[4]

(iii) Show that [8]

Section B (18 marks)

Answer one question

Option 1: Hyperbolic functions

4 (i) Show that [5]

(ii) Find giving your answer in the form where a and b are rational

numbers. [5]

(iii) There are two points on the curve at which the gradient is 

Show that one of these points is and find the coordinates of the other point,

in a similar form. [8]
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Option 2: Investigation of curves

This question requires the use of a graphical calculator.

5 Cartesian coordinates and polar coordinates are set up in the usual way, with the pole
at the origin and the initial line along the positive x-axis, so that and .

A curve has polar equation where k is a constant with 

(i) Use your graphical calculator to obtain sketches of the curve in the three cases

[5]

(ii) Name the special feature which the curve has when [1]

(iii) For each of the three cases, state the number of points on the curve at which the tangent is
parallel to the y-axis. [2]

(iv) Express x in terms of k and q , and find Hence find the range of values of k for which there

are just two points on the curve where the tangent is parallel to the y-axis. [4]

The distance between the point on the curve and the point on the x-axis is d.

(v) Use the cosine rule to express in terms of k and q , and deduce that 
[4]

(vi) Hence show that, when k is large, the shape of the curve is very nearly circular. [2]

k 2 � d 2 � k 2 � 1.d 2

(1, 0)(r, q)

dx

dq
.

k � 1.

k � 1, k � 1.5 and k � 4.

k � 1.r � k � cos q,

y � r sin qx � r cos q
(r, q)(x, y)
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 OR Prove 12n n−= +M A B  by induction 
 When 1,n = + =A B M  B1
 Assuming 12k k −= +M A B , 
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 True for n k= ⇒  True for 1n k= + ; 
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 true for all positive integers n A1
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standard integrals involving inverse trigonometric and hyperbolic functions were handled 
particularly well, but marks were often lost through carelessness when differentiating 
trigonometric functions. Many candidates used very long methods to find eigenvalues, and 
some were unable to complete the paper as a result. 
Each of the three questions in Section A had an average mark of about 11 or 12 (out of 18). In 
Section B, Q.4 (on hyperbolic functions) was chosen by almost all the candidates, and the 
average mark was about 10. 
 
 
Comments on Individual Questions 
 
1 Polar curve and Maclaurin series 

 
In part (a)(i) the curve was usually sketched correctly, although it sometimes spiralled in 
the wrong direction and often went through the origin. In part (a)(ii) most candidates used 

21
2 dr θ∫  with the correct limits, although a substantial minority forgot to square r even 

though they had written it down. The work was very often completed correctly, but the 
integration of 2e kθ−  proved to be surprisingly challenging with factors of k going astray 

and answers such as 21 e
2

k

k
θ

θ
−−  or even 2 11 e

2 1
k

k
θ

θ
− +

− +
 were quite common. 

The integral in part (b) was usually found confidently and correctly; the only difficulty was 

with the factor 1
2 3

 in front of the integral. 

In part (c), the method for finding the Maclaurin series was well understood, but the triple 
differentiation of tan x  very often went wrong. The first derivative was sometimes written 

as 2
1

cos x
 or even 2

1 cos2x+
 before proceeding, making the work much more difficult 

than is necessary. Some strong candidates observed that f ( ) 2 f( ) f ( )x x x′′ ′= , and 
obtained  very efficiently. When the Maclaurin series had been found correctly, 
the final part (ii) was usually also completed correctly. 

f (0) 2′′′ =

 
  
2 Complex numbers 

 
Part (a) was well answered; most candidates were able to work with modulus and 
argument correctly, although solutions were quite often spoilt by careless errors (such as 
an incorrect argument for z). 
The identity in part (ii) was usually handled successfully. 
In part (iii), almost all candidates realised that they should consider jC S+ , and there 
were very many fully correct solutions. However, a fair proportion of candidates failed to 
recognise the resulting series as binomial, and were determined to use the formulae for a 
geometric series, thereby losing most of the marks for this part. 
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3 Matrices 

 
 In part (i) almost all candidates knew a method for finding the inverse matrix, and the 
process was very often completed accurately. 
 
In part (ii), it was expected that, for each of the given vectors e, the candidates would 
evaluate Me and see that this is a multiple of e. Many did this, but a large number of 
candidates found the characteristic equation, then the eigenvalues, and finally the 
eigenvectors. This did sometimes yield the correct results, but it must have been very 
time-consuming. Another common method was to write ( )λ− =M I e 0  and use one 
component to find λ ; however, this does not establish that e is an eigenvector unless the 
other two components are checked, and this was rarely done. 
Many candidates knew how to answer part (iii) by forming the product , although 
the order of the product was often wrong, and inaccuracies in evaluation frequently 
prevented the emergence of the given answer. 

1n −SD S

  
4 Hyperbolic functions 

 
Most candidates knew how to tackle the standard proof in part (i), although few gave the 
correct reason  (arcosh x ≥ 0 ) for discarding the other root. 
 
The integral in part (ii) was very often found correctly, although the factor 1

2  was quite 
frequently omitted. 
 
In part (iii) the differentiation was usually done correctly. Setting the gradient equal to 1

9  
gives a quadratic in sinhx which was often solved correctly; then the logarithmic form of 
arsinh was usually correctly employed to obtain the values of x. Many wrote the gradient 
in terms of  and , and rarely made any further progress; and a common error was 
to equate the gradient to zero instead of 

ex e x−

1
9 . Some made heavy weather of finding the 

values of y; from sinh  and 1x = ln(1 2)x = +  they evaluated cosh x  as cosh(ln(1 2))+  

instead of using 21 sinh x+ . 
  
5 Investigation of curves 

 
There were only a few attempts at this question, and all of these scored less than half 
marks. 
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