

GCE

Mathematics (MEI)

Advanced GCE A2 7895-8

Advanced Subsidiary GCE AS 3895-8

Mark Schemes for the Units

June 2006

3895-8/7895-8/MS/R/06

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2006

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annersley NOTTINGHAM NG15 0DL

Telephone:0870 870 6622Facsimile:0870 870 6621E-mail:publications@ocr.org.uk

CONTENTS

Advanced GCE Further Mathematics (MEI) (7896) Advanced GCE Further Mathematics (Additional) (MEI) (7897) Advanced GCE Mathematics (MEI) (7895) Advanced GCE Pure Mathematics (MEI) (7898)

Advanced Subsidiary GCE Further Mathematics (MEI) (3896) Advanced Subsidiary GCE Further Mathematics (Additional) (MEI) (3897) Advanced Subsidiary GCE Mathematics (MEI) (3895) Advanced Subsidiary GCE Pure Mathematics (MEI) (3898)

MARK SCHEME ON THE UNITS

Unit	Content	Page
4751	Introduction to Advanced Mathematics	1
4752	Concepts for Advanced Mathematics	5
4753	Methods for Advanced Mathematics	9
4754	Applications of Advanced Mathematics	15
4755	Further Concepts for Advanced Mathematics	21
4756	Further Methods for Advanced Mathematics	27
4757	Further Applications of Advanced Mathematics	35
4758	Differential Equations	47
4761	Mechanics 1	53
4762	Mechanics 2	59
4763	Mechanics 3	65
4764	Mechanics 4	71
4766	Statistics 1	75
4767	Statistics 2	81
4768	Statistics 3	89
4769	Statistics 4	97
4771	Decision Mathematics 1	105
4772	Decision Mathematics 2	111
4773	Decision Mathematics Computation	117
4776	Numerical Methods	123
4777	Numerical Computation	127
*	Grade Thresholds	135

Mark Scheme 4751 June 2006 Section A

Sect	ion A			
1	$[r] = [\pm] \sqrt{\frac{3V}{\pi h}}$ o.e. 'double-decker'	3	2 for $r^2 = \frac{3V}{\pi h}$ or $r = \sqrt{\frac{V}{\frac{1}{3}\pi h}}$ o.e. or M1	
			for correct constructive first step or for $r = \sqrt{k}$ ft their $r^2 = k$	3
2	$a = \frac{1}{4}$	2	M1 for subst of -2 or for $-8 + 4a + 7 = 0$ o.e. obtained eg by division by $(x + 2)$	2
3	3x + 2y = 26 or $y = -1.5x + 13$ isw	3	M1 for $3x + 2y = c$ or $y = -1.5x + c$ M1 for subst (2, 10) to find c or for or for $y - 10$ = their gradient × (x - 2)	3
4	(i) $P \leftarrow Q$ (ii) $P \Leftrightarrow Q$	1 1	condone omission of P and Q	2
5	(ii) $P \Leftrightarrow Q$ x + 3(3x + 1) = 6 o.e. 10x = 3 or 10y = 19 o.e.	M1 A1	for subst <u>or</u> for rearrangement and multn to make one pair of coefficients the same <u>or</u> for both eqns in form ' y =' (condone one error)	
	(0.3, 1.9) or $x = 0.3$ and $y = 1.9$ o.e.	A1	graphical soln: (must be on graph paper) M1 for each line, A1 for (0.3, 1.9) o.e cao; allow B3 for (0.3, 1.9) o.e.	3
6	-3 < x < 1 [condone x < 1, x > -3]	4	B3 for -3 and 1 or M1 for $x^2 + 2x - 3$ [< 0]or $(x + 1)^2 < / = 4$ and M1 for $(x + 3)(x - 1)$ or $x = (-2 \pm 4)/2$ or for $(x + 1)$ and ± 2 on opp. sides of eqn or inequality; if 0, then SC1 for one of $x < 1$, $x > -3$	4
7	(i) 28√6	2	1 for $30\sqrt{6}$ or $2\sqrt{6}$ or $2\sqrt{2}\sqrt{3}$ or $28\sqrt{2}\sqrt{3}$	
	(ii) 49 – 12√5 isw	3	2 for 49 and 1 for $-12\sqrt{5}$ or M1 for 3 correct terms from 4 $-6\sqrt{5}$ $-6\sqrt{5}$ + 45	5
8	20 -160 or ft for -8 × their 20	2 2	0 for just 20 seen in second part; M1 for 6!/(3!3!) or better condone $-160x^3$; M1 for $[-]2^3 \times$ [their] 20 seen or for [their] 20 × $(-2x)^3$; allow B1 for 160	4
9	(i) 4/27	2	1 for 4 or 27	
	(ii) $3a^{10}b^8c^{-2}$ or $\frac{3a^{10}b^8}{c^2}$	3	2 for 3 'elements' correct, 1 for 2 elements correct, -1 for any adding of elements; mark final answer; condone correct but unnecessary brackets	5
10	$x^{2} + 9x^{2} = 25$ $10x^{2} = 25$	M1 M1	for subst for x or y attempted or $x^2 = 2.5$ o.e.; condone one error from start [allow $10x^2 - 25 = 0 + \text{correct}$ substn in correct formula]	
	$x = \pm (\sqrt{10})/2 \text{ or.} \pm \sqrt{(5/2)} \text{ or } \pm 5/\sqrt{10} \text{ oe}$ $y = [\pm] 3\sqrt{(5/2)} \text{ o.e. eg } y = [\pm] \sqrt{22.5}$	A2 B1	allow $\pm \sqrt{2.5}$; A1 for one value ft 3 × their x value(s) if irrational; condone not written as coords.	5

Section B	
-----------	--

11 i $\operatorname{grad} AB = 8/4 \text{ or } 2 \text{ or } y = 2x - 10$ $\operatorname{grad} BC = 1/-2 \text{ or } -\frac{1}{2} \text{ or }$ $y = -\frac{1}{2}x + 2.5$ 1 or M1 for $AB^2 = 4^2 + 8^2 \text{ or } 80$ and $BC^2 = 2^2 + 1^2 \text{ or } 5$ and $AC^2 = 6^2 + 85$; M1 for $AC^2 = AB^2 + BC^2$ and 1	_2
grad BC = $1/-2$ or $-\frac{1}{2}$ or 1 BC ² = $2^2 + 1^2$ or 5 and AC ² = $6^2 + 1^2$ or 5 and AC ² = $6^2 + 1^2$ or 5 and AC ² = $4^2 + 1^2$ or 5 and AC ² = 4^2 + 1^2 or 5 and AC ² = 4^2 + 1^2 or 5 and AC ² =	-2
	7 ⁻ or
	for
1 I Pythag I true so AB perp to B()	
product of grads = -1 [so perp] if 0 allow G1 for graph of A B C	3
(allow seen or used)	Ũ
ii midpt E of AC = (6, 4.5) 1	
$AC^{2} = (9-3)^{2} + (8-1)^{2}$ or 85 M1 allow seen in (i) only if used in (ii);	or
$AE^2 = (9 - \text{their } 6)^2 + (8 - \text{their } 4.5)^2$	
rad = $\frac{1}{2}\sqrt{85}$ o.e. A1 rad. ² = 85/4 o.e. e.g. in circle eqn	,
$ (x - 6)^2 + (y - 4.5)^2 = 85/4 \text{ o.e.} \qquad B2 \qquad M1 \text{ for } (x - a)^2 + (y - b)^2 = r^2 \text{ soi of } x^2 + (y - b)^2 = r^2 soi of $	r for
$\begin{bmatrix} (x - 0) + (y - 4.0) - 0.074 0.0. \\ \end{bmatrix}$	
	6
85/4] semicircle [=90°]'	
iii $\overrightarrow{BE} = \overrightarrow{ED} = \begin{pmatrix} 1 \\ 4.5 \end{pmatrix}$ M1 o.e. ft their centre; or for $\overrightarrow{BC} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$	2)
$\overrightarrow{BE} = \overrightarrow{ED} = \begin{pmatrix} 1 \\ 4.5 \end{pmatrix}$ M1 o.e. ft their centre; or for $\overrightarrow{BC} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$	
)
D has coords (6 + 1, 4.5 + 4.5) ft M1 or (9 - 2, 8 + 1); condone mixtures	sof
OI vectors and coords, throughout pa	art iii
$\begin{bmatrix} (5+2,0+9) \\ (7,0) \end{bmatrix}$	3
12 i $f(-2)$ used M1 or M1 for division by $(x + 2)$ attemption	pted
$\begin{vmatrix} -8 + 36 - 40 + 12 = 0 \\ A1 as far as x^3 + 2x^2 then A1 for x^2 + 3x^2 = 0 \\ A1 bar as far as x^3 + 2x^2 then A1 for x^2 + 3x^2 = 0 \\ A1 bar as far as x^3 + 2x^2 then A1 for x^2 + 3x^2 = 0 \\ A1 bar as far as x^3 + 2x^2 then A1 for x^2 + 3x^2 = 0 \\ A1 bar as far as x^3 + 2x^2 then A1 for x^2 + 3x^2 = 0 \\ A1 bar as far as x^3 + 2x^2 then A1 for x^2 + 3x^2 = 0 \\ A1 bar as far as x^3 + 2x^2 then A1 for x^2 + 3x^2 = 0 \\ A1 bar as far as x^3 + 2x^2 then A1 for x^2 + 3x^2 = 0 \\ A1 bar as far as x^3 + 2x^2 then A1 for x^2 + 3x^2 = 0 \\ A1 bar as far as x^3 + 2x^2 then A1 for x^2 + 3x^2 = 0 \\ A1 bar as far as x^3 + 2x^2 then A1 for x^2 + 3x^2 = 0 \\ A1 bar as far as x^3 + 2x^2 then A1 for x^2 + 3x^2 = 0 \\ A1 bar as far as x^3 + 2x^2 then A1 for x^2 + 3x^2 = 0 \\ A1 bar as far as x^3 + 2x^2 then A1 for x^2 + 3x^2 = 0 \\ A1 bar as far as x^3 + 2x^2 then A1 for x^2 + 3x^2 = 0 \\ A1 bar as far as x^3 + 2x^2 then A1 for x^2 + 3x^2 = 0 \\ A1 bar as far as x^3 = 0 \\ A1 bar as far as x^3 = 0 \\ A1 bar as far as x^3 = 0 \\ A1 bar as far as x^3 = 0 \\ A1 bar as far as x^3 = 0 \\ A1 bar as far as x^3 = 0 \\ A1 bar as far as x^3 = 0 \\ A1 bar as$	7 <i>x</i> +
6 with no remainder	2
ii divn attempted as far as $x^2 + 3x$ M1 or inspection with $b = 3$ or $c = 2$ fo	und;
$x^2 + 3x + 2$ or $(x + 2)(x + 1)$ A1 B2 for correct answer	2
iii $(x+2)(x+6)(x+1)$ 2 allow seen earlier;	
M1 for $(x + 2)(x + 1)$	2
iv sketch of cubic the right way up G1 with 2 turning pts; no 3rd tp	
through 12 marked on y axis $G1$ curve must extend to $x > 0$	
intercepts -6 , -2 , -1 on x axis G1 condone no graph for $x < -6$	3
v $[x](x^2 + 9x + 20)$ M1 or other partial factorisation	-
[x](x + 4)(x + 5) M1	
x = 0, -4, -5 A1 or B1 for each root found e.g. usin	na 🗍
factor theorem	3
13 i $y = 2x + 3$ drawn on graph M1	
x = 0.2 to 0.4 and -1.7 to -1.9 A2 1 each; condone coords; must have	
x = 0.2 to 0.4 and -1.7 to -1.9 A2 Treach, condone coords, must have line drawn	3
	3
$2x^2 + 3x - 1 = 0$ M1 for correctly rearranging to zero (n	
be earned first) or suitable step re	
completing square if they go on	
attempt at formula or completing M1 ft, but no ft for factorising	
square	
$x = \frac{-3 \pm \sqrt{17}}{4}$ A2 A1 for one soln	
$x = \frac{-5 \pm \sqrt{17}}{4}$ A2 A1 for one soln	5
iii branch through (1,3), 1 and approaching $y = 2$ from above	e
branch through (-1,1),approaching	
y = 2 from below 1 and extending below x axis	2
iv -1 and $\frac{1}{2}$ or ft intersection of their 2 1 each; may be found algebraicall	
curve and line [tolerance 1 mm] ignore y coords.	2

Mark Scheme 4752 June 2006 Section A

	lion A	<u> </u>			
1	1, 3	1,1		2	
2	<i>r</i> = 0.2	3	M1 for $10 = 8/(1 - r)$, then M1 dep't for any correct step	3	-
3	1/√15 i.s.w. not +/–	3	M2 for $\sqrt{15}$ seen M1 for rt angled triangle with side 1 and hyp 4, or $\cos^2 \theta = 1 - 1/4^2$.	3	
4	$x^{5}/5 - 3 x^{-1}/-1 + x$	B3	1 each term		
	[value at 2 – value at 1] attempted 5.7 c.a.o.	M1 A1	dep't on B2	5	
5	[y =] $3x - x^3/3$ + c subst of (6, 1) in their eqn with c y = $3x - x^3/3$ + 55 c.a.o	B1 B1 M1 A1	Dep't on integration attempt Dep't on B0B1 Allow $c = 55$ isw	4	17
6	(i) 3, 8, 13, 18 (ii) use of $n/2[2a + (n - 1)d]$ (S ₁₀₀ =) 25 050 or (S ₅₀ =) 6275 (S ₄₉ =) 6027 or (S ₅₁ =) 6528 their(S ₁₀₀ - S ₅₀) dep't on M1 18 775 cao	B1 M1 A1 M1 A1	Ignore extras Use of $a + (n - 1)d$ $u_{51} = 253$ $u_{100} = 498$ $u_{50} = 248$ $u_{52} = 258$ $50/2$ (their($u_{51} + u_{100}$)) dep't on M1 or $50/2[2 \times \text{their}(u_{51}) + 49 \times 5]$	5	
7	(i) sketch of correct shape correct period and amplitude period halved for $y = \cos 2x$; amplitude unchanged (ii) 30, 150, 210, 330	G1 G1 G1 B2	Not ruled lines need 1 and –1 indicated; nos. on horiz axis not needed if one period shown B1 for 2 of these, ignore extras outside range.	5	
8	$ \frac{\sqrt{x} = x^{\frac{1}{2}} \text{ soi}}{18x^2, \frac{1}{2}x^{-\frac{1}{2}}} 36x Ax^{-3/2} (from Bx^{-\frac{1}{2}}) $	B1 B1B1 B1 B1	-1 if d/dx(3) not = 0 any A,B	5	
9	$3x \log 5 = \log 100$ $3x = \log 100/\log 5$ x = 0.954	M1 M1 A2	allow any or no base or $3x = \log_5 100$ dep't A1 for other rot versions of 0.9537 SC B2/4 for 0.954 with <u>no</u> log wkg SC B1 r.o.t. 0.9537	4	19

	Sec	tion B				
10	i (A)	$5.2^2 + 6.3^2 - 2 \times 5.2 \times 6.3 \times \cos 57$ "	M2	M1 for recognisable attempt at cos rule. or greater accuracy		
		ST = 5.6 or 5.57 cao	A1		3	
	i (B)	sin T/5.2 = sin(their 57)/their ST T=51 to 52 or S = 71 to 72	M1 A1	Or sin S/6.3 = \dots or cosine rule		
	(-)	bearing 285 + their T or 408 – their S	B1	If outside 0 to 360, must be adjusted	3	
	ii	5.2θ , $24 \times 26/60$	B1B1 B1	Lost for all working in degrees		
		θ = 1.98 to 2.02 θ = their 2 × 180/ π or 114.6° Bearing = 293 to 294 cao	M1 A1	Implied by 57.3	5	11
11	i	$y' = 3x^2 - 6x$	B1 M1	condone one error		
		use of y'= 0 (0, 1) or (2, -3)	A2	A1 for one correct or $x = 0$, 2 SC B1 for (0,1) from their y'		
		sign of <i>y</i> '' used to test or <i>y</i> ′ either side	T1	Dep't on M1 or <i>y</i> either side or clear cubic sketch	5	
	ii	y'(-1) = 3 + 6 = 9 $3x^2 - 6x = 9$	B1 M1	ft for their y'		
		<i>x</i> = 3	A1 B1	implies the M1		
		At P $y = 1$ grad normal = $-1/9$ cao	B1			
		y - 1 = -1/9 (x - 3) intercepts 12 and 4/3or use of	M1 B1	ft their (3, 1) and their grad, not 9 ft their normal (linear)		
		$\int_{0}^{12} \frac{4}{3} - \frac{1}{9} x dx$ (their normal)				13
		1/2 × 12 × 4/3 cao	A1		8	15
12	i	$\log_{10} P = \log_{10} a + \log_{10} 10^{bt}$ $\log_{10} 10^{bt} = bt$	B1 B1	condone omission of base		
		intercept indicated as log ₁₀ a	B1		3	
	ii	3.9(0), 3.94, 4(.00), 4.05, 4.11	T1	to 3 sf or more; condone one error		
		plots ft line of best fit ft	P1 L1	1 mm ruled and reasonable	3	
	iii	(gradient =) 0.04 to 0.06 seen	M1			
		(intercept =) 3.83 to 3.86 seen	M1			
		(a =) 6760 to 7245 seen $P = 7000 \times 10^{0.05t} \text{ oe}$	A1 A1	7000×1.12^{t} SC P = 10 ^{0.05t + 3.85} left A2	4	
	iv	17 000 to 18 500	B2	14 000 to 22 000 B1	2	12

Mark Scheme 4753 June 2006

	1	
1 $ 3x-2 = x$ $\Rightarrow 3x-2 = x \Rightarrow 2x = 2 \Rightarrow x = 1$ or $2-3x = x \Rightarrow 2 = 4x \Rightarrow x = \frac{1}{2}$ or $(3x-2)^2 = x^2$ $\Rightarrow 8x^2 - 12x + 4 = 0 \Rightarrow 2x^2 - 3x + 1 = 0$ $\Rightarrow (x-1)(2x-1) = 0$, $\Rightarrow x = 1, \frac{1}{2}$	B1 M1 A1 M1 A1 A1 [3]	x = 1 solving correct quadratic
2 let $u = x$, $dv/dx = \sin 2x \Rightarrow v = -\frac{1}{2}\cos 2x$ $\Rightarrow \int_{0}^{\pi/6} x \sin 2x dx = \left[x - \frac{1}{2}\cos 2x\right]_{0}^{\pi/6} + \int_{0}^{\pi/6} \frac{1}{2}\cos 2x \cdot 1 \cdot dx$ $= \frac{\pi}{6} - \frac{1}{2}\cos \frac{\pi}{3} - 0 + \left[\frac{1}{4}\sin 2x\right]_{0}^{\frac{\pi}{6}}$ $= -\frac{\pi}{24} + \frac{\sqrt{3}}{8}$ $= \frac{3\sqrt{3} - \pi}{24} *$	M1 A1 B1ft M1 B1 E1 [6]	parts with $u = x$, $dv/dx = \sin 2x$ + $\left[\frac{1}{4}\sin 2x\right]_{0}^{\frac{\pi}{6}}$ substituting limits $\cos \pi/3 = \frac{1}{2}$, $\sin \pi/3 = \sqrt{3}/2$ soi www
3 (i) $x - 1 = \sin y$ $\Rightarrow x = 1 + \sin y$ $\Rightarrow dx/dy = \cos y$ (ii) When $x = 1.5, y = \arcsin(0.5) = \pi/6$ $\frac{dy}{dx} = \frac{1}{\cos y}$ $= \frac{1}{\cos \pi/6}$ $= 2/\sqrt{3}$	M1 A1 E1 M1 A1 M1 A1 [7]	www condone 30° or 0.52 or better or $\frac{dy}{dx} = \frac{1}{\sqrt{1 - (x - 1)^2}}$ or equivalent, but must be exact
4(i) $V = \pi h^{2} - \frac{1}{3}\pi h^{3}$ $\Rightarrow \frac{dV}{dh} = 2\pi h - \pi h^{2}$ (ii) $\frac{dV}{dt} = 0.02$ $\frac{dV}{dt} = \frac{dV}{dh} \cdot \frac{dh}{dt}$ $\Rightarrow \frac{dh}{dt} = \frac{0.02}{dV/dh} = \frac{0.02}{2\pi h - \pi h^{2}}$ When $h = 0.4$, $\Rightarrow \frac{dh}{dt} = \frac{0.02}{0.8\pi - 0.16\pi} = 0.0099 \mathrm{m/min}$	M1 A1 B1 M1 M1dep A1cao [6]	expanding brackets (correctly) or product rule oe soi $\frac{dV}{dt} = \frac{dV}{dh} \cdot \frac{dh}{dt}$ oe substituting $h = 0.4$ into their $\frac{dV}{dh}$ and $\frac{dV}{dt} = 0.02$ 0.01 or better or $1/32\pi$

5(i)	$a^{2} + b^{2} = (2t)^{2} + (t^{2} - 1)^{2}$ = 4t^{2} + t^{4} - 2t^{2} + 1 = t^{4} + 2t^{2} + 1 = (t^{2} + 1)^{2} = c^{2}	M1 M1 E1	substituting for <i>a</i> , <i>b</i> and <i>c</i> in terms of <i>t</i> Expanding brackets correctly www
(ii) ⇒	$c = \sqrt{(20^2 + 21^2)} = 29$ For example: $2t = 20 \Rightarrow t = 10$ $t^2 - 1 = 99$ which is not consistent with 21	B1 M1 E1 [6]	Attempt to find <i>t</i> Any valid argument or E2 'none of 20, 21, 29 differ by two'.
6 (i)	$M_0 \longrightarrow t$	B1 B1	Correct shape Passes through $(0, M_0)$
(ii)	$\frac{M}{M_0} = e^{-0.000121 \times 5730} = e^{-0.6933} \approx \frac{1}{2}$	M1 E1	substituting $k = -0.00121$ and $t = 5730$ into equation (or ln eqn) showing that $M \approx \frac{1}{2} M_0$
(iii)	$\frac{M}{M_0} = e^{-kT} = \frac{1}{2}$ $\Rightarrow \ln \frac{1}{2} = -kT$	M1 M1	substituting $M/M_0 = \frac{1}{2}$ into equation (oe) taking lns correctly
(iv)	$\Rightarrow \ln 2 = kT$ $\Rightarrow T = \frac{\ln 2}{k} *$ $T = \frac{\ln 2}{2.88 \times 10^{-5}} \approx 24000 \text{ years}$	E1 B1 [8]	24 000 or better

г

7(i)	<i>x</i> = 1	B1 [1]	
(ii)	$\frac{dy}{dx} = \frac{(x-1)2x - (x^2 + 3).1}{(x-1)^2}$ $= \frac{2x^2 - 2x - x^2 - 3}{(x-1)^2}$ $= \frac{x^2 - 2x - 3}{(x-1)^2}$ $dy/dx = 0 \text{ when } x^2 - 2x - 3 = 0$ $\Rightarrow (x-3)(x+1) = 0$	M1 A1 M1 M1 A1	Quotient rule correct expression their numerator = 0 solving quadratic by any valid method
	$\Rightarrow x = 3 \text{ or } -1$ When $x = 3$, $y = (9 + 3)/2 = 6$ So P is (3, 6)	B1ft [6]	x = 3 from correct working y = 6
(iii)	Area = $\int_{2}^{3} \frac{x^{2} + 3}{x - 1} dx$	M1	Correct integral and limits
	$u = x - 1 \Rightarrow \frac{du}{dx} = 1, \ du = dx$ When $x = 2, \ u = 1$; when $x = 3, \ u = 2$ $= c^{2}(u+1)^{2} + 3$	B1	Limits changed, and substituting $dx = du$
	$= \int_{1}^{2} \frac{(u+1)^{2}+3}{u} du$ = $\int_{1}^{2} \frac{u^{2}+2u+4}{u} du$	B1	substituting $\frac{(u+1)^2+3}{u}$
	$= \int_{1}^{2} (u+2+\frac{4}{u}) du *$	E1	www
	$= \left[\frac{1}{2}u^{2} + 2u + 4\ln u\right]_{1}^{2}$ $= (2 + 4 + 4\ln 2) - (\frac{1}{2} + 2 + 4\ln 1)$	B1 M1	$\begin{bmatrix} \frac{1}{2}u^2 + 2u + 4\ln u \end{bmatrix}$ substituting correct limits
	$= 3\frac{1}{2} + 4\ln 2$	Alcao [7]	
(iv)	$e^{y} = \frac{x^2 + 3}{x - 1}$		
⇒	$e^{y} \frac{dy}{dx} = \frac{x^{2} - 2x - 3}{(x - 1)^{2}}$	M1	$e^{y}dy/dx = $ their f'(x) or $xe^{y} - e^{y} = x^{2} + 3$
\Rightarrow	$\frac{dy}{dx} = e^{-y} \frac{x^2 - 2x - 3}{(x - 1)^2}$	Alft	$\Rightarrow e^{y} + xe^{y} \frac{dy}{dx} - e^{y} \frac{dy}{dx} = 2x$
When	$a x = 2, e^{v} = 7 \Rightarrow$	DI	$\Rightarrow \frac{dy}{dx} = \frac{2x - e^{y}}{e^{y}(x - 1)}$ y = ln 7 or 1.95 or $e^{y} = 7$
⇒	$dy/dx = \frac{1}{7} \cdot \frac{4-4-3}{1} = -\frac{3}{7}$	B1 A1cao [4]	or $\frac{dy}{dx} = \frac{4-7}{7(2-1)} = -\frac{3}{7}$ or -0.43 or better

	T	
8 (i) (A) $\pi/2$	B1 B1	Zeros shown every $\pi/2$. Correct shape, from $-\pi$ to π
$(B) \qquad \qquad$	M1 A1 [4]	Translated in x-direction π to the left
(ii) $f'(x) = -\frac{1}{5}e^{-\frac{1}{5}x}\sin x + e^{-\frac{1}{5}x}\cos x$ $f'(x) = 0$ when $-\frac{1}{5}e^{-\frac{1}{5}x}\sin x + e^{-\frac{1}{5}x}\cos x = 0$ $\Rightarrow \frac{1}{5}e^{-\frac{1}{5}x}(-\sin x + 5\cos x) = 0$ $\Rightarrow \sin x = 5\cos x$ $\Rightarrow \frac{\sin x}{\cos x} = 5$ $\Rightarrow \tan x = 5^*$ $\Rightarrow x = 1.37(34)$ $\Rightarrow y = 0.75$ or $0.74(5)$	B1 B1 M1 E1 B1 B1 [6]	$e^{-\frac{1}{5}x} \cos x$ $-\frac{1}{5}e^{-\frac{1}{5}x} \sin x$ dividing by $e^{-\frac{1}{5}x}$ www 1.4 or better, must be in radians 0.75 or better
(iii) $f(x+\pi) = e^{-\frac{1}{5}(x+\pi)} \sin(x+\pi)$ $= e^{-\frac{1}{5}x} e^{-\frac{1}{5}\pi} \sin(x+\pi)$ $= -e^{-\frac{1}{5}x} e^{-\frac{1}{5}\pi} \sin x$ $= -e^{-\frac{1}{5}\pi} f(x)^{*}$ $\int_{\pi}^{2\pi} f(x) dx \text{let } u = x - \pi, du = dx$ $= \int_{0}^{\pi} f(u+\pi) du$ $= \int_{0}^{\pi} -e^{-\frac{1}{5}\pi} f(u) du$ $= -e^{-\frac{1}{5}\pi} \int_{0}^{\pi} f(u) du^{*}$ Area enclosed between π and 2π $= (-)e^{-\frac{1}{5}\pi} \times \text{area between } 0 \text{ and } \pi.$	M1 A1 A1 E1 B1 B1dep E1 B1 [8]	$e^{-\frac{1}{5}(x+\pi)} = e^{-\frac{1}{5}x} \cdot e^{-\frac{1}{5}\pi}$ $\sin(x+\pi) = -\sin x$ www $\int f(u+\pi)du$ limits changed using above result or repeating work or multiplied by 0.53 or better

Mark Scheme 4754 June 2006

		1
1 $\sin x - \sqrt{3} \cos x = R \sin(x - \alpha)$ $= R(\sin x \cos \alpha - \cos x \sin \alpha)$ $\Rightarrow R \cos \alpha = 1, R \sin \alpha = \sqrt{3}$ $\Rightarrow R^2 = 1^2 + (\sqrt{3})^2 = 4, R = 2$ $\tan \alpha = \sqrt{3}/1 = \sqrt{3} \Rightarrow \alpha = \pi/3$ $\Rightarrow \sin x - \sqrt{3} \cos x = 2 \sin(x - \pi/3)$ $x \text{ coordinate of P is when } x - \pi/3 = \pi/2$ $\Rightarrow x = 5\pi/6$ y = 2 So coordinates are $(5\pi/6, 2)$	B1 M1 A1 M1 A1ft B1ft [6]	R = 2 tan $\alpha = \sqrt{3}$ or sin $\alpha = \sqrt{3}$ /their R or cos $\alpha = 1$ /their R $\alpha = \pi/3$, 60° or 1.05 (or better) radians www Using <i>x</i> -their $\alpha = \pi/2$ or 90° $\alpha \neq 0$ exact radians only (not $\pi/2$) their R (exact only)
$2(i) \frac{3+2x^2}{(1+x)^2(1-4x)} = \frac{A}{1+x} + \frac{B}{(1+x)^2} + \frac{C}{1-4x}$ $\Rightarrow 3+2x^2 = A(1+x)(1-4x) + B(1-4x) + C(1+x)^2$ $x = -1 \Rightarrow 5 = 5B \Rightarrow B = 1$ $x = \frac{1}{4} \Rightarrow \frac{1}{3} = \frac{25}{16}C \Rightarrow C = 2$ coeff ⁴ of x^2 : $2 = -4A + C \Rightarrow A = 0$.	M1 B1 B1 E1 [4]	Clearing fractions (or any 2 correct equations) B = 1 www C = 2 www A = 0 needs justification
(ii) $(1+x)^{-2} = 1 + (-2)x + (-2)(-3)x^2/2! + \dots$ $= 1 - 2x + 3x^2 + \dots$ $(1-4x)^{-1} = 1 + (-1)(-4x) + (-1)(-2)(-4x)^2/2! + \dots$ $= 1 + 4x + 16x^2 + \dots$ $\frac{3+2x^2}{(1+x)^2(1-4x)} = (1+x)^{-2} + 2(1-4x)^{-1}$ $\approx 1 - 2x + 3x^2 + 2(1+4x+16x^2)$ $= 3 + 6x + 35x^2$	M1 A1 A1 A1ft [4]	Binomial series (coefficients unsimplified - for either) or $(3+2x^2)(1+x)^{-2}(1-4x)^{-1}$ expanded theirA,B,C and their expansions
3 $\sin(\theta + \alpha) = 2\sin \theta$ $\Rightarrow \sin \theta \cos \alpha + \cos \theta \sin \alpha = 2\sin \theta$ $\Rightarrow \tan \theta \cos \alpha + \sin \alpha = 2\tan \theta$ $\Rightarrow \sin \alpha = 2\tan \theta - \tan \theta \cos \alpha$ $= \tan \theta (2 - \cos \alpha)$ $\Rightarrow \tan \theta = \frac{\sin \alpha}{2 - \cos \alpha} *$ $\sin(\theta + 40^\circ) = 2\sin \theta$ $\Rightarrow \tan \theta = \frac{\sin 40}{2 - \cos 40} = 0.5209$ $\Rightarrow \theta = 27.5^\circ, 207.5^\circ$	M1 M1 E1 M1 A1 A1 [7]	Using correct Compound angle formula in a valid equation dividing by $\cos \theta$ collecting terms in $\tan \theta$ or $\sin \theta$ or dividing by $\tan \theta$ oe www (can be all achieved for the method in reverse) $\tan \theta = \frac{\sin 40}{2 - \cos 40}$ -1 if given in radians -1 extra solutions in the range

4 (a) $\frac{dx}{dt} = k\sqrt{x}$	M1 A1 [2]	$\frac{dx}{dt} = \dots$ $k\sqrt{x}$
(b) $\frac{dy}{dt} = \frac{10000}{\sqrt{y}}$ $\Rightarrow \int \sqrt{y} dy = \int 10000 dt$ $\Rightarrow \frac{2}{3} y^{\frac{3}{2}} = 10000t + c$ When $t = 0, y = 900 \Rightarrow 18000 = c$ $\Rightarrow y = [\frac{3}{2}(10000t + 18000)]^{\frac{2}{3}}$ $= (1500(10t+18))^{\frac{2}{3}}$ When $t = 10, y = 3152$	M1 A1 B1 A1 M1 A1 [6]	separating variables condone omission of c evaluating constant for their integral any correct expression for $y =$ for method allow substituting t=10 in their expression cao
5 (i) $\int xe^{-2x} dx$ let $u = x$, $dv/dx = e^{-2x}$ $\Rightarrow v = -\frac{1}{2}e^{-2x}$ $= -\frac{1}{2}xe^{-2x} + \int \frac{1}{2}e^{-2x} dx$ $= -\frac{1}{2}xe^{-2x} - \frac{1}{4}e^{-2x} + c$ $= -\frac{1}{4}e^{-2x}(1+2x) + c^{*}$ or $\frac{d}{dx}[-\frac{1}{2}xe^{-2x} - \frac{1}{4}e^{-2x} + c] = -\frac{1}{2}e^{-2x} + xe^{-2x} + \frac{1}{2}e^{-2x}$ $= xe^{-2x}$	M1 A1 E1 M1 A1 E1 [3]	Integration by parts with $u = x$, $dv/dx = e^{-2x}$ = $-\frac{1}{2}xe^{-2x} + \int \frac{1}{2}e^{-2x}dx$ condone omission of c product rule
(ii) $V = \int_{0}^{2} \pi y^{2} dx$ $= \int_{0}^{2} \pi (x^{1/2} e^{-x})^{2} dx$ $= \pi \int_{0}^{2} x e^{-2x} dx$ $= \pi \left[-\frac{1}{4} e^{-2x} (1+2x) \right]_{0}^{2}$ $= \pi (-\frac{1}{4} e^{-4} . 5 + \frac{1}{4})$ $= \frac{1}{4} \pi (1 - \frac{5}{e^{4}})^{*}$	M1 A1 DM1 E1 [4]	Using formula condone omission of limits $y^2 = xe^{-2x}$ condone omission of limits and π condone omission of π (need limits)

Section B

		1
6 (i) At E, $\theta = 2\pi$ $\Rightarrow x = a(2\pi - \sin 2\pi) = 2a\pi$ So OE = $2a\pi$. Max height is when $\theta = \pi$ $\Rightarrow y = a(1 - \cos \pi) = 2a$	M1 A1 M1 A1 [4]	<i>θ</i> =π, 180°,cos <i>θ</i> =-1
(ii) $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}$ $a\sin\theta$	M1	$\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}$ for theirs
$=\frac{a\sin\theta}{a(1-\cos\theta)}$ $\sin\theta$	M1	$\frac{d}{d\theta}(\sin\theta) = \cos\theta, \frac{d}{d\theta}(\cos\theta) = -\sin\theta$ both
$=\frac{\sin\theta}{(1-\cos\theta)}$	A1 [3]	or equivalent www condone uncancelled a
(iii) $\tan 30^\circ = 1/\sqrt{3}$ $\Rightarrow \frac{\sin \theta}{(1 - \cos \theta)} = \frac{1}{\sqrt{3}}$	M1	Or gradient= $1/\sqrt{3}$
$\Rightarrow \qquad \sin\theta = \frac{1}{\sqrt{3}} (1 - \cos\theta)^*$	E1	
When $\theta = 2\pi/3$, sin $\theta = \sqrt{3}/2$	M1	$\sin \theta = \sqrt{3/2}, \cos \theta = -\frac{1}{2}$
$(1 - \cos \theta)/\sqrt{3} = (1 + \frac{1}{2})/\sqrt{3} = \frac{3}{2\sqrt{3}} = \frac{\sqrt{3}}{2}$	E1	
BF = $a(1 + \frac{1}{2}) = \frac{3a}{2*}$ OF = $a(2\pi/3 - \sqrt{3}/2)$	E1 B1 [6]	or equiv.
(iv) BC = $2a\pi - 2a(2\pi/3 - \sqrt{3}/2)$	B1ft	their OE -2their OF
$= a(2\pi/3 + \sqrt{3})$ AF = $\sqrt{3} \times 3a/2 = 3\sqrt{3}a/2$ AD = BC + 2AF = $a(2\pi/3 + \sqrt{3} + 3\sqrt{3})$	M1 A1 M1	
$= a(2\pi/3 + 4\sqrt{3})$ $= 20$ $\Rightarrow a = 2.22 \text{ m}$	A1 [5]	

7 (i) AE = $\sqrt{(15^2 + 20^2 + 0^2)} = 25$	M1 A1 [2]	
(ii) $\overline{AE} = \begin{pmatrix} 15 \\ -20 \\ 0 \end{pmatrix} = 5 \begin{pmatrix} 3 \\ -4 \\ 0 \end{pmatrix}$	M1	Any correct form
Equation of BD is $\mathbf{r} = \begin{pmatrix} -1 \\ -7 \\ 11 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ -4 \\ 0 \end{pmatrix}$	A1	or $\mathbf{r} = \begin{pmatrix} -1 \\ -7 \\ 11 \end{pmatrix} + \lambda \begin{pmatrix} 15 \\ -20 \\ 0 \end{pmatrix}$
$BD = 15 \Rightarrow \lambda = 3$ $\Rightarrow D \text{ is } (8, -19, 11)$	M1 A1cao [4]	$\lambda = 3 \text{ or } 3/5 \text{ as appropriate}$
(iii) At A: $-3 \times 0 + 4 \times 0 + 5 \times 6 = 30$	M1	One verification
At B: $-3 \times (-1) + 4 \times (-7) + 5 \times 11 = 30$ At C: $-3 \times (-8) + 4 \times (-6) + 5 \times 6 = 30$	A2,1,0	(OR B1 Normal, M1 scalar product with 1 vector in the plane, A1two correct, A1 verification with a point
Normal is $\begin{pmatrix} -3\\4\\5 \end{pmatrix}$	B1 [4]	OR M1 vector form of equation of plane eg $r=0i+0j+6k+\mu(i+7j-5k)+\nu(8i+6j+0k)$ M1 elimination of both parameters A1 equation of plane B1 Normal *)
(iv) $\begin{pmatrix} 4\\3\\5 \end{pmatrix} \cdot \overrightarrow{AE} = \begin{pmatrix} 4\\3\\5 \end{pmatrix} \begin{pmatrix} 15\\-20\\0 \end{pmatrix} = 60 - 60 = 0$ $\begin{pmatrix} 4\\3\\5 \end{pmatrix} \cdot \overrightarrow{AB} = \begin{pmatrix} 4\\3\\5 \end{pmatrix} \begin{pmatrix} -1\\-7\\5 \end{pmatrix} = -4 - 21 + 25 = 0$	M1 E1	scalar product with one vector in plane = 0 scalar product with another vector in plane = 0
$\Rightarrow \begin{pmatrix} 4\\3\\5 \end{pmatrix}$ is normal to plane		prane o
Equation is $4x + 3y + 5z = 30$.	M1 A1 [4]	4x + 3y + 5z = 30 OR as * above OR M1 for subst 1 point in 4x+3y+5z=,A1 for subst 2 further points =30 A1 correct equation, B1 Normal
(v) Angle between planes is angle between normals $\begin{pmatrix} 4\\3\\5 \end{pmatrix}$ and $\begin{pmatrix} -3\\4\\5 \end{pmatrix}$	M1	
$\cos\theta = \frac{4 \times (-3) + 3 \times 4 + 5 \times 5}{\sqrt{50} \times \sqrt{50}} = \frac{1}{2}$ $\Rightarrow \theta = 60^{\circ}$	M1 A1	Correct method for any 2 vectors their normals only (rearranged) or 120°
$\rightarrow \theta = 00^{-1}$	A1 [4]	cao

Comprehension Paper 2QuAnswerMarkComment1. $\left(26 + \frac{385}{1760}\right) \times 4$ minutesM1Accept all earlier forms, with a 52 and 522. $R = 259.6 - 0.391(T - 1900)$ M1R=0 and atta solve.2. $R = 259.6 - 0.391(T - 1900) = 0$ M1R=0 and atta solve. $\therefore 259.6 - 0.391(T - 1900) = 0$ $\Rightarrow T = 2563.9$ A1T=2563,256 correct R will become negative in 2563A1T=2563,256 correctCao3.The value of L is 120.5 and this is over 2 hours or (120 minutes)or R>120.5r or showing t solution for 120=120.5+4.(i)Substituting $t = 0$ in $R = L + (U - L)e^{-kt}$ $= U$ M1 E14.(ii)As $t \to \infty$, $e^{-kt} \to 0$ and so $R \to L$ M1 E15.(i) $\uparrow^{\mathbb{R}}$ M1Increasing c	
$\left(26 + \frac{305}{1760} \right) \times 4$ minutesM11 hour 44 minutes 52.5 secondsA1Accept all equations forms, with the form,	
1 hour 44 minutes 52.5 secondsA1Accept all ead forms, with the 52 and 532. $R = 259.6 - 0.391(T - 1900)$ $\therefore 259.6 - 0.391(T - 1900) = 0$ $\Rightarrow T = 2563.9$ M1 $R=0$ and attal solve.3.The value of L is 120.5 and this is over 2 hours or (120 minutes)A1 $T=2563,256$ correct cao3.The value of L is 120.5 and this is over 2 hours or (120 minutes)or R>120.5r or showing to solution for 120=120.5+4.(i)Substituting $t = 0$ in $R = L + (U - L)e^{-kt}$ $= U$ M1 A1 E14.(ii)As $t \to \infty$, $e^{-kt} \to 0$ and so $R \to L$ M1 E1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	units. Allow
$\Rightarrow T = 2563.9$ $R \text{ will become negative in 2563}$ $A1$ $T = 2563,256$ $Correct$ Cao $A1$ $T = 2563,256$ $Correct$ Cao $A1$ Cao C	empting to
A 1Correct caoR will become negative in 2563A13.The value of L is 120.5 and this is over 2 hours or (120 minutes)or R>120.5r or showing t solution for 120=120.5+4.(i)Substituting $t = 0$ in $R = L + (U - L)e^{-kt}$ M1 A1 $e^0 = 1$ gives $R = L + (U - L) \times 1$ $= U$ A1 E1 $e^0 = 1$ 4.(ii)As $t \to \infty$, $e^{-kt} \to 0$ and so $R \to L$ M1 E1	
A will become negative in 2503A13.The value of L is 120.5 and this is over 2 hours or (120 minutes)or R>120.5r or showing t solution for 120=120.5+4.(i)Substituting $t = 0$ in $R = L + (U - L)e^{-kt}$ M1 A1 $e^0 = 1$ gives $R = L + (U - L) \times 1$ $= U$ A1 E1 $e^0 = 1$ 4.(ii)As $t \to \infty$, $e^{-kt} \to 0$ and so $R \to L$ M1 E1	4,2563.9any
hours or (120 minutes) 4.(i) Substituting $t = 0$ in $R = L + (U - L)e^{-kt}$ U = U 4.(ii) As $t \to \infty$, $e^{-kt} \to 0$ and so $R \to L$ E1 or showing the solution for 120=120.5+ M1 A1 $e^0 = 1$ E1 $e^0 = 1$ E1 $M1$ A1 $e^0 = 1$ A1 $e^0 = 1$	
4.(i) Substituting $t = 0$ in $R = L + (U - L)e^{-kt}$ gives $R = L + (U - L) \times 1$ = U 4.(ii) As $t \to \infty$, $e^{-kt} \to 0$ and so $R \to L$ 5.(i) M1 E1 M1 E1 M1 E1	here is no
gives $R = L + (U - L) \times 1$ $= U$ 4.(ii) As $t \to \infty$, $e^{-kt} \to 0$ and so $R \to L$ 4.(ii) M1 E1 E1 E1 E1	01100
4.(ii) As $t \to \infty$, $e^{-kt} \to 0$ and so $R \to L$ E1	
and so $R \rightarrow L$ E1	
5.(i) M1 Increasing c	
	urve
A1 Asymptote	
A A A A A A A A A A A A A A A A A A A	rked correctly
5.(ii) Any field event: long jump, high jump, triple jump, pole vault, javelin, shot, discus, hammer, etc.	
6.(i) $t = 104$ B1	
6.(ii) $R = 115 + (175 - 115)e^{-0.0467t^{0.797}}$	
$R = 115 + 60 \times e^{-0.0467 \times 104^{0.797}}$ M1 Substituting	their t
$R = 115 + 60 \times e^{-1.892}$	etc
R = 124.047 2 hours 4 minutes 3 seconds A1	010.

Mark Scheme 4755 June 2006

4755	Mark Scheme		June 2006
Qu	Answer	Mark	Comment
Section	on A	I I	
1 (i) 1(ii)	Reflection in the <i>x</i> -axis. $ \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \\ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} $	B1 [1] B1 [1] M1	Multiplication of their matrices in
1(iii)	$\begin{pmatrix} 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \end{pmatrix}^{-} \begin{pmatrix} -1 & 0 \end{pmatrix}$	A1 c.a.o. [2]	the correct order or B2 for correct matrix without working
2	$(x+2)(Ax^{2} + Bx + C) + D$ = $Ax^{3} + Bx^{2} + Cx + 2Ax^{2} + 2Bx + 2C + D$ = $Ax^{3} + (2A + B)x^{2} + (2B + C)x + 2C + D$	M1	Valid method to find all coefficients
	$\Rightarrow A = 2, B = -7, C = 15, D = -32$	B1 B1 F1 F1 OR B5	For $A = 2$ For D = -32 F1 for each of B and C
		[5]	For all correct
3 (i)	$\alpha + \beta + \gamma = -4$	B1	
	$\alpha + \beta + \gamma = -4$ $\alpha\beta + \beta\gamma + \alpha\gamma = -3$	B1	
	$\alpha\beta\gamma = -1$	B1 [3]	
3(ii)	$\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \beta\gamma + \alpha\gamma)$ $= 16 + 6 = 22$	M1 A1 E1 [3]	Attempt to use $(\alpha + \beta + \gamma)^2$ Correct Result shown
4 (i)	Argand diagram with solid circle, centre $3 - j$, radius 3, with values of z on and within the circle clearly indicated as satisfying the inequality.	B1 B1 B1	Circle, radius 3, shown on diagram Circle centred on 3 - j Solution set indicated (solid circle
4(ii)	In C lie in the shaded annulus, including the outer boundary but encluding the inner H Re	[3] B1 B1 [2]	with region inside) Hole, radius 1, shown on diagram Boundaries dealt with correctly

Qu	Answer	Mark	Comment
Sectio	on A (continued)	-	
4(iii)	Im	B1 B1	Line through their 3 – j Half line
		B1	$\frac{\pi}{4}$ to real axis
	$\xrightarrow{\frac{\pi}{4}} R$	[3]	
5(i)	$\begin{pmatrix} -1 & 2 \\ -3 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\mathbf{S}^{-1} = \frac{1}{2} \begin{pmatrix} 4 & -2 \\ 3 & -1 \end{pmatrix}$	B1	
	$\mathbf{S}^{-1} = \frac{1}{2} \begin{pmatrix} 4 & -2 \\ 3 & -1 \end{pmatrix}$	M1,	Attempt to divide by determinant and manipulate contents
		A1	Correct
	$\frac{1}{2} \begin{pmatrix} 4 & -2 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	E1	
		[4]	
5(ii)	$\mathbf{T}\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} x\\ y \end{pmatrix}$		
	$\Rightarrow \mathbf{T}^{-1}\mathbf{T}\begin{pmatrix} x\\ y \end{pmatrix} = \mathbf{T}^{-1}\begin{pmatrix} x\\ y \end{pmatrix}$	M1	Pre-multiply by \mathbf{T}^{-1}
	$\Rightarrow \begin{pmatrix} x \\ y \end{pmatrix} = \mathbf{T}^{-1} \begin{pmatrix} x \\ y \end{pmatrix}$	A1	Invariance shown
		[2]	
6	$3+6+12+\dots+3\times 2^{n-1}=3(2^n-1)$ n = 1, LHS = 3, RHS = 3		
		B1	
	Assume true for $n = k$ Next term is $3 \times 2^{k+1-1} = 3 \times 2^k$	E1 B1	Assuming true for k $(k + 1)^{\text{th}}$ term.
	Add to both sides RHS = $3(2^{k} - 1) + 3 \times 2^{k}$	M1	Add to both sides
	$= 3(2^{k} - 1 + 2^{k})$ $= 3(2 \times 2^{k} - 1)$		
	$=3\left(2^{k+1}-1\right)$	A1	Working must be valid
	But this is the given result with $k + 1$ replacing k . Therefore if it is true for k it is true for $k + 1$. Since it is true for $k = 1$, it is	E1	Dependent on previous A1and E1
	true for $k + 1$. Since it is true for $k = 1$, it is true for all positive integers <i>n</i> .	E1 [7]	Dependent on B1 and previous E1 Section A Total: 36

Sectio	on B		
7(i)	x = 2, $x = -1$ and $y = 1$	B1	One mark for each
		B1B1	
		[3]	
7(ii)			
(A)	Large positive $x, y \rightarrow 1^+$ (from above)	M1	Evidence of method needed for
(B)	(e.g. consider $x = 100$)	B1	M1
	Large negative <i>x</i> , $y \rightarrow 1^-$ (from below)	B1	
	(e.g. consider $x = -100$)	[3]	
7(iii)	Curve		
	3 branches	B1	
	o branches		With correct approaches to
	Correct approaches to horizontal	B1	vertical asymptotes
	asymptote	B1 B1	Consistent with their (i) and (ii) Equations or values at axes clear
	Asymptotes marked	[4]	
	Through origin	[-1]	
7(iv)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
7(iv)	x < -1, x > 2	B1B1, B1, [3]	s.c. 1 for inclusive inequalities Final B1 for all correct with no other solutions

Τ

8 (i)	$(2+j)^2 = 3+4j$	B1	
	$(2+j)^3 = 2+11j$ Substituting into $2x^3 - 11x^2 + 22x - 15$:	B1 M1	Attempt at substitution
	2(2+11j)-11(3+4j)+22(2+j)-15	A1	Correctly substituted
	= 4 + 22j - 33 - 44j + 44 + 22j - 15 $= 0$	A1	Correctly cancelled (Or other valid methods)
	So 2 + j is a root.	[5]	
8(ii)	2 - j	B1 [1]	
8(iii)	(x-(2+j))(x-(2-j)) = $(x-2-j)(x-2+j)$	M1	Use of factor theorem
	$= x^{2} - 2x + jx - 2x + 4 - 2j - jx + 2j + 1$ = $x^{2} - 4x + 5$	A1	
	$(x^{2}-4x+5)(ax+b) = 2x^{3}-11x^{2}+22x-15$ $(x^{2}-4x+5)(2x-3) = 2x^{3}-11x^{2}+22x-15$	M1	Comparing coefficients or long division
	$(2x-3) = 0 \Longrightarrow x = \frac{3}{2}$	A1 [4]	Correct third root
	OR		
	Sum of roots = $\frac{11}{2}$ or product of roots = $\frac{15}{2}$ leading to	M1 A1	
	$\alpha + 2 + j + 2 - j = \frac{11}{2}$	M1	
	$\Rightarrow \alpha = \frac{3}{2}$	A1 [4]	
	or $\alpha (2+j)(2-j) = \frac{15}{2}$	M1 A1	
	$\Rightarrow 5\alpha = \frac{15}{2} \Rightarrow \alpha = \frac{3}{2}$	M1 A1 [4]	(Or other valid methods)

4755	Mark Scheme		June 2006
9(i)	r(r+1)(r+2) - (r-1)r(r+1) = $(r^{2} + r)(r+2) - r^{3} - r$ = $r^{3} + 2r^{2} + r^{2} + 2r - r^{3} + r$	M1	Accept '=' in place of '≡' throughout working
	$\equiv r^{2} + 2r + r^{2} + 2r - r^{2} + r^{2}$ $\equiv 3r^{2} + 3r \equiv 3r(r+1)$	E1 [2]	Clearly shown
9(ii)	$\sum_{r=1}^{n} r(r+1)$		
	$= \frac{1}{3} \sum_{r=1}^{n} \left[r(r+1)(r+2) - (r-1)r(r+1) \right]$	M1	Using identity from (i)
	$= \frac{1}{3} [(1 \times 2 \times 3 - 0 \times 1 \times 2) + (2 \times 3 \times 4 - 1 \times 2 \times 3) + (3 \times 4 \times 5 - 2 \times 3 \times 4) + \dots + (n(n+1)(n+2) - (n-1)n(n+1))]$	M1 A2	Writing out terms in full At least 3 terms correct (minus 1 each error to minimum of 0)
0($=\frac{1}{3}n(n+1)(n+2) \text{ or equivalent}$	M1 A1 [6]	Attempt at eliminating terms (telescoping) Correct result
9(iii)	$\sum_{r=1}^{n} r(r+1) = \sum_{r=1}^{n} r^{2} + \sum_{r=1}^{n} r$		
	$= \frac{1}{6}n(n+1)(2n+1) + \frac{1}{2}n(n+1)$ $= \frac{1}{6}n(n+1)[(2n+1)+3]$	B1 B1 M1	Use of standard sums (1 mark each) Attempt to combine
	$=\frac{1}{6}n(n+1)(2n+4)$	A1	
	$= \frac{1}{6}n(n+1)(2n+4)$ $= \frac{1}{3}n(n+1)(n+2) \text{ or equivalent}$	E1 [5]	Correctly simplified to match result from (ii)
		[3]	Section B Total: 36
			Total: 72

Mark Scheme 4756 June 2006

1(a)(i)		B1 B1 2	Correct shape for $-\frac{1}{2}\pi < \theta < \frac{1}{2}\pi$ including maximum in 1st quadrant Correct form at O and no extra sections
(ii)	$c^{\frac{3}{2}\pi}$	M1	For integral of $(\sqrt{2} + 2\cos\theta)^2$
	Area is $\int \frac{1}{2}r^2 d\theta = \int_{-\frac{3}{4}\pi}^{\frac{3}{4}\pi} \frac{1}{2}a^2(\sqrt{2} + 2\cos\theta)^2 d\theta$	A1	For a correct integral expression including limits (may be implied by later work)
	$= \int_{-\frac{3}{4}\pi}^{\frac{3}{4}\pi} a^2 (1 + 2\sqrt{2}\cos\theta + 1 + \cos 2\theta) \mathrm{d}\theta$	B1	Using $2\cos^2\theta = 1 + \cos 2\theta$
	$= \left[a^2 (2\theta + 2\sqrt{2}\sin\theta + \frac{1}{2}\sin 2\theta) \right]_{-\frac{3}{4}\pi}^{\frac{3}{4}\pi}$	B1B1 ft	Integration of $\cos\theta$ and $\cos 2\theta$
	$=3(\pi+1)a^2$	M1 A1 7	Evaluation using $\sin \frac{3}{4}\pi = (\pm)\frac{1}{\sqrt{2}}$
(b)(i)	$f'(x) = \sec^2(\frac{1}{4}\pi + x)$		
	$f''(x) = 2\sec^{2}(\frac{1}{4}\pi + x) \tan(\frac{1}{4}\pi + x)$	B1 B1	Any correct form
	f(0) = 1, f'(0) = 2, f''(0) = 4 $f(x) = 1 + 2x + 2x^{2} + \dots$	M1 B1A1A1 6	Evaluating f'(0) or f"(0)
	OR $g'(u) = \sec^2 u$ (where $g(u) = \tan u$) B1		Condone $\sec^2 x$ etc
	$g''(u) = 2 \sec^2 u \tan u$ B1 $g(\frac{1}{4}\pi) = 1, g'(\frac{1}{4}\pi) = 2, g''(\frac{1}{4}\pi) = 4$ M1 $f(x) = g(\frac{1}{4}\pi + x) = 1 + 2x + 2x^2 + \dots$ B1A1A1		Evaluating $g'(\frac{1}{4}\pi)$ or $g''(\frac{1}{4}\pi)$
(ii)	$\int_{-h}^{h} x^2 (1 + 2x + 2x^2 + \dots) dx$		
	$= \left[\frac{1}{3}x^3 + \frac{1}{2}x^4 + \frac{2}{5}x^5 + \dots \right]_{-h}^{h}$	M1 A1 ft	Using series and integrating (ft requires three non-zero terms)
	$\approx \left(\frac{1}{3}h^3 + \frac{1}{2}h^4 + \frac{2}{5}h^5\right) - \left(-\frac{1}{3}h^3 + \frac{1}{2}h^4 - \frac{2}{5}h^5\right)$ $= \frac{2}{3}h^3 + \frac{4}{5}h^5$	A1 (ag) 3	Correctly shown Allow ft from $1 + kx + 2x^2$ with $k \neq 0$

2 (a)(i)	$z^n + \frac{1}{z^n} = 2\cos n\theta$, $z^n - \frac{1}{z^n} = 2j\sin n\theta$	B1B1	2
(ii)	$\left(z - \frac{1}{z}\right)^4 \left(z + \frac{1}{z}\right)^2 = 64\sin^4\theta\cos^2\theta$ $= z^6 - 2z^4 - z^2 + 4 - \frac{1}{z^2} - \frac{2}{z^4} + \frac{1}{z^6}$	B1 M1	Expansion $z^6 + \dots + z^{-6}$
	$z^2 z^4 z^6$	A1 M1	Using $z^n + \frac{1}{z^n} = 2\cos n\theta$ with $n = 2, 4$ or 6. Allow M1 if used
	$= 2\cos 6\theta - 4\cos 4\theta - 2\cos 2\theta + 4$ $\sin^{4} \theta \cos^{2} \theta = \frac{1}{32}\cos 6\theta - \frac{1}{16}\cos 4\theta - \frac{1}{32}\cos 2\theta + \frac{1}{16}$ $(A = \frac{1}{32}, B = -\frac{1}{16}, C = -\frac{1}{32}, D = \frac{1}{16})$	A1 ft A1	in partial expansion, or if 2 omitted, etc
(b)(i)	$ 4+4j = \sqrt{32}$, $\arg(4+4j) = \frac{1}{4}\pi$	B1B1	Accept 5.7; 0.79, 45°
(ii)	$r = \sqrt{2}$ $\theta = -\frac{3}{4}\pi, -\frac{7}{20}\pi, \frac{1}{20}\pi, \frac{9}{20}\pi, \frac{17}{20}\pi$	B1 B3	Accept $32^{\frac{1}{10}}$, 1.4, $\sqrt[5]{4\sqrt{2}}$ etc Accept $-2.4, -1.1, 0.16, 1.4, 2.7$ Give B2 for three correct Give B1 for one correct Deduct 1 mark (maximum) if
		B2	Deduct 1 mark (maximum) if degrees used $(-135^\circ, -63^\circ, 9^\circ, 81^\circ, 153^\circ)$ $\frac{1}{20}\pi + \frac{2}{5}k\pi$ earns B2; with k = -2, -1, 0, 1, 2 earns B3 Give B1 for four points correct, or B1 ft for five points
(iii)	$\sqrt{2}e^{-\frac{3}{4}\pi j} = \sqrt{2}\left(-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}j\right)$	M1	Exact evaluation of a fifth root
,	$(\sqrt{2} \sqrt{2})$ = -1 - j p = -1, q = -1	A1	Give B2 for correct answer stated or obtained by any other method

r					
3 (i)	$\mathbf{M}^{-1} = \frac{1}{5-k} \begin{pmatrix} 1 & 5k-13 & 5-2k \\ 1 & 52-8k & 3k-20 \\ -1 & -12 & 5 \end{pmatrix}$		M1 A1 A1 A1 M1 A1	6	Evaluating determinant For $(5-k)$ must be simplified Finding at least four cofactors At least 6 signed cofactors correct Transposing matrix of cofactors and dividing by determinant Fully correct
	Obtaining one row in LHS consisting of two zeros and a multiple of $(5-k)$ Obtaining one row in RHS which is a multi of a row of the inverse matrix Obtaining two zeros in every row in LHS	M1 o A1 iple A1			or elementary column operations
(ii)	$ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = -\frac{1}{2} \begin{pmatrix} 1 & 22 & -9 \\ 1 & -4 & 1 \\ -1 & -12 & 5 \end{pmatrix} \begin{pmatrix} 12 \\ m \\ 0 \end{pmatrix} $ x = -11m - 6, y = 2m - 6, z = 6m + 6		M1 M1 M1 A2 ft	5	Substituting $k = 7$ into inverse Correct use of inverse Evaluating matrix product Give A1 ft for one correct Accept unsimplified forms or solution left in matrix form
	5y - z = 4m - 36 $y = 2m - 6$	M2 M1 A2			Eliminating one variable in two different ways Obtaining one of x , y , z Give M3 for any other valid method leading to one of x , y , z in terms of $mGive A1 for one correct$
(iii)	Eliminating x , $3y + 3z = -24$ 5y + 5z = 4p - 36 For solutions, $4p - 36 = -24 \times \frac{5}{3}$		M2 A1 M1		Eliminating one variable in two different ways Two correct equations Dependent on previous M2
	determinant $12 + 12p$ or $-12 - 12p$	M2 A1 M1			Dependent on previous M2

OR Any other method leading to a from which <i>p</i> could be found	n equation M3		
Correct equation	A1		
p = -1 Let $z = \lambda$, $x = 5 - \lambda$, $y = -8 - \lambda$, $z = \lambda$		A1 M1 (or M3) A1	Obtaining a line of solutions Give M3 when M0 for findin or $x = 13 + \lambda$, $y = \lambda$, $z = -8 - 2$ or $x = \lambda$, $y = -13 + \lambda$, $z = 5 - 2$ Accept $x = 5 - z$, $y = -8 - z$ or $x = y + 13 = 5 - z$ etc

	r		,
4 (i)	$1 + 2\sinh^2 x = 1 + 2\left[\frac{1}{2}(e^x - e^{-x})\right]^2$		
	$=1+\frac{1}{2}(e^{2x}-2+e^{-2x})$	B1	For $(e^x - e^{-x})^2 = e^{2x} - 2 + e^{-2x}$
	$=\frac{1}{2}(e^{2x}+e^{-2x})$	B1	For $\cosh 2x = \frac{1}{2}(e^{2x} + e^{-2x})$
	$= \cosh 2x$		For completion
		B1 (ag) 3	
(ii)	$2(1+2\sinh^2 x) + \sinh x = 5$	M1	Using (i)
	$4\sinh^2 x + \sinh x - 3 = 0$		
	$(4\sinh x - 3)(\sinh x + 1) = 0$	M1	Solving to obtain a value of
	$\sinh x = \frac{3}{4}, -1$	A1A1	sinh x
	$x = \operatorname{arsinh}(\frac{3}{4}) = \ln(\frac{3}{4} + \sqrt{\frac{9}{16}} + 1) = \ln 2$	A1 ft	
	$x = \operatorname{arsinh}(-1) = \ln(-1 + \sqrt{1+1}) = \ln(\sqrt{2} - 1)$	A1 ft	_
		6	or $-\ln(\sqrt{2}+1)$ SR Give A1 for
			$\pm \ln 2, \ \pm \ln(\sqrt{2}-1)$
	OR $2e^{4x} + e^{3x} - 10e^{2x} - e^x + 2 = 0$		
	$(e^{x} - 2)(2e^{x} + 1)(e^{2x} + 2e^{x} - 1) = 0$ A1A1		Obtaining a linear or quadratic factor
	$x = \ln 2, \ln(\sqrt{2} - 1)$ A1A1 ft		For $(e^x - 2)$ and $(e^{2x} + 2e^x - 1)$
()		N44	Evenessian in internetie form
(iii)	$\int_{0}^{\ln 3} \frac{1}{2} (\cosh 2x - 1) dx$	M1	Expressing in integrable form or $\int \frac{1}{4} (e^{2x} - 2 + e^{-2x}) dx$
			$\int_{4} (2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 $
	$= \left[\frac{1}{4} \sinh 2x - \frac{1}{2}x \right]_{0}^{\ln 3}$	A1A1	OF $\left(\frac{1}{8}e^{2x} - \frac{1}{8}e^{-2x}\right) - \frac{1}{2}x$
	$=\frac{1}{8}\left(9-\frac{1}{9}\right)-\frac{1}{2}\ln 3$	M1	For $e^{2\ln 3} = 9$ and $e^{-2\ln 3} = \frac{1}{9}$
	$=\frac{10}{9}-\frac{1}{2}\ln 3$		M0 for just stating $\sinh(2\ln 3) = \frac{40}{9}$
	9 2	A1 (ag)	etc
		5	Correctly obtained
(iv)	Put $x = 3 \cosh u$	M1	Any cosh substitution
	when $x = 3$, $u = 0$ when $x = 5$, $u = ar \cosh^5 - \ln^3$	D1	For ln 3 Not awarded for
	when $x = 5$, $u = \operatorname{ar} \cosh \frac{5}{3} = \ln 3$	B1	$\operatorname{arcosh} \frac{5}{3}$
	$\int_{3}^{5} \sqrt{x^{2} - 9} \mathrm{d}x = \int_{0}^{\ln 3} (3 \sinh u) (3 \sinh u \mathrm{d}u)$	A1	5
			Limits not required
	$=9\int_{0}^{\ln 3}\sinh^2 u \mathrm{d}u$		
	$=10 - \frac{9}{2} \ln 3$		
	2	A1 4	

Mark Scheme 4757 June 2006

1 (i)	$ \begin{pmatrix} -1\\4\\3 \end{pmatrix} \times \begin{pmatrix} -k\\4\\k+2 \end{pmatrix} = \begin{pmatrix} 4k-4\\2-2k\\4k-4 \end{pmatrix} \begin{bmatrix} = 2(k-1)\begin{pmatrix}2\\-1\\2 \end{bmatrix} \end{bmatrix} $	B1 M1 A2 4	$\overrightarrow{AB} and \overrightarrow{CD} (Condone)$ $\overrightarrow{BA} and \overrightarrow{DC})$ Evaluating vector product Give A1 ft for one element correct
(ii) (A) (B)	k = 1	B1 1 M1	For appropriate vector product
(В)	$\overrightarrow{CA} \times \overrightarrow{AB} = \begin{pmatrix} -3 \\ -8 \\ 4 \end{pmatrix} \times \begin{pmatrix} -1 \\ 4 \\ 3 \end{pmatrix} = \begin{pmatrix} -40 \\ 5 \\ -20 \end{pmatrix}$	M1 A1 M1	Evaluation Dependent on previous M1
	Distance is $\frac{\left \overrightarrow{CA}\times\overrightarrow{AB}\right }{\left \overrightarrow{AB}\right } = \frac{45}{\sqrt{26}} (\approx 8.825)$	M1	Method for finding shortest distance Dependent on <u>first</u> M1
		A1 6	Calculating magnitudes Dependent on previous M1 Accept 8.82 to 8.83
	OR $\overrightarrow{CP} \cdot \overrightarrow{AB} = \begin{pmatrix} -2 - \lambda - 1 \\ -3 + 4\lambda - 5 \\ 2 + 3\lambda + 2 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 4 \\ 3 \end{pmatrix} = 0$ M2A1		
	$\overrightarrow{CP} = \frac{1}{26} \begin{pmatrix} -95\\ -140\\ 155 \end{pmatrix}$ Distance is $\frac{\sqrt{52650}}{26}$ M1 M1A1		Finding \overrightarrow{CP} Dependent on previous M1 Dependent on previous M1
(C)	Normal vector is $\overrightarrow{CA} \times \overrightarrow{AB} = \begin{pmatrix} -40 \\ 5 \\ -20 \end{pmatrix} = -5 \begin{pmatrix} 8 \\ -1 \\ 4 \end{pmatrix}$	M1	
	Equation of plane is $8x - y + 4z = -16 + 3 + 8$ 8x - y + 4z + 5 = 0	M1 A1 3	Dependent on previous M1 Allow $-40x + 5y - 20z = 25$ etc
(iii)	$ \longrightarrow \longrightarrow \left(\begin{array}{c} k+2\\ 8\\ \end{array} \right) \cdot \left(\begin{array}{c} 2\\ -1\\ \end{array} \right) (2k-2) $	M1	For \overrightarrow{AC} . ($\overrightarrow{AB} \times \overrightarrow{CD}$)
	$\frac{\overrightarrow{AC} \cdot (\overrightarrow{AB} \times \overrightarrow{CD})}{\left \overrightarrow{AB} \times \overrightarrow{CD} \right } = \frac{\begin{pmatrix} k+2\\ 8\\ -4 \end{pmatrix} \cdot \begin{pmatrix} 2\\ -1\\ 2 \end{pmatrix}}(2k-2)}{3(2k-2)}$	M1 A1 ft	Fully correct method (evaluation not required) Dependent on previous M1
	Shortest distance is $\left \frac{2k-12}{3}\right $	A1	Correct evaluated expression for distance ft from (i) Simplified answer <i>Modulus not required</i>

(iv)	Intersect when $k = 6$ $-2 - \lambda = 6 - 6\mu$ $-3 + 4\lambda = 5 + 4\mu$ $2 + 3\lambda = -2 + 8\mu$ Solving, $\lambda = 4$, $\mu = 2$ Point of intersection is $(-6, 13, 14)$	B1 ft M1 A1 ft M1 A1 A1 A1 6	Forming at least two equations Two correct equations Solving to obtain λ or μ <i>Dependent on previous M1</i> One value correct
	$-2 - \lambda = k - k\mu$ OR $-3 + 4\lambda = 5 + 4\mu$ $2 + 3\lambda = -2 + (k + 2)\mu$ Solving, $k = 6$ $\mu = 2$ M1A1 $\lambda = 4, \ \mu = 2$ A1 Point of intersection is (-6, 13, 14) A1		Forming three equations All equations correct <i>Dependent on previous M1</i> One value correct

	T		1
2 (i)	$\left(\begin{array}{c} 2x-4y \end{array}\right)$	M1 A1	Partial differentiation $\begin{pmatrix} x \\ 2x - 4y \end{pmatrix}$
	Normal vector is $\begin{vmatrix} 2x - 4y \\ -4x + 6y \\ -4z \end{vmatrix}$	A1	Condone $\mathbf{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \lambda \begin{pmatrix} 2x - 4y \\ -4x + 6y \\ -4z \end{pmatrix}$
	$\begin{pmatrix} -4z \end{pmatrix}$	A1	$\begin{pmatrix} z \end{pmatrix} \begin{pmatrix} -4z \end{pmatrix}$
		4	For 4 marks the normal must
			appear as a vector (isw)
(ii)	(18)		
	At Q normal vector is – 44	M1	
	At Q normal vector is $\begin{bmatrix} 18 \\ -44 \\ -4 \end{bmatrix}$		
	Tangent plane is	M1	For $18x - 44y - 4z$
	18x - 44y - 4z = 306 - 176 - 4 = 126		Dependent on previous M1
	9x - 22y - 2z = 63	M1	Using Q to find constant
		A1	Accept any correct form
		4	
(iii)		M1	For $18\delta x - 44\delta y - 4\delta z$
	$18\delta x - 44\delta y - 4\delta z \approx 0$	A1 ft	
	$18h - 44p - 4(-h) \approx 0$	M1	If left in terms of y y =:
	$p \approx \frac{1}{2}h$	A1	If left in terms of x, y, z: M1A0M1A0
		4	
	OR $9(17+h) - 22(4+p) - 2(1-h) \approx 63$ M2A1 ft		
	$p \approx \frac{1}{2}h$ A1		
	OR $(17+h)^2 - 4(17+h)(4+p) + = 0$		
	$-44p + 22h \approx 0$ M2A1		Neglecting second order terms
	$p \approx \frac{1}{2}h$ A1		
	OR $p = \frac{4h + 44 \pm \sqrt{28h^2 + 88h + 1936}}{6}$ M2A1		
	6		
	$p \approx \frac{1}{2}h$ A1		
(iv)	Normal parallel to <i>z</i> -axis requires		
(1*)	2x - 4y = 0 and $-4x + 6y = 0$	M1A1 ft	
	$x = y = 0$; then $-2z^2 - 63 = 0$	M1	
	No solutions; hence no such points		
		A1 (ag) 4	Correctly shown
		4	
	OR $2x - 4y = -4x + 6y$, so $y = \frac{3}{5}x$		Similarly if only 2. 4. 0 year
	$-\frac{8}{25}x^2 - 2z^2 - 63 = 0$, hence no points		Similarly if only $2x - 4y = 0$ used
	M2A2		
(v)	$2x - 4y = 5\lambda$		
(*)	$-4x + 6y = -6\lambda$		
	$-4z = 2\lambda$	M1A1 ft	
	$x = -\frac{3}{2}\lambda, y = -2\lambda, z = -\frac{1}{2}\lambda$		
	2 2	M1	Obtaining <i>x</i> , <i>y</i> , <i>z</i> in terms of λ
	Substituting into equation of surface		or $x = 3z$, $y = 4z$
	$\frac{9}{4}\lambda^2 - 12\lambda^2 + 12\lambda^2 - \frac{1}{2}\lambda^2 - 63 = 0$	M1	
	$\lambda = \pm 6$	M1	Obtaining a value of λ (or
		M1	equivalent)
			. ,

Pc	oint $(-9, -12, -3)$ gives $k = -45 + 72 - 6 = 21$		Using a point to find k
Po	oint (9, 12, 3) gives $k = 45 - 72 + 6 = -21$	0	If $\lambda = 1$ is assumed: MOM1MOM0M1

• "			
3 (i)	$\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} = (6t^{2} - 6)^{2} + (12t)^{2}$	M1A1	
	$= 36t^4 + 72t^2 + 36$		
	$= 36(t^2 + 1)^2$	A1	
	Arc length is $\int_0^1 6(t^2 + 1) dt$	M1	Using $\int \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2} \mathrm{d}t$
	$= \left[2t^3 + 6t \right]_0^1$	A1	For $2t^3 + 6t$
	= 8	A1 6	
(ii)		M1	Using $\int \dots y ds$ (in terms of <i>t</i>)
	Curved surface area is		with 'ds' the same as in (i)
	$\int 2\pi y \mathrm{d}s = \int_{-1}^{1} 2\pi (6t^2) 6(t^2 + 1) \mathrm{d}t$	A1	Any correct integral form in
	$\int 2\pi y ds = \int_{0}^{2\pi} 2\pi (0t - y) 0(t - 1) dt$	AI	terms of t
	$=\pi \left[\begin{array}{c} \frac{72}{5}t^5 + 24t^3 \end{array} \right]_0^1$	M1	(limits required)
	$= \pi \left[\frac{5}{5}i + 24i \right]_{0}$	A1	Integration For $=(724^5 + 244^3)$
	$=\frac{192\pi}{5}$ (≈ 120.6)		For $\pi(\frac{72}{5}t^5 + 24t^3)$
	$-\frac{1}{5}$ (~120.0)	A1 _	
		5	
(iii)	$\frac{dy}{dx} = \frac{12t}{6t^2 - 6} \left(= \frac{2t}{t^2 - 1} \right)$	M1 A1	Method of differentiation
	Equation of normal is $1 + e^2$		
	$y - 6t^{2} = \frac{1 - t^{2}}{2t}(x - 2t^{3} + 6t)$	M1	
	$y - 6t^{2} = \frac{1}{2} \left(\frac{1}{t} - t \right) x - t^{2} (1 - t^{2}) + 3(1 - t^{2})$		
	$y = \frac{1}{2} \left(\frac{1}{t} - t \right) x + 2t^2 + t^4 + 3$	A1 (ag)	At least one intermediate step required
		4	Correctly obtained
(iv)	Differentiating partially with respect to t	M1	
	$0 = \frac{1}{2} \left(-\frac{1}{t^2} - 1 \right) x + 4t + 4t^3$	A2	Give A1 if just one error or omission
	$\frac{1}{2t^2}(1+t^2)x = 4t(1+t^2)$		
	$x = 8t^3$	M1	For obtaining $a x = b t^3$
	$t = \frac{1}{2}x^{\frac{1}{3}}$, so $y = \frac{1}{2}(2x^{-\frac{1}{3}} - \frac{1}{2}x^{\frac{1}{3}})x + \frac{1}{2}x^{\frac{2}{3}} + \frac{1}{16}x^{\frac{4}{3}} + 3$	M1	i of obtaining $ax = bt$
	$y = \frac{3}{2}x^{\frac{2}{3}} - \frac{3}{16}x^{\frac{4}{3}} + 3$		Eliminating <i>t</i>
	³ 2 ⁻² 16 ⁻² 15	A1	
		6	

June 2006

(v)	P lies on the envelope of the normals		Or a fully correct method for finding the centre of curvature at a general pt
	Hence $a = \frac{3}{2} \times 64^{\frac{2}{3}} - \frac{3}{16} \times 64^{\frac{4}{3}} + 3$ = -21	M1 A1 3	[$(8t^3, 6t^2 - 3t^4 + 3)$] Or $t = 2$ and $a = 6 \times 2^2 - 3 \times 2^4 + 3$

4.43			
4 (i)	I J K L -I -J -K -L I I J K L -I -J -K -L J J -I L -K -J I -K -L J J -I L -K -J I -L K K K -L -I J -K L I -J L L K -J -I J K L I -J -I -I -J -K -L I J K L -I I -J -K -L I J K L -I I -J -K I I J K L -J I -J -K J I I -K J -J -J I -K J I I -K J -K -K I I K	В6 6	Give B5 for 30 (bold) entries correct Give B4 for 24 (bold) entries correct Give B3 for 18 (bold) entries correct Give B2 for 12 (bold) entries correct Give B1 for 6 (bold) entries correct
(ii)	Eleme I J K L –I –J –K –L nt Invers I –J –K –L –I J K L e	В3 3	Give B2 for six correct Give B1 for three correct
(iii)	Eleme I J K L –I –J –K –L nt Order 1 4 4 4 2 4 4 4	B3 3	Give B2 for six correct Give B1 for three correct
(iv)	Only two elements of <i>G</i> do not have order 4; so any subgroup of order 4 must contain an element of order 4 A subgroup of order 4 is cyclic if it contains an element of order 4 Hence any subgroup of order 4 is cyclic OR If a group of order 4 is not cyclic, it contains three elements of order 2 B1 <i>G</i> has only one element of order 2; so this cannot occur M1A1 So any subgroup of order 4 is cyclic A1	M1A1 B1 A1 4	(may be implied) For completion
(v)	{I, -I} {I, J, -I, -J} {I, K, -I, -K} {I, L, -I, -L}	B1 B1 B1 B1 B1 5	For $\{I, -I\}$, at least one correct subgroup of order 4, and no wrong subgroups. This mark is lost if <i>G</i> or $\{I\}$ is included

(vi)	The symmetry group has 5 elements of order 2	M1	Considering elements of order 2 (or self-inverse elements)
	(4 reflections and rotation through 180°)	A1	Identification of at least two elements of order 2 in the
	<i>G</i> has only one element of order 2, hence <i>G</i> is not isomorphic to the symmetry group	A1 3	symmetry group For completion

Pre-multiplication by transition matrix

5 (i)	$\mathbf{P} = \begin{pmatrix} 0.8 & 0.1 & 0 \\ 0.2 & 0.6 & 0.15 \\ 0 & 0.3 & 0.85 \end{pmatrix}$	B1B1B1 3	For the three columns
(ii)	$\mathbf{P}^{7} \begin{pmatrix} 0.6\\ 0.4\\ 0 \end{pmatrix} = \begin{pmatrix} 0.3204 & 0.1545 & 0.0927\\ 0.3089 & 0.2895 & 0.2780\\ 0.3706 & 0.5560 & 0.6293 \end{pmatrix} \begin{pmatrix} 0.6\\ 0.4\\ 0 \end{pmatrix} = \begin{pmatrix} 0.254\\ 0.301\\ 0.445 \end{pmatrix}$ Division 3 is the most likely	M1 A1 A1	Considering \mathbf{P}^7 (or \mathbf{P}^8 or \mathbf{P}^6) Evaluating a power of \mathbf{P} For \mathbf{P}^7 (Allow ± 0.001 throughout) Evaluation of probabilities One probability correct Correctly determined
(iii)	$\mathbf{P}^n \rightarrow \begin{pmatrix} 0.1429 & 0.1429 & 0.1429 \\ 0.2857 & 0.2857 & 0.2857 \\ 0.2857 & 0.2857 $	M1	Considering powers of P
	$\mathbf{P}^{n} \rightarrow \begin{bmatrix} 0.2857 & 0.2857 & 0.2857 \\ 0.5714 & 0.5714 & 0.5714 \end{bmatrix}$	M1	Obtaining limit
	Equilibrium probabilities are 0.143, 0.286, 0.571	A1 3	Must be accurate to 3 dp if given as decimals
	OR $\begin{pmatrix} p \\ p \end{pmatrix} \begin{pmatrix} p \\ p \end{pmatrix} = 0.8p + 0.1q = p$		
	$\mathbf{P}\begin{pmatrix} p\\q\\r \end{pmatrix} = \begin{pmatrix} p\\q\\r \end{pmatrix} \stackrel{0.8p+0.1q=p}{\Rightarrow 0.2p+0.6q+0.15r=q} \qquad M1$ $0.3q+0.85r=r$		Obtaining at least two equations
	q = 2p, $r = 2q = 4p$ and $p + q + r = 1$ M1 $p = \frac{1}{7}$, $q = \frac{2}{7}$, $r = \frac{4}{7}$ A1		Solving (must use $p + q + r = 1$)
(iv)	(0.8 0.1 0 0)	B1	Third column
	$\mathbf{Q} = \begin{vmatrix} 0.2 & 0.6 & 0.15 & 0 \\ 0 & 0.3 & 0.75 & 0 \end{vmatrix}$	B1	Fourth column
	$ \begin{pmatrix} 0 & 0.3 & 0.75 & 0 \\ 0 & 0 & 0.1 & 1 \end{pmatrix} $	B1 3	Fully correct
(v)	$\begin{pmatrix} 0 \\ 0.4122 & 0.1566 & 0.0592 & 0 \\ \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$	M1	Considering \mathbf{Q}^5 (or \mathbf{Q}^6 or \mathbf{Q}^4)
	$\mathbf{Q}^{5} \begin{vmatrix} 1 \\ 0 \end{vmatrix} = \begin{vmatrix} 0.3131 & 0.2767 & 0.2052 & 0 \\ 0.2369 & 0.4105 & 0.4030 & 0 \end{vmatrix} \begin{vmatrix} 1 \\ 0 \end{vmatrix}$	M1	Evaluating a power of Q
	$ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0.2507 & 0.4105 & 0.4050 & 0 \\ 0.0378 & 0.1563 & 0.3326 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} $	A1	For 0.1563 (Allow 0.156 ± 0.001)
	(0.1566)		
	= 0.2767		
	$\begin{pmatrix} 0.4105\\ 0.1563 \end{pmatrix}$		
	P(still in league) = 1 - 0.1563	M1	
	= 0.844	A1 ft 5	For $1 - a_{4,2}$ ft dependent on M1M1M1
(vi)	P(out of league) is element $a_{4,2}$ in \mathbf{Q}^n	M1	Considering \mathbf{Q}^n for at least two more values of n
	When $n = 15$, $a_{4,2} = 0.4849$	M1	Considering $a_{4,2}$ Dep on
	When $n = 16$, $a_{4,2} = 0.5094$	A1	previous M1
	First year is 2031	A1	For $n = 16$
		4	SR With no working, n = 16 stated B3 2031 stated B4

Post-multiplication by transition matrix

5 (i)	$\mathbf{P} = \begin{pmatrix} 0.8 & 0.2 & 0 \\ 0.1 & 0.6 & 0.3 \\ 0 & 0.15 & 0.85 \end{pmatrix}$	B1B1B1 3	For the three rows
(ii)	$ \begin{array}{cccc} (0.6 & 0.4 & 0) \mathbf{P}^7 \\ = (0.6 & 0.4 & 0) \begin{pmatrix} 0.3204 & 0.3089 & 0.3706 \\ 0.1545 & 0.2895 & 0.5560 \\ 0.0927 & 0.2780 & 0.6293 \end{pmatrix} \\ = (0.254 & 0.301 & 0.445) \\ \text{Division 3 is the most likely} \end{array} $	M1 M1 A1 M1 A1 A1 6	Considering \mathbf{P}^7 (or \mathbf{P}^8 or \mathbf{P}^6) Evaluating a power of \mathbf{P} For \mathbf{P}^7 (Allow ± 0.001 throughout) Evaluation of probabilities One probability correct Correctly determined
(iii)	$\mathbf{P}^{n} \rightarrow \begin{pmatrix} 0.1429 & 0.2857 & 0.5714 \\ 0.1429 & 0.2857 & 0.5714 \\ 0.1429 & 0.2857 & 0.5714 \\ 0.1429 & 0.2857 & 0.5714 \end{pmatrix}$ Equilibrium probabilities are 0.143, 0.286, 0.571	M1 M1 A1 3	Considering powers of P Obtaining limit <i>Must be accurate to 3 dp if</i> <i>given as decimals</i>
	OR $(p \ q \ r)$ P = $(p \ q \ r)$ 0.8p + 0.1q = p 0.2p + 0.6q + 0.15r = q M1 0.3q + 0.85r = r $q = 2p, \ r = 2q = 4p$ and $p + q + r = 1$ M1 $p = \frac{1}{7}, \ q = \frac{2}{7}, \ r = \frac{4}{7}$ A1		Obtaining at least two equations Solving (must use $p + q + r = 1$)
(iv)	$\mathbf{Q} = \begin{pmatrix} 0.8 & 0.2 & 0 & 0\\ 0.1 & 0.6 & 0.3 & 0\\ 0 & 0.15 & 0.75 & 0.1\\ 0 & 0 & 0 & 1 \end{pmatrix}$	B1 B1 B1 3	Third row Fourth row Fully correct
(v)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 M1 A1	Considering \mathbf{Q}^5 (or \mathbf{Q}^6 or \mathbf{Q}^4) Evaluating a power of \mathbf{Q} For 0.1563 (Allow 0.156 ± 0.001)
	P(still in league) = 1 - 0.1563 = 0.844	M1 A1 ft 5	For $1-a_{2,4}$ ft dependent on M1M1M1

(vi)	P(out of league) is element $a_{2,4}$ in \mathbf{Q}^n	M1	Considering Q^n for at least two more values of <i>n</i>
	When $n = 15$, $a_{2,4} = 0.4849$	M1	Considering $a_{2,4}$ Dep on
	When $n = 16$, $a_{2,4} = 0.5094$	A1	previous M1
	First year is 2031		For $n = 16$
		4	SR With no working,
			n = 16 stated B3
			2031 stated B4

Mark Scheme 4758 June 2006

- 1(i) $\lambda = 0$ $x = A \cos \sqrt{5}t + B \sin \sqrt{5}t$
- (ii) $(2\lambda)^2 4 \cdot 5 < 0$

$$0 < \lambda < \sqrt{5}$$

(iii)
$$\alpha^{2} + 2\alpha + 5 = 0$$
$$\alpha = -1 \pm 2j$$
$$x = e^{-t} (C \cos 2t + D \sin 2t)$$

- (iv) $x_0 = C$ $\dot{x} = -e^{-t} (C \cos 2t + D \sin 2t) + e^{-t} (-2C \sin 2t + 2D \cos 2t)$ 0 = -C + 2D $D = \frac{1}{2}x_0$ $x = x_0 e^{-t} (\cos 2t + \frac{1}{2}\sin 2t)$
- (v) $\cos 2t + \frac{1}{2}\sin 2t = 0$ $\tan 2t = -2$ t = 1.017

(vi)
$$\alpha^2 + 6\alpha + 5$$

 $\alpha = -1, -5$
 $x = E e^{-t} + F e^{-5t}$
 $x_0 = E + F$
 $\dot{x} = -E e^{-t} - 5F e^{-5t}$
 $0 = -E - 5F$
 $E = \frac{5}{4}x_0, F = -\frac{1}{4}x_0$
 $x = \frac{1}{4}x_0 (5e^{-t} - e^{-5t})$
 $x = \frac{1}{4}x_0 e^{-t} (5 - e^{-4t})$
 $t > 0 \Rightarrow 5 > e^{-4t}, x_0 > 0, e^{-t} > 0 \Rightarrow x > 0$ i.e. never zero

B1 M1 A1	$\cos\sqrt{5}t$ or $\sin\sqrt{5}t$ or $A\cos\omega t + B\sin\omega t$ seen or GS for their λ	3
M1 A1 A1	Use of discriminant Correct inequality Accept lower limit omitted or $-\sqrt{5}$	
M1 A1	Auxiliary equation	3
F1	CF for their roots	
M1 M1 M1	Condition on x Differentiate (product rule) Condition on \dot{x}	3
A1	сао	
M1 M1 A1	сао	4
M1 A1	Auxiliary equation	5
F1	CF for their roots	
M1	Condition on <i>x</i>	
M1	Condition on <i>x</i>	
A1	сао	
M1	Attempt complete method	
E1	Fully justified (only $\neq 0$ required)	

M1 A1 B1

M1

4758

2(i)
$$\lambda + 2 = 0 \Longrightarrow \lambda = -2$$

CF $x = Ae^{-2t}$
PI $x = at + b$
 $a + 2(at + b) = t + 1$
 $2a = 1, a + 2b = 1$
 $a = \frac{1}{2}, b = \frac{1}{4}$
 $x = \frac{1}{2}t + \frac{1}{4} + Ae^{-2t}$
 $t = 0, x = 1 \Longrightarrow 1 = \frac{1}{4} + A$
 $x = \frac{1}{2}t + \frac{1}{4} + \frac{3}{4}e^{-2t}$

Alternatively: $I = \exp(\int 2 dt) = e^{2t}$

$$I = \exp(\int 2 \, dt) = e^{2t}$$

$$e^{2t} \frac{dx}{dt} + 2e^{2t} x = e^{2t} (t+1)$$

$$e^{2t} x = \int e^{2t} (t+1) dt$$

$$= \frac{1}{2}e^{2t} (t+1) - \int \frac{1}{2}e^{2t} dt$$

$$e^{2t} x = \frac{1}{2}e^{2t} (t+1) - \frac{1}{4}e^{2t} + A$$

$$x = \frac{1}{2}t + \frac{1}{4} + Ae^{-2t}$$

$$t = 0, x = 1 \Longrightarrow 1 = \frac{1}{4} + A$$

$$x = \frac{1}{2}t + \frac{1}{4} + \frac{3}{4}e^{-2t}$$

(ii)

$$\frac{2}{y}\frac{dy}{dx} = \frac{1}{x}$$

$$\int \frac{2}{y} dy = \int \frac{1}{x} dx$$

$$2 \ln y = \ln x + c$$

$$y = B\sqrt{x}$$

$$(t = 0), x = 1, y = 4 \Longrightarrow y = 4\sqrt{x}$$

$$y = 4\sqrt{\frac{1}{2}t + \frac{1}{4} + \frac{3}{4}e^{-2t}}$$

(iii)
$$\frac{dz}{dx} + \frac{2}{x}z = 6$$
$$I = \exp\left(\int \frac{2}{x} dx\right)$$
$$= x^{2}$$
$$\frac{d}{dx} \left(x^{2}z\right) = 6x^{2}$$
$$x^{2}z = 2x^{3} + C$$
$$z = 2x + Cx^{-2}$$
$$(t = 0), x = 1, z = 3 \Longrightarrow C = 1$$
$$z = 2x + x^{-2}$$
$$t = 1 \Longrightarrow x = 0.852$$
$$y = 3.69$$
$$z = 3.08$$

M1 A1	Compare
F1	CF + PI
M1	Condition on <i>x</i>
F1	Follow a non-trivial GS
M1 A1	Integrating factor
B1	Multiply DE by their /
M1	Attempt integral
M1	Integration by parts
A1	
F1	Divide by their <i>I</i> (must also divide constant)
M1	Condition on <i>x</i>
F1	Follow a non-trivial GS
M1	Separate
M1	Integrate
M1	Make y subject, dealing properly with constant
M1	Condition
F1	$y = 4\sqrt{(\text{their } x \text{ in terms of } t)}$
M1	Divide DE by x
M1	Attempt integrating factor
A1	Simplified
F1	Follow their integrating factor
A1	
F1	Divide by their <i>I</i> (must also divide constant)
M1	Condition on z
A1	cao (in terms of x)

Differentiate and substitute

- B1 Any 2 values (at least 3sf)
- B1 All 3 correct (and 3sf)

9

5

Mark Scheme

3(i)
$$\frac{dv}{dx} = \frac{1}{v} f(x)$$
 so (unless $f(x) = 0$), $v \to 0 \Rightarrow \frac{dv}{dx} \to \pm \infty$

i.e. gradient parallel to *v*-axis (vertical)

$$x = 4000 \Rightarrow v \frac{dv}{dx} = \frac{1}{5000^2} - \frac{1}{5000^2} = 0$$

so if $v \neq 0$ then gradient parallel to *x*-axis (horizontal)

(iii)
$$\int v \, dv = \int \left((9000 - x)^{-2} - (1000 + x)^{-2} \right) dx$$
$$\frac{1}{2} v^2 = \frac{1}{9000 - x} + \frac{1}{1000 + x} + c$$
$$\frac{1}{2} V_0^2 = \frac{1}{9000} + \frac{1}{1000} + c$$
$$v^2 = \frac{2}{9000 - x} + \frac{2}{1000 + x} + V_0^2 - \frac{1}{450}$$

(iv) minimum when x = 4000 $v_{\min}^2 = \frac{2}{5000} + \frac{2}{5000} + V_0^2 - \frac{1}{450}$

> need $v_{\min}^2 > 0$ $v_{\min}^2 > 0$ if $V_0^2 > \frac{1}{450} - \frac{4}{5000}$ $V_0 > 0.0377$

Consider
$$\frac{dv}{dx}$$
 or $\frac{dx}{dv}$ when $v = 0$, but not if

$$\frac{\mathrm{d}v}{\mathrm{d}x} = 0$$

E1 Must conclude about direction

M1 Consider $\frac{dv}{dx}$ when x = 4000

- E1 Must conclude about direction
- M1 Add to tangent field
- A1 Several vertical direction indicators on x-axis
- M1 Attempt one curve A1
- M1 Attempt second curve
- A1

M1

- B1 Must be consistent with their curve
- B1 Must be consistent with their curve N.B. Cannot score these if curve not drawn
- M1 Separate
- M1 Integrate
- B1 LHS
- A1 RHS
- M1 Condition

A1

- B1 Clearly stated
- M1 Substitute their x into v or v^2
- F1 Their v^2 or v when x = 4000
- M1 For $v_{\min}^2 > 0$
- M1 Attempt inequality for V_0^2
- A1 cao

6

M1

- 4(i) $\ddot{x} = 2\dot{x} \dot{y}$ = $2\dot{x} - (5x - 4y + 18)$ $y = 2x + 3 - \dot{x}$ $\ddot{x} = 2\dot{x} - 5x + 4(2x + 3 - \dot{x}) - 18$ $\ddot{x} + 2\dot{x} - 3x = -6$
- (ii) $\lambda^{2} + 2\lambda - 3 = 0$ $\lambda = 1 \text{ or } -3$ $CF \quad x = A e^{-3t} + B e^{t}$ $PI \quad x = a$ $-3a = -6 \Rightarrow a = 2$ $x = 2 + A e^{-3t} + B e^{t}$ $y = 2x + 3 - \dot{x}$ $= 4 + 2A e^{-3t} + 2B e^{t} + 3 - (-3A e^{-3t} + B e^{t})$ $y = 7 + 5A e^{-3t} + B e^{t}$
- (iii) 4 = 2 + A + B 17 = 7 + 5A + B A = 2, B = 02 + 2 = -3t

$$x = 2 + 2e^{-3t}$$

Substitute for \dot{y} M1 y in terms of x, \dot{x} M1 Substitute for y M1 E1 LHS E1 RHS M1 Auxiliary equation A1 F1 CF for their roots Constant PI B1 PI correct B1 F1 Their CF + PI y in terms of x, \dot{x} M1 M1 Differentiate x and substitute Constants must correspond with those in x A1 M1 Condition on x M1 Condition on y M1 Solve F1 Follow their GS F1 Follow their GS B1 Sketch of *x* starts at 4 and decreases B1 Asymptote x = 2

Differentiate first equation

- B1 Sketch of *y* starts at 17 and decreases
- B1 Asymptote y =7

6

Mark Scheme 4761 June 2006

mark

Q 1

$$0 = u - 9.8 \times 3$$

 $u = 29.4$ so 29.4 m s⁻¹
 $s = 0.5 \times 9.8 \times 9 = 44.1$ so 44.1 m

M1uvast leading to u with t = 3 or t = 6A1Signs consistentM1uvast leading to s with t = 3 or t = 6 or their uF1FT their u if used with t = 3. Signs consistent.Award for 44.1, 132.3 or 176.4 seen.[Award maximum of 3 if one answer wrong]

Sub

4

4

Sub

Q 2 mark
(i)
$$\sqrt{(-6)^2 + 13^2} = 14.31782...$$
 M1 Accept $\sqrt{-6^2 + 13^2}$
so 14.3 N (3 s. f.) A1

(ii) Resultant is
$$\begin{pmatrix} -6\\13 \end{pmatrix} - \begin{pmatrix} -3\\5 \end{pmatrix} = \begin{pmatrix} -3\\8 \end{pmatrix}$$

Require
$$270 + \arctan\frac{8}{3}$$

so 339.4439...° so 339°

(iii)
$$\begin{pmatrix} -3\\5 \end{pmatrix} = 5\mathbf{a}$$

so
$$(-0.6 \mathbf{i} + \mathbf{j}) \text{ m s}^{-2}$$

change in velocity is $(-6 \mathbf{i} + 10 \mathbf{j}) \text{ m s}^{-1}$

2

B1 May not be explicit. If diagram used it must have
correct orientation. Give if final angle correct.
M1 Use of
$$\arctan\left(\pm\frac{8}{3}\right)$$
 or $\arctan\left(\pm\frac{3}{8}\right)$ ($\pm 20.6^{\circ}$ or
 $\pm 69.4^{\circ}$) or equivalent on **their** resultant

A1 cao. Do not accept -21°.

M1 Use of N2L with accn used in vector form

A1 Any form. Units not required. isw. F1 10**a** seen. Units not required. Must be a vector. [SC1 for $a = \sqrt{3^2 + 5^2} / 5 = 1.17$]

3 8

4761	
------	--

Mark Scheme

Q 3		mark		Sub
(i)	$F = 14000 \times 0.25$	M1	Use of N2L. Allow $F = mga$ and wrong mass. No extra forces.	
	so 3500 N	A1	extra forces.	2
(ii)	4000 - R = 3500 so 500 N	B1	FT F from (i). Condone negative answer.	1
(iii)	$1150 - R_{\rm T} = 4000 \times 0.25$	M1	N2L applied to truck (or engine) using all forces required. No extras. Correct mass. Do not allow use	
	so 150 N	A1	of $F = mga$. Allow sign errors. cao	2
(iv)	either Component of weight down slope is	M1	Attempt to find cpt of <i>weight</i> (allow wrong mass). Accept $\sin \leftrightarrow \cos$. Accept use of $m \sin \theta$.	
	Extra driving force is cpt of mg down slope	M1	May be implied. Correct mass. No extra forces. Must have resolved weight component. Allow $sin \leftrightarrow cos$	
	$14000g \sin 3^{\circ}$ = $14000 \times 9.8 \times 0.0523359 = 7180.49$			
	so 7180 N (3 s. f.) or	A1		
		M1	Attempt to find cpt of <i>weight</i> (allow wrong mass). Accept $\sin \leftrightarrow \cos$. Accept use of $m \sin \theta$.	
	$D - 500 - 14000g\sin 3 = 14000 \times 0.25$	M1	N2L with all terms present with correct signs and mass. No extras. FT 500 N. Accept their 500 + 150 for	
			resistance. Must have resolved weight component. Allow $\sin \leftrightarrow \cos $.	
	<i>D</i> = 11180.49 so extra is 7180 N (3 s. f.)	A1	Must be the extra force.	3 8

Q 4		mark		Sub
(i)	either Need j cpt 0 so $18t^2 - 1 = 0$	M1	Need not solve	
	$\Rightarrow t^2 = \frac{1}{18}$. Only one root as $t > 0$	E1	Must establish only one of the two roots is valid	
	or Establish sign change in j cpt Establish only one root	B1 B1		2
(ii)	$\mathbf{v} = 3 \mathbf{i} + 36t \mathbf{j}$	M1	Differentiate. Allow i or j omitted	
	Need i cpt 0 and this never happens	A1 E1	Clear explanation. Accept 'i cpt always there' or equiv	3
(iii)	$x = 3t$ and $y = 18t^2 - 1$ Eliminate <i>t</i> to give	B1	Award for these two expressions seen.	
	$y = 18\left(\frac{x}{3}\right)^2 - 1$	M1	<i>t</i> properly eliminated. Accept any form and brackets missing	
	so $y = 2x^2 - 1$	A1	cao	3 8
Q 5		mark		6.1
•		шатк		Sub
(i)	$0^{2} = V^{2} - 2 \times 9.8 \times 22.5$ V = 21 so 21 m s ⁻¹	M1 E1	Use of appropriate <i>uvast</i> . Give for correct expression Clearly shown. Do not allow $v^2 = 0 + 2gs$ without explanation. Accept using $V = 21$ to show $s = 22.5$.	Sub 2
		M1	Clearly shown. Do not allow $v^2 = 0 + 2gs$ without	
(i)	$V = 21 \text{ so } 21 \text{ m s}^{-1}$ $28 \sin \theta = 21$	M1 E1 M1	Clearly shown. Do not allow $v^2 = 0 + 2gs$ without explanation. Accept using $V = 21$ to show $s = 22.5$.	2
(i) (ii)	$V = 21 \text{ so } 21 \text{ m s}^{-1}$ 28 sin θ = 21 so θ = 48.59037	M1 E1 M1 A1	Clearly shown. Do not allow $v^2 = 0 + 2gs$ without explanation. Accept using $V = 21$ to show $s = 22.5$. Attempt to find angle of projection. Allow $sin \leftrightarrow cos$.	2

Mark Scheme

(i)
$$0.5 \times 2 \times 12 + 0.5 \times 4 \times 12$$

so 36 m

(ii)
$$8 - \frac{36}{12} = 5$$
 seconds

(iii)
$$-6 \text{ m s}^{-2}$$

(iv)
$$58.5 = 12 \times 6 + 0.5 \times a \times 36$$

so $a = -0.75$

(v)
$$a = -10 + \frac{9}{2}t - \frac{3}{8}t^2$$

$$a(1) = -10 + \frac{9}{2} - \frac{3}{8} = -5.875$$

(vi)
$$s = \int \left(12 - 10t + \frac{9}{4}t^2 - \frac{1}{8}t^3 \right) dt$$

$$= 12t - 5t^{2} + \frac{3}{4}t^{3} - \frac{1}{32}t^{4} + C$$

s = 0 when t = 0 so C = 0

s(8) = 32

either

(vii) s(2) = 9.5 and s(4) = 8

> Displacement is negative Car going backwards or Evaluate v(t) where 2 < t < 4 or appeal to shape of the graph Velocity is negative Car going backwards

mark		Sub
M1 A1	Attempt at sum of areas or equivalent. No extra areas.	2
B1	cao	1
		1
M1 B1	Attempt at accn for $0 \le t \le 2$ must be - ve or equivalent	2
M1	Use of <i>uvast</i> with 12 and 58.5	
A1		2
M1	Differentiation	
A1		
A1	cao	
		3
M1	Attempt to integrate	

A1At least one term correctA1All correct. Accept + C omittedA1*Clearly shownA1cao (award even if A1* is not given)B1Both calculated correctly from their s.
No further marks if their
$$s(2) \le s(4)$$
E1

[Award WW2 for 'car going backwards'; WW1 for

velocity or displacement negative]

3 18

5

interval

4761

Q 7

(i) $T_{\rm AB} \sin \alpha = 147$

so
$$T_{AB} = \frac{147}{0.6}$$

(ii)
$$T_{\rm BC} = 245\cos\alpha$$
 M

$$= 245 \times 0.8 = 196$$

- Geometry of A, B and C and weight of B the (iii)
 - same and these determine the tension

(iv)

either

Realise that 196 N and 90 N are horiz and vert Μ forces where resultant has magnitude and line of action of the tension $\tan \beta = 90/196$ $\beta = 24.6638...$ so 24.7 (3 s. f.) $T = \sqrt{196^2 + 90^2}$ T = 215.675... so 216 N (3 s. f.) or $\uparrow T\sin\beta - 90 = 0$ $\rightarrow T \cos \beta - 196 = 0$ Solving $\tan \beta = \frac{90}{196} = 0.45918...$

$$\beta = 24.6638...$$
 so 24.7 (3 s. f.)
T = 215 675 so 216 N (3 s. f.)

smooth and string is light)
$$M \times 9.8 \times \sin 40 = 215.675 + 20$$

$$M \times 9.8 \times \sin 40 = 213.073... + 20$$

$$M = 37.4128...$$
 so $37.4 (3 s. f.)$

mark		Sub
M1	Attempt at resolving. Accept $sin \leftrightarrow cos$. Must have <i>T</i> resolved and equated to 147.	
B1	Use of 0.6. Accept correct subst for angle in wrong	
A1	expression. Only accept answers agreeing to 3 s. f. [Lami: M1 pair of ratios attempted; B1 correct sub;A1]	3
M1	Attempt to resolve 245 and equate to <i>T</i> , or equiv	
E1	Accept sin ↔ cos Substitution of 0.8 clearly shown [SC1 245×0.8 = 196] [Lami: M1 pair of ratios attempted; E1]	2
E1	Mention of two of: same weight: same direction AB:	
E1	same direction BC Specific mention of same geometry & weight or recognition of same force diagram	2
B1 B1	No extra forces. Correct orientation and arrows ' <i>T</i> ' 196 and 90 labelled. Accept 'tension' written out.	
M1	Allow for only β or <i>T</i> attempted	
B1 A1	Use of arctan (196/90) or arctan (90/196) or equiv	
M1 E1	Use of Pythagoras	
B1 B1	Allow if $T = 216$ assumed Allow if $T = 216$ assumed	
M1	Eliminating <i>T</i> , or	
A1 E1	[If $T = 216$ assumed, B1 for β ; B1 for check in 2 nd equation; E0]	7
B1	May be implied. Reasons not required.	
M1	<i>Equating</i> their tension on the block unresolved ± 20 to weight component. If equation in any other direction, normal reaction must be present.	

A1 Correct

A1 Accept answers rounding to 37 and 38

Mark Scheme 4762 June 2006

Q 1		mark		Sub
(a)	2011			
(i) (A)	PCLM \rightarrow +ve 2×4-6×2=8v v = -0.5 so 0.5 m s ⁻¹ in opposite	M1 A1	Use of PCLM and correct mass on RHS Any form Direction must be negative and consistent or	
	direction to initial motion of P	A1	clear. Accept use of a diagram.	3
(B)	$0.5 \times 2 \times 4^{2} + 0.5 \times 6 \times 2^{2} - 0.5 \times 8 \times (-0.5)^{2}$	M1	Use of KE. Must sum initial terms. Must have correct masses	
	= 27 J	A1	FT their (A) only	2
(ii) (A)	$PCLM \rightarrow +ve$			
<i>、 </i>	$2 \times 4 - 6 \times 2 = 2v_{\rm P} + 6v_{\rm Q}$	M1	Use of PCLM	
	$v_{\rm p} + 3v_{\rm Q} = -2$	A1	Any form	
	$NEL \rightarrow +ve$			
	$\frac{v_{\rm Q} - v_{\rm P}}{-2 - 4} = -\frac{2}{3}$	M1	NEL	
	$v_{\rm O} - v_{\rm P} = 4$	A1	Any form	
	$v_0 = 0.5$ so 0.5 m s ⁻¹ in orig direction of P	A1	cao. Direction need not be made clear.	
	$v_{\rm p} = -3.5$ so 3.5 m s ⁻¹ in opp to orig dir of	A1	cao. Direction must be negative and consistent or	
	Р	AI	clear	
			(e.g diag)	6
(B)	→ +ve			
	$2 \times -3.5 - 2 \times 4 = -15$ N s	M1	Use of change in momentum with correct mass.	
	so 15 N s in opp to orig direction	A1	FT (A). Dir must be clear (e.g. diag)	2
(b)				2
	Let $\alpha = \arcsin(12/13)$ and $\beta = \arcsin(3/5)$			
	Parallel: $26\cos\alpha = u\cos\beta$	M1	PCLM parallel to plane attempted. At least one resolution correct	
		A1		
	so $26 \times \frac{5}{13} = u \times \frac{4}{5}$ and $u = 12.5$	A1		
	Perp: $e = \frac{u \sin \beta}{26 \sin \alpha}$	M1	NEL on normal components attempted.	
		F1	FT their <i>u</i>	
	$=\frac{12.5\times\frac{3}{5}}{26\times\frac{12}{13}}=\frac{5}{16}$			
	$=\frac{5}{26\times\frac{12}{16}}=\frac{5}{16}$	F1	FT their u	
	13			6
				19

Q 2		mark		Sub
(i)	Diagrams	B1	Internal force at B must be shown	
	cw moments about A $2 \times 90 - 3R_{\rm B} = 0$ $R_{\rm B} = 60$ so 60 N upwards	M1 A1	1 st moments equation attempted for either force. Accept direction not specified	
	cw moments about R: $T \downarrow$ $75 \times 1 + 3T - 60 \times 0.5 = 0$ T = -15 so 15 N upwards	M1 A1 A1	2 nd moments equation for other force. All forces present. No extra forces. Allow only sign errors Direction must be clear (accept diag)	
				6
(ii)	cw moments about A $90 \times 2\cos 30 - V \times 3\cos 30 - U \times 3\cos 60 = 0$	M1	Moments equation with resolution. Accept terms missing	
	giving $60\sqrt{3} = U + V\sqrt{3}$	A1 E1	All correct. Allow only sign errors. Clearly shown	3
(iii)	Diagram	B1	U and V correct with labels and arrows	1
(iv)	ac moments about C $75 \times 2\cos 30 + 3.5V \cos 30 - 3.5U \cos 60 = 0$	M1 B1	Moments equation with resolution. Accept term missing At least two terms correct (condone wrong signs)	
	$\frac{300}{7}\sqrt{3} = U - V\sqrt{3}$	A1	Accept any form	
	Solving for <i>U</i> and <i>V</i>	M1	Any method to eliminate one variable	
	$U = \frac{360\sqrt{3}}{7}$ (= 89.0768)	A1	Accept any form and any reasonable accuracy	
	$V = \frac{60}{7}$ (= 8.571428)	F1	Accept any form and any reasonable accuracy	
	Resolve \rightarrow on BC		[Either of <i>U</i> and <i>V</i> is cao. FT the other]	
	F = U	M1		
	so frictional force is $\frac{360\sqrt{3}}{7}$ N	F1		
	(= 89.1 N (3 s. f.))			8
				18

Q 3		mark		Sub
(a)	$20000 = (R + 900g \times 0.1) \times 16$ R = 368 so 368 N	M1 B1 A1 A1	Use of <i>P</i> = <i>Fv</i> , may be implied. Correct weight term All correct	
				4
(b) (i)	$F_{\max} = \mu mg \cos \alpha$ Force down slope is weight cpt $mg \sin \alpha$ Require $\mu mg \cos \alpha \ge mg \sin \alpha$ so $\mu \ge \tan \alpha = \frac{5}{12}$	B1 B1 E1	Correct expression for F_{max} or wt cpt down slope (may be implied and in any form) Identifying $\sin \alpha$ as $\frac{5}{13}$ or equivalent Proper use of $F \le \mu R$ or equivalent. [$\mu = \tan \alpha$ used WW; SC1]	3
(ii)	either			
(")	$0.5 \times 11 \times v^2$	M1	Use of work energy with at least three required terms attempted	
	$=11g \times 1.5 \times \frac{5}{13} + 0.2 \times 11g \times 1.5 \times \frac{12}{13} + 9$	B1	Any term RHS. Condone sign error.	
	15 15	B1 A1	Another term RHS. Condone sign error. All correct . Allow if trig consistent but wrong	
	$v^2 = 18.3717$ v = 4.2862 so 4.29 m s ⁻¹ (3 s. f.)	A1	сао	
	or + ve up the slope			5
	$-11g \times \frac{5}{13} - 0.2 \times 11g \times \frac{12}{13} - 6 = 11a$	M1	Use of N2L	
	15 15	B1	Any correct term on LHS	
	$a = -6.1239 \text{ m s}^{-2}$	A1		
	$v^2 = -3a$ $v = 4.286 \text{ m s}^{-1}$	M1 A1	use of appropriate <i>uvast</i> c.a.o.	
	v = 4.200 m 3	AI	0.0.0.	
(iii)	continued overleaf			

3	continued			
(iii)	either Extra GPE balances WD against resistances $mgx \sin \alpha$ = $6(x+3) + 0.2 \times 11g \times \cos \alpha (x+3)$ x = 4.99386 so 4.99 m (3 s. f.)	M1 B1 B1 B1 A1 A1	Or equivalent One of 1^{st} three terms on RHS correct Another of 1^{st} 3 terms on RHS correct All correct. FT their <i>v</i> if used. cao.	6
	or $0.5 \times 11 \times 18.3717$ $= (1.5+x) \times 11g \times \frac{5}{13} - 6(1.5+x)$	M1 B1 B1	Allow 1 term missing KE. FT their <i>v</i> Use of 1.5 + <i>x</i> (may be below)	
	$-(1.5+x) \times 0.2 \times 11g \times \frac{12}{13}$		WD against friction	
	x = 4.99386 so 4.99 m (3 s. f.) or	A1 A1	All correct cao.	
	+ ve down the slope $11g \times \frac{5}{13} - 0.2 \times 11g \times \frac{12}{13} - 6 = 11a$	M1 A1	N2L with all terms present all correct except condone sign errors	
	$a = 1.4145m s^{-2}$ 4.286 ² = 2a(1.5+x)	A1 M1	use of appropriate <i>uvast</i>	
	<i>x</i> = 4.99	B1 A1	for $(1.5 + x)$ (may be implied) c.a.o.	
				18

Q 4		mark		Sub
(i)	$100\left(\frac{\overline{x}}{\overline{y}}\right) = 10\left(\frac{5}{0}\right) + 30\left(\frac{10}{15}\right) + 30\left(\frac{20}{15}\right) + 30\left(\frac{25}{30}\right)$	M1 B1 B1	Correct method for c.m. Total mass correct One c.m. on RHS correct [If separate components considered, B1 for 2 correct]	
	$100\left(\frac{\overline{x}}{\overline{y}}\right) = \begin{pmatrix} 1700\\1800 \end{pmatrix}$ $\overline{x} = 17\\\overline{y} = 18$	A1 A1	cao cao. [Allow SC 4/5 for $\overline{x} = 18$ and $\overline{y} = 17$]	5
(ii)	(17,18,20)	B1 B1	<i>x</i> - and <i>y</i> - coordinates. FT from (i). <i>z</i> coordinate	2
(iii)	cw moments about horizontal edge thro' D x component $P \times 20 - 60 \times (20 - 17) = 0$ P = 9	M1 B1 B1 A1	Or equivalent with all forces present One moment correct (accept use of mass or length) correct use of their \overline{x} in a distance FT only their \overline{x}	4
(iv)	Diagram	B1	Normal reaction must be indicated acting vertically upwards at edge on Oz and weight be in approximately the correct place.	1
(v)	On point of toppling ac moments about edge along Oz $30 \times Q - 60 \times 17 = 0$ Q = 34 Resolving horizontally $F = Q$ As 34 > 30, slips first	M1 B1 F1 B1 B1	Or equivalent with all forces present Any moment correct (accept use of mass or length) FT only their \overline{x} FT their Q correctly argued.	5

Mark Scheme 4763 June 2006

4(-)(:)				
1(a)(l)	[Force] = $M L T^{-2}$	B1		or [Energy] = $M L^2 T^{-2}$
	[Power] = [Force] \times [Distance] \div [Time]			
	= [Force] $\times LT^{-1}$	M1		or [Energy] $\times T^{-1}$
	$= M L^2 T^{-3}$	A1		
			3	
(ii)	$[RHS] = \frac{(L)^3 (LT^{-1})^2 (ML^{-3})}{ML^2 T^{-3}}$	B1B1		For $(LT^{-1})^2$ and (ML^{-3})
	$ML^2 T^{-3}$	M1 A1		Simplifying dimensions of RHS
	[] HS1 = 1, so equation is not consistent			
	[LHS] = L so equation is not consistent	E1	F	With all working correct (cao)
			Э	SR ' L = $\frac{28}{9}\pi$ T, so inconsistent '
				can earn B1B1M1A1E0
(iii)	[RHS] needs to be multiplied by $\ \mathrm{L}\mathrm{T}^{-1}$	M1		
	which are the dimensions of <i>u</i>	A1		
	Correct formula is $x = \frac{28 \pi r^3 u^3 \rho}{9P}$	A1 000		
	9P	A1 cao	3	RHS must appear correctly
	$OR x = k r^{\alpha} u^{\beta} \rho^{\gamma} P^{\delta}$			
	M1			Equating powers of one
	$\beta = 3$ A1			dimension
	$28\pi r^3 u^3 \rho$			
	$x = \frac{28\pi r^3 u^3 \rho}{9P} $ A1			
(b)(i)	Elastic energy is $\frac{1}{2} \times 150 \times 0.8^2$	M1		
	= 48 J	A1		Treat use of modulus
			2	λ = 150 N as MR
(ii)	In extreme position,			
	length of string is $2\sqrt{1.2^2 + 0.9^2}$ (= 3)	B1		for $\sqrt{1.2^2 + 0.9^2}$ or 1.5 or 3
	elastic energy is $\frac{1}{2} \times 150 \times 1.4^2$ (=147)	M1		allow M1 for $(2\times)\frac{1}{2}\times150\times0.7^2$
	By conservation of energy,	M1		Equation involving EE and KE
	$147 - 48 = \frac{1}{2} \times m \times 10^2$	A1		
	Mass is 1.98 kg	A1		
			5	
			-	

2 (a)(i)	Vertically, $T \cos 55^\circ = 0.6 \times 9.8$ Tension is 10.25 N		M1 A1	2	
(ii)	Radius of circle is $r = 2.8 \sin 55^{\circ}$ (= 2.294)		B1		
	Towards centre, $T \sin 55^\circ = 0.6 \times \frac{v^2}{2.8 \sin 55^\circ}$		M2		Give M1 for one error
	$\omega = 2.47$	M1 M1			or $T = 0.6 \times 2.8 \times \omega^2$ Dependent on previous M1
	Speed is 5.67 ms^{-1}		A1	4	
(b)(i)	Tangential acceleration is $r \alpha = 1.4 \times 1.12$ $F_1 = 0.5 \times 1.4 \times 1.12$ = 0.784 N Radial acceleration is $r \omega^2 = 1.4 \omega^2$		M1 A1 M1		
	$F_2 = 0.5 \times 1.4 \omega^2$ $= 0.7 \omega^2 \mathrm{N}$		A1	4	SR $F_1 = -0.784$, $F_2 = -0.7\omega^2$ penalise once only
(ii)	Friction $F = \sqrt{F_1^2 + F_2^2}$ Normal reaction $R = 0.5 \times 9.8$ About to slip when $F = \mu \times 0.5 \times 9.8$ $\sqrt{0.784^2 + 0.49\omega^4} = 0.65 \times 0.5 \times 9.8$		M1 M1 A1 A1		For LHS and RHS
	$\omega = 2.1$		A1 cao	5	Both dependent on M1M1
(iii)	$\tan\theta = \frac{F_1}{F_2}$		M1		Allow M1 for $\tan \theta = \frac{F_2}{F_1}$ etc
	$=\frac{0.784}{0.7 \times 2.1^2}$		A1		
	Angle is 14.25°		A1	3	Accept 0.249 rad

r			·
3 (i)	$T_{\rm AP} = \frac{1323}{3} \times 2 \ (= 882)$	B1	
	$T_{\rm BP} = \frac{1323}{4.5} \times 2.5 (=735)$	B1	
	$T_{\rm AP} - mg - T_{\rm BP} = 882 - 15 \times 9.8 - 735 = 0$		
	so P is in equilibrium	E1	
		3	
	OR $\frac{1323}{3}(AP-3) = \frac{1323}{4.5}(BP-4.5) + 15 \times 9.8$ B2		Give B1 for one tension correct
	AP + BP = 12 and solving, $AP = 5$ E1		
(ii)	Extension of AP is $5 - x - 3 = 2 - x$		
	$T_{\rm AP} = \frac{1323}{3}(2-x) = 441(2-x)$	E1	
	Extension of BP is $7 + x - 4.5 = 2.5 + x$	B1	
	$T_{\rm BP} = \frac{1323}{4.5}(2.5+x) = 294(2.5+x)$	B1	
		3	
(iii)	$441(2-x) - 15 \times 9.8 - 294(2.5+x) = 15\frac{d^2x}{dt^2}$	M1 A1	Equation of motion involving 3 forces
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -49x$	M1	Obtaining $\frac{d^2x}{dt^2} = -\omega^2 x (+c)$
	Motion is SHM with period $\frac{2\pi}{\omega} = \frac{2\pi}{7} = 0.898 \text{ s}$	A1 4	Accept $\frac{2}{7}\pi$
(iv)	Centre of motion is AP = 5 If minimum value of AP is 3.5, amplitude is 1.5 Maximum value of AP is 6.5 m	B1	
60			
(v)	When $AP = 4.1$, $x = 0.9$	N 4 4	
	Using $v^2 = \omega^2 (A^2 - x^2)$	M1	
	$v^2 = 49(1.5^2 - 0.9^2)$	A1	
	Speed is 8.4 m s^{-1}	A1	Accept ± 8.4 or -8.4
		3	
	OR $x = 1.5 \sin 7t$		Or $x = 1.5 \cos 7t$
	When $x = 0.9$, $7t = 0.6435$ ($t = 0.0919$)		or $7t = 0.9273$ ($t = 0.1325$)
	$v = 7 \times 1.5 \cos 7t \qquad \qquad M1$		or $v = -7 \times 1.5 \sin 7t$
	$=10.5\cos(0.6435)$ A1		$=(-)10.5\sin(0.9273)$
	= 8.4 A1		

Mark Scheme

June 2006

(vi)		M1	For $\cos(\sqrt{49} t)$ or $\sin(\sqrt{49} t)$
	$x = 1.5 \cos 7t$	A1	or $x = 1.5 \sin 7t$ M1A1 above can be awarded in (v) if not earned in (vi)
	When $1.5 \cos 7t = 0.5$	M1	or other fully correct method to find the required time e.g. $0.400 - 0.224$ or
	Time taken is 0.176 s	A1 4	0.224 - 0.049 Accept 0.17 or 0.18

4 (i)	C ⁴		π may be omitted throughout
- (1)	$\int \pi y^2 \mathrm{d}x = \int_1^4 \pi x \mathrm{d}x$	M1	
	$=\left[\frac{1}{2}\pi x^2\right]_1^4 = 7.5\pi$	A1	
	$\int \pi x y^2 dx$	M1	
	$= \int_{1}^{4} \pi x^{2} dx = \left[\frac{1}{3}\pi x^{3}\right]_{1}^{4} (=21\pi)$	A1	
	$\overline{x} = \frac{21\pi}{7.5\pi}$		
		M1	
	= 2.8	A1	
		6	5
(ii)	Cylinder has mass $3\pi \rho$	B1	Or volume 3π
	Cylinder has CM at $x = 2.5$	B1	
		M1	Relating three CMs
	$(4.5\pi\rho)\overline{x} + (3\pi\rho)(2.5) = (7.5\pi\rho)(2.8)$	A1	(ρ and / or π may be omitted)
			or equivalent, e.g.
			$\overline{x} = \frac{(7.5\pi \ \rho)(2.8) - (3\pi \ \rho)(2.5)}{7.5\pi \ \rho - 3\pi \ \rho}$
			Correctly obtained
	$\overline{x} = 3$	E1	
		5	
(iii)(A)	Moments about A, $S \times 3 - 96 \times 2 = 0$	M1	Moments equation
	S = 64 N	A1	
	Vertically, $R + S = 96$	M1	or another moments equation
	R = 32 N	A1	Dependent on previous M1
	1 <u>52</u> 1	4	
(<i>B</i>)	Moments about A,	M1	Moments equation
	$S \times 3 - 96 \times 2 - 6 \times 1.5 = 0$	A1	
	Vertically, $R + S = 96 + 6$		
	R = 35 N, S = 67 N	A1	Both correct
		3	\$
	OR Add 3 N to each of <i>R</i> and <i>S</i> M1	-	Provided $R \neq S$
	R = 35 N, S = 67 N A2		Both correct

Mark Scheme 4764 June 2006

1(i)	$m = \frac{4}{3}\pi r^3 \rho$	M1	Expression for <i>m</i>	
	$\frac{\mathrm{d}m}{\mathrm{d}t} = 4\pi r^2 \rho \frac{\mathrm{d}r}{\mathrm{d}t}$	M1	Relate $\frac{\mathrm{d}m}{\mathrm{d}t}$ to $\frac{\mathrm{d}r}{\mathrm{d}t}$	
	$\lambda \cdot 4\pi r^2 = 4\pi r^2 \rho \frac{\mathrm{d}r}{\mathrm{d}t}$	M1	Use of $\frac{dm}{dt}$ proportional to surface area	
	$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{\lambda}{\rho} = k$	E1	Accept alternative symbol for constant if used correctly (here and subsequently)	
	$r = r_0 + kt$	M1	Integrate and use condition	
	$m = \frac{4}{3}\pi\rho(r_0 + kt)^3$	A1		
				6
(ii)	$\frac{\mathrm{d}}{\mathrm{d}t}(mv) = mg$	M1	N2L	
	$mv = \int mg \mathrm{d}t = \int \frac{4}{3} \pi \rho (r_0 + kt)^3 g \mathrm{d}t$	M1	Express <i>mv</i> as an integral	
	$=\frac{4}{3}\pi\rho g\left[\frac{1}{4k}(r_0+kt)^4+c\right]$	M1	Integrate	
	$t = 0, v = 0 \Longrightarrow c = -\frac{1}{4k} r_0^4$	M1	Use condition	
	$\frac{4}{3}\pi\rho(r_0+kt)^3v = \frac{4}{3}\pi\rho g \cdot \frac{1}{4k} \left[(r_0+kt)^4 - r_0^4 \right]$	M1	Substitute for <i>m</i>	
	$v = \frac{g}{4k} \left[r_0 + kt - \frac{r_0^4}{(r_0 + kt)^3} \right]$	A1		
				6
2(i)	$AP = 2a\cos\theta$	M1	Attempt AP in terms of θ	
	$PB = \frac{5}{2}a - 2a\cos\theta$	E1		
	$V = -mg \cdot PB - mg \cdot PA \cos \theta$	M1	Attempt V in terms of θ	
	$= -mg\left(\frac{5}{2}a - 2a\cos\theta\right) - mg\left(2a\cos\theta\right)\cos\theta$			
	$= -mga\left(2\cos^2\theta - 2\cos\theta + \frac{5}{2}\right)$	E1		
(::)				4
(ii)	$\frac{\mathrm{d}V}{\mathrm{d}\theta} = mga\sin\theta \left(4\cos\theta - 2\right)$	M1	Differentiate	
	$\frac{\mathrm{d}V}{\mathrm{d}\theta} = 0 \Longrightarrow \sin\theta = 0 \text{ or } \cos\theta = \frac{1}{2}$	M1	Solve	
	$\Rightarrow \theta = 0 \text{ or } \pm \frac{1}{3}\pi$	A1	For 0 and either of $\frac{1}{3}\pi$ or $-\frac{1}{3}\pi$	
	$d^2 V$ magnin $Q(4 \sin Q) + \max \cos Q(4 \cos Q - 2)$	M1	Differentiate again	
	$\frac{\mathrm{d}^2 V}{\mathrm{d}\theta^2} = mga\sin\theta(-4\sin\theta) + mga\cos\theta(4\cos\theta - 2)$	A1		
	$\theta = 0 \Rightarrow \frac{d^2 V}{d^2 V} = 2mga > 0 \Rightarrow \text{ stable}$	M1	Consider sign of V" in one case	
	$\frac{d\theta^2}{d\theta^2}$	F1	Correct deduction for one value of θ	
	$\theta = 0 \Rightarrow \frac{d^2 V}{d\theta^2} = 2mga > 0 \Rightarrow \text{ stable}$ $\theta = \pm \frac{1}{3}\pi \Rightarrow \frac{d^2 V}{d\theta^2} = -3mga < 0 \Rightarrow \text{ unstable}$	F1	Correct deduction for another value of θ N.B. Each F mark is dependent on both M marks. To get both F marks, the two values of θ must be physically possible (i.e. in the first or fourth quadrant) and not be equivalent or symmetrical positions.	
				8
1		I	1	1

3(i)	$P = Fv = mv \frac{\mathrm{d}v}{\mathrm{d}x}v$	M1	Use of $P = Fv$	
	$v^2 \frac{dv}{dx} = 0.0004 \left(10000v + v^3 \right)$	A1	Or equivalent	
	$\int \frac{v}{10000 + v^2} \mathrm{d}v = \int 0.0004 \mathrm{d}x$	M1	Separate variables	
	$\left \frac{1}{2}\ln\left 10000 + v^2\right = 0.0004x + c$	M1	Integrate	
	$v^2 = A \mathrm{e}^{0.0008x} - 10000$	M1	Rearrange	
	$x = 0, v = 0 \Longrightarrow A = 10000$	M1	Use condition	
	$v = 100\sqrt{e^{0.0008x} - 1}$	A1		
	$x = 900 \Rightarrow v = 102.7 > 80$ so successful			
	or $v = 80 \Rightarrow x = 618.37 < 900$ so successful	E1	Show that their v implies successful take off	
				8
(ii)	$v \frac{dv}{dt} = 0.0004 \left(10000v + v^3 \right)$	F1	Follow previous DE	
	$\int \frac{1}{10000 + v^2} \mathrm{d}v = \int 0.0004 \mathrm{d}t$	M1	Separate variables	
	$\frac{1}{100}\tan^{-1}\left(\frac{1}{100}\nu\right) = 0.0004t + k$	M1	Integrate	
	100 (100) (100) (100)	A1		
	$t = 0, v = 0 \Longrightarrow k = 0$	M1	Use condition	
	$\Rightarrow v = 100 \tan(0.04t)$	E1	Clearly shown	
	$v \rightarrow \infty$ at finite time suggests model invalid	B1		
				7
(iii)	$t = 11 \Longrightarrow v = 47.0781$	B1	At least 3sf	
	Hence maximum $P = 230.049m$	M1	Attempt to calculate maximum P	
	$v = 47.0781 \Longrightarrow x = 250.237$	M1	Use solution in (i) to calculate x	
	$v^2 dv = 220.040$	M1	Set up DE for $t \dots 11$.	
	$v^2 \frac{\mathrm{d}v}{\mathrm{d}x} = 230.049$		Constant acceleration formulae \Rightarrow M0.	
	$\frac{1}{3}v^3 = 230.049x + B$	M1	Separate variables and integrate	
		F1	Follow their maximum <i>P</i> (condone no constant)	
	$v = 47.0781, x = 250.237 \Longrightarrow B = -22786.3$	M1	Use condition on x, v (not $v = 0$, not $x = 0$	
			unless clearly compensated for when making conclusion).	
			Constant acceleration formulae \Rightarrow M0.	
L	$v = 80 \Rightarrow x = 840.922$ or $x = 900 \Rightarrow v = 82.0696$	M1	Relevant calculation. Must follow solving a DE.	
L	so successful	A1	All correct (accept 2sf or more)	-
<u> </u>				9
1	1	1	1	

4(i)	Considering elements of ler	$\operatorname{ngth} \delta x \Longrightarrow I = \int_0^{2a} \rho x^2 \mathrm{d} x$	M1	Set up integral	
	$=\frac{M}{8a^2}\int_0^{2a} \left(5ax^2-x^3\right)\mathrm{d}x$		M1	Substitute for ρ in predominantly correct integral	
	$=\frac{M}{8a^2} \left[\frac{5}{3}ax^3 - \frac{1}{4}x^4\right]_0^{2a}$		M1	Integrate	
	$=\frac{7}{6}Ma^2$		E1		
	Considering elements of ler	$\operatorname{hgth} \delta x \Longrightarrow M\overline{x} = \int_0^{2a} \rho x \mathrm{d} x$	M1	Set up integral	
	$=\frac{M}{8a^2}\int_0^{2a} (5ax-x^2)\mathrm{d}x$		M1	Substitute for ρ in predominantly correct integral	
	$=\frac{M}{8a^2} \Big[\frac{5}{2}ax^2 - \frac{1}{3}x^3\Big]_0^{2a}$		M1	Integrate	
	$\overline{x} = \frac{11}{12}a$		E1		
(ii)	1 7 2 7 11 (1 0)		M1	KE term in terms of angular velocity	8
(11)	$\frac{1}{2}I\dot{\theta}^2 = Mg \cdot \frac{11}{12}a(1 - \cos\theta)$		B1	$\pm Mg \cdot \frac{11}{12} a \cos \theta$ seen	
			M1	energy equation	
	$\dot{\theta} = \sqrt{\frac{11g}{7a}(1 - \cos\theta)}$		A1		
					4
(iii)		$\theta = \frac{1}{2}\pi \Longrightarrow \dot{\theta} = \sqrt{\frac{11g}{7a}}$ $2a \cdot (-J_1) = I\left(0 - \sqrt{\frac{11g}{7a}}\right)$	F1	Their $\dot{\theta}$ at $\theta = \frac{1}{2}\pi$	
	J_2	$2a \left(L \right) = I \left(0 \boxed{11g} \right)$	M1	Use of angular momentum	
		$2a \cdot (-s_1) = I \left(0 - \sqrt{7a} \right)$	A1	Correct equation (their $\dot{\theta}$)	
	$J_1 = \frac{1}{12}M\sqrt{77ag}$		E1		
	$J_2 = \frac{1}{12}M\sqrt{77ag}$		B1	Correct answer or follow their J_1	
					5
(iv)	\mathbf{A}^{J_3}	$J_4 = J_2$	M1	Consider horizontal impulses	
		$=\frac{1}{12}M\sqrt{77ag}$	F1	Follow their J_2	
	$J_3 + J_1 = M \cdot \frac{11}{12} a \sqrt{\frac{11g}{7a}}$		M1	Vertical impulse-momentum equation	
			M1	Use of $r\dot{ heta}$	
	$J_3 = \frac{1}{21}M\sqrt{77ag}$		A1	сао	
	angle = $\tan^{-1}\left(\frac{J_3}{J_4}\right) = \tan^{-1}\left(\frac{J_3}{J_4}\right)$	$\frac{\frac{1}{21}M\sqrt{77ag}}{\frac{1}{12}M\sqrt{77ag}}\right)$	M1	Must substitute	
	$=$ tan ⁻¹ $\left(\frac{4}{7}\right) \approx 0.519$ rad ≈ 29.7	0	A1	cao (any correct form)	
					7

Mark Scheme 4766 June 2006

Q1			
(i)	8 7 7 6 7 6 7 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 7 9 7 <t< th=""><th>G1 Labelled linear scales G1 Height of lines</th><th>2</th></t<>	G1 Labelled linear scales G1 Height of lines	2
(ii)	Negative (skewness)	B1	1
(iii)	$\Sigma fx = 123$ so mean = 123/25 = 4.92 o.e.	B1	
	$S_{xx} = 681 - \frac{123^2}{25} = 75.84$ M.s.d = $\frac{75.84}{25} = 3.034$	M1 for S_{xx} attempted A1 FT their 4.92	3
(iv)	Total for 25 days is 123 and totals for 31 days is 155. Hence total for next 6 days is 32 and so mean = 5.33	M1 31 x 5 – 25xtheir 4.92 A1 FT their 123	2
		TOTAL	8
Q2 (i)	$P(A \cap B) = P(A)P(B A) = \frac{7}{10} \times \frac{3}{7}$ $\rightarrow P(A \cap B) = 0.3$	M1 Product of these fractions	
	$\rightarrow P(A \cap B) = 0.3$ o.e.	A1	2
(ii)	A .4 .3 .2 .1	B1FT either 0.4 or 0.2 in correct place B1FT all correct and labelled	2
(iii)	$P(B A) \neq P(B), 3/7 \neq 0.5$	E1 Correct comparison	2
	Unequal so not independent	E1 <i>dep</i> for 'not independent'	2
(iv)	3/7 < 0.5	E1 for comparison	
	so Isobel is less likely to score when her parents attend	E1dep	2
		TOTAL	8

Q3 (i)	P(X = 1) = 7k, $P(X = 2) = 12k$, $P(X = 3) = 15k$, $P(X = 4) = 16k50k = 1$ so $k = 1/50$	M1 for addition of four multiples of <i>k</i> A1 ANSWER GIVEN	2
(ii)	$E(X) = 1 \times 7k + 2 \times 12k + 3 \times 15k + 4 \times 16k = 140k = 2.8$ OR E(X) = 1 × ⁷ / ₅₀ + 2 × ¹² / ₅₀ + 3 × ¹⁵ / ₅₀ + 4 × ¹⁶ / ₅₀ = ¹⁴⁰ / ₅₀ = 2.8 oe	M1 for Σxp (at least 3 terms correct) A1 CAO	
	Var(X) = 1 x 7k + 4 x 12k + 9 x 15k + 16 x 16k - 7.84 = 1.08 OR Var(X) = 1 x $^{7}/_{50}$ + 4 x $^{12}/_{50}$ + 9 x $^{15}/_{50}$ + 16 x $^{16}/_{50}$ - 7.84 = 8.92 - 7.84 = 1.08	M1 $\Sigma x^2 p$ (at least 3 terms correct) M1 <i>dep</i> for – their E(X) PNB provided Var(X) > 0 A1 FT their E(X)	5
		TOTAL	7
Q4 (i)	4 x 5 x 3 = 60	M1 for 4 x 5 x 3 A1 CAO	2
(ii)	$(A) \begin{pmatrix} 4\\2 \end{pmatrix} = 6$	B1 ANSWER GIVEN	
	(B) $\binom{4}{2}\binom{5}{2}\binom{3}{2} = 180$	B1 CAO	2
(iii)	(A) 1/5	B1 CAO	
	(B) $\frac{3}{4} \times \frac{4}{5} \times \frac{2}{3} = \frac{2}{5}$	M1 for $\frac{3}{4} \times \frac{4}{5} \times \frac{2}{3}$	3
		A1 TOTAL	7
Q5	$P(X = 2) = \binom{3}{2} \times 0.87^2 \times 0.13 = 0.2952$	M1 0.87 ² x 0.13	
(i)		M1 $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$ x $p^2 q$ with p+q=1 A1 CAO	3
(ii)	In 50 throws expect 50 (0.2952) = 14.76 times	B1 FT	1
(iii)	P (two 20's twice) = $\binom{4}{2} \times 0.2952^2 \times 0.7048^2 = 0.2597$	M1 $0.2952^2 \times 0.7048^2$ A1 FT their 0.2952	2
		TOTAL	6

Q6	Positive	G1 for left hand set of	
(i)	0.95 Fostive Genuine 0.05 Negative	branches fully correct including labels and probabilities	
	0.1 Fake 0.2 D.8 Negative	G1 for right hand set of branches fully correct	2
(ii)	P (test is positive) = (0.9)(0.95) + (0.1)(0.2) = 0.875	M1 Two correct pairs added	2
(iii)	P (test is correct) = (0.9)(0.95) + (0.1)(0.8) = 0.935	A1 CAO M1 Two correct pairs added A1 CAO	2
(iv)	P (Genuine Positive)	M1 Numerator	
	= 0.855/0.875	M1 Denominator A1 CAO	
	= 0.977	ATCAO	3
(v)	P (Fake Negative) = 0.08/0.125 = 0.64	M1 Numerator M1 Denominator A1 CAO	3
(vi)	EITHER: A positive test means that the painting is almost certain to be genuine so no need for a further test.	E1FT	
	However, more than a third of those paintings with a negative result are genuine so a further test is needed.	E1FT	2
	NOTE: Allow sensible alternative answers		
(vii)	P (all 3 genuine) = $(0.9 \times 0.05 \times 0.96)^3$ = $(0.045 \times 0.96)^3$ = $(0.0432)^3$ = 0.0000806	M1 for 0.9 x 0.05 (=0.045) M1 for complete correct triple product M1 <i>indep</i> for cubing A1 CAO	4
		TOTAL	18

Q7	<i>X</i> ~ B(20, 0.1)		
(i)	(A) $P(X = 1) = {\binom{20}{1}} \times 0.1 \times 0.9^{19} = 0.2702$	M1 0.1 x 0.9 ¹⁹	
		M1 $\begin{pmatrix} 20\\1 \end{pmatrix}$ x pq ¹⁹	
	OP from tables 0.2017 0.121(0.2701	A1 CAO	
	OR from tables $0.3917 - 0.1216 = 0.2701$	OR: M2 for 0.3917 – 0.1216 A1 CAO	3
	(B) $P(X \ge 1) = 1 - 0.1216 = 0.8784$	M1 P(X=0) provided that $P(X \ge 1) = 1 - P(X \le 1)$ not seen	
		M1 1-P(X=0) A1 CAO	3
(ii)	EITHER: $1 - 0.9^n \ge 0.8$	M1 for 0.9 ⁿ	
	$0.9^n \le 0.2$ Minimum <i>n</i> = 16	M1 for inequality A1 CAO	
	OR (using trial and improvement):	M1	
	Trial with 0.9^{15} or 0.9^{16} or 0.9^{17} 1 - 0.9^{15} = 0.7941 < 0.8 and 1 - 0.9^{16} = 0.8147 > 0.8	M1	
	Minimum n = 16	A1 CAO	
	NOTE: $n = 16$ unsupported scores SC1 only		3
(iii)	(A) Let p = probability of a randomly selected rock containing a fossil (for population) H ₀ : p = 0.1	B1 for definition of p B1 for H ₀ B1 for H ₁	
	$H_1: p < 0.1$		3
	(B) Let $X \sim B(30, 0.1)$ $P(X \le 0) = 0.0424 < 5\%$ $P(X \le 1) = 0.0424 + 0.1413 = 0.1837 > 5\%$	M1 for attempt to find $P(X \le 0)$ or $P(X \le 1)$ using binomial M1 for both attempted M1 for comparison of	
	So critical region consists only of 0.	either of the above with 5% A1 for critical region dep on both comparisons (NB Answer given)	4
	(C)		
	2 does not lie in the critical region.	M1 for comparison A1 for conclusion in	
	So there is insufficient evidence to reject the null hypothesis and we conclude that it seems that 10% of rocks in this area contain fossils.	context	
		TOTAL	2
		IUTAL	18

Mark Scheme 4767 June 2006

			1
(i)	$P(X = 1) = 8 \times 0.1^{1} \times 0.9^{7}$ = 0.383	M1 for binomial probability P(X=1) A1 (at least 2sf) CAO	2
(ii)	$\lambda = 30 \times 0.1 = 3$		
. ,	6	B1 for mean SOI	1
	(A) $P(X = 6) = e^{-3} \frac{3^6}{6!} = 0.0504(3 \text{ s.f.})$ or from tables $= 0.9665 - 0.9161 = 0.0504$	M1 for calculation or use of tables to obtain P(X=6) A1 (at least 2sf) CAO	2
		M1 for correct	
	(B) Using tables: $P(X \ge 8) = 1 - P(X \le 7)$	probability calc'	2
	= 1 - 0.9881 = 0.0119	A1 (at least 2sf) CAO	
(iii)	<i>n</i> is large and <i>p</i> is small	B1, B1	
(111)		Allow appropriate numerical ranges	2
(iv)	$\mu = np = 120 \times 0.1 = 12$	B1	
	$\sigma^2 = npq = 120 \times 0.1 \times 0.9 = 10.8$	B1	2
(v)	$P(X > 15.5) = P\left(Z > \frac{15.5 - 12}{\sqrt{10.8}}\right)$ = P(Z > 1.065) = 1 - $\Phi(1.065)$ = 1 - 0.8566 = 0.1434 NB Allow full marks for use of N(12,12) as an	B1 for correct continuity correction. M1 for probability using correct tail A1 cao, (but FT wrong or omitted CC)	3
	approximation to Poisson(12) leading to $1 - \Phi(1.010) = 1$ - 0.8438 = 0.1562		
(vi)	From tables Φ^{-1} (0.99) = 2.326	B1 for 2.326 seen	
	$\frac{x+0.5-12}{\sqrt{10.8}} \ge 2.326$	M1 for equation in <i>x</i> and positive <i>z</i> -value	
	$x = 11.5 + 2.326 \times \sqrt{10.8} \ge 19.14$	A1 CAO (condone 19.64)	
	So 20 breakfasts should be carried	A1FT for rounding appropriately (i.e.	
	NB Allow full marks for use of N(12,12) leading to $x \ge 11.5 + 2.326 \times \sqrt{12} = 19.56$	round up if c.c. used o/w rounding should be to nearest integer)	4
			18

Question 2

(i)	$X \sim N(49.7, 1.6^2)$		
	(A) $P(X > 51.5) = P\left(Z > \frac{51.5 - 49.7}{1.6}\right)$	M1 for standardizing	
	= P(Z > 1.125)	M1 for prob. calc.	
	$= 1 - \Phi(1.125) = 1 - 0.8696 = 0.1304$	A1 (at least 2 s.f.)	
	(B) $P(X < 48.0) = P\left(Z < \frac{48.0 - 49.7}{1.6}\right)$ = $P(Z < -1.0625) = 1 - \Phi(1.0625)$ = $1 - 0.8560 = 0.1440$	M1 for appropriate prob' calc.	5
	P(48.0 < X < 51.5) = 1 - 0.1304 - 0.1440 = 0.7256	A1 (0.725 – 0.726)	
(ii)	P(one over 51.5, three between 48.0 and 51.5)		
	$= \begin{pmatrix} 4 \\ 1 \end{pmatrix} \times 0.7256 \times 0.2744^3 = 0.0600$	M1 for coefficient M1 for 0.7256 ×	
		0.2744 ³ A1 FT (at least 2 sf)	3
			5
(iii)	From tables, $\phi^{-1}(0,00) = 0.0500, \phi^{-1}(0,00) = 0.5014$	B1 for 0.2533 or 0.5244 seen	
	$\Phi^{-1}(0.60) = 0.2533, \Phi^{-1}(0.30) = -0.5244$	M1 for at least one	
	$49.0 = \mu + 0.2533 \sigma$ 47.5 = $\mu - 0.5244 \sigma$	correct equation $\mu \& \sigma$	
	$1.5 = 0.7777 \sigma$	M1 for attempt to	
		solve two correct	
	σ = 1.929, μ = 48.51	equations A1 CAO for both	4
(iv)	Where μ denotes the mean circumference of the entire population of organically fed 3-year-old boys.	E1	
	<i>n</i> = 10,		
	Test statistic Z = $\frac{50.45 - 49.7}{1.6 / \sqrt{10}} = \frac{0.75}{0.5060} = 1.482$	M1 A1(at least 3sf)	
	10% level 1 tailed critical value of z is 1.282	B1 for 1.282	
	1.482 > 1.282 so significant.	M1 for comparison leading to a	
	There is sufficient evidence to reject H_0 and conclude that organically fed 3-year-old boys have a higher mean head circumference.	conclusion A1 for conclusion in context	6
			18

Question 3

	estion 3		
(i)		M1 for method for S_{xy}	
	$S_{xy} = \Sigma xy - \frac{1}{n}\Sigma x\Sigma y = 6235575 - \frac{1}{10} \times 4715 \times 13175$		
	= 23562.5	M1 for method for at least one of S_{xx} or S_{yy}	
	$S_{XX} = \Sigma x^2 - \frac{1}{n} (\Sigma x)^2 = 2237725 - \frac{1}{10} \times 4715^2 =$	A1 for at least one of S_{xy} , S_{xx} or S_{yy} correct	
	14602.5 $S_{yy} = \Sigma y^2 - \frac{1}{n} (\Sigma y)^2 = 17455825 - \frac{1}{10} \times 13175^2 =$	M1 for structure of <i>r</i> A1 (0.62 to 0.63)	
	97762.5		
	$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} = \frac{23562.5}{\sqrt{14602.5 \times 97762.5}} = 0.624$	M1 for method for cov (<i>x</i> , <i>y</i>)	
	OR:	M1 for method for at least one msd	
	$cov (x,y) = \frac{\sum xy}{n} - \overline{xy} = 6235575/10 - 471.5 \times 1317.5$ $= 2356.25$	A1 for at least one of S_{xy} , S_{xx} or S_{yy} correct	
	rmsd(x) = $\sqrt{\frac{S_{xx}}{n}} = \sqrt{(14602.5/10)} = \sqrt{1460.25} = 38.21$	M1 for structure of <i>r</i> A1 (0.62 to 0.63)	5
	rmsd(y) = $\sqrt{\frac{S_{yy}}{n}} = \sqrt{(97762.5/10)} = \sqrt{9776.25} = 98.87$		
	$r = \frac{\text{cov}(x,y)}{rmsd(x)rmsd(y)} = \frac{2356.25}{38.21 \times 98.87} = 0.624$		
(ii)	H ₀ : $\rho = 0$ H ₁ : $\rho \neq 0$ (two-tailed test)	B1 for H ₀ , H ₁ in symbols	
	where $ ho$ is the population correlation coefficient	B1 for defining ρ	
	For <i>n</i> = 10, 5% critical value = 0.6319	B1FT for critical value	
	Since 0.624 < 0.6319 we cannot reject H_0 :	M1 for sensible comparison leading to a conclusion	6
	There is not sufficient evidence at the 5% level to suggest that there is any correlation between length and circumference.	A1 FT for result B1 FT for conclusion in context	
(iii)	 (A) This is the probability of rejecting H₀ when it is in fact true. (B) Advantage of 1% level – less likely to reject H₀ 	B1 for 'P(reject H ₀)' B1 for 'when true'	2
	when it is true. Disadvantage of 1% level – less likely to accept H_1 when H_0 is false.	B1, B1 Accept answers in context	2

(iv)	The student's approach is not valid. If a statistical procedure is repeated with a new	E1	
	sample, we should not simply ignore one of the two outcomes.	E1 – allow suitable alternatives.	
	The student could combine the two sets of data into a single set of twenty measurements.	E1 for combining samples.	3
			18

Question 4

~	.	Mus	ical prefer	ence	Row	
Obs	served	Рор	Classical		totals	
Age	Under 25	57	15	12	84	
group	25 – 50	43	21	21	85	M1 A2 for expecte
	Over 50	22	32	27	81	values (at least 1
Colur	nn totals	122	68	60	250	
						dp) (allow A1 for a
Exp	pected	Mus Pop	ical prefer Classical		Row totals	least one row or
Age	Under 25	40.992	22.848	20.160	84	column correct)
group	25 – 50	41.480	23.120	20.400	85	
	Over 50	39.528	22.032	19.440	81	
Colur	nn totals	122	68	60	250	
Contr	ibutions	Musical preference				
Conti	1	Рор	Classical	Jazz		M1 for valid attempt a
Age	Under 25	6.25	2.70	3.30		(O-E) ² /E A1 for all correct
group	25 – 50	0.06	0.19	0.02		
	Over 50	7.77	4.51	2.94		Miden for summation
						M1dep for summation A1 for X^2 (27.7 – 27.8
Result There musica		ant associat ce.	ion betwe	·	•	B1 for 4 deg of f B1 CAO for cv B1FT E1 (conclusion in context)

(ii)	The values of 6.25 and 7.77 show that under 25's have a strong positive association with pop whereas over 50's have a strong negative association with pop. The values of 4.51 and 2.94 show that over 50's have a reasonably strong positive association with both classical and jazz. The values of 2.70 and 3.30 show that under 25's have a reasonably strong negative associations with both classical and jazz. The 25-50 group's preferences differ very little from the overall preferences.	 B1, B1 for specific reference to a value from the table of contributions followed by an appropriate comment B1, B1 (as above for second value) B1, B1 (as above for third value) 	6
			18

Mark Scheme 4768 June 2006

						1	I	,
Q1	f(<i>x</i>) =	$12x^{3}$ –	$-24x^2+12x,$	$0 \le x \le 1$				
(i)		$= \int_{0}^{1} x f$ $= 12 \left[\frac{x}{5} \right]$	(x)dx $\frac{5}{5} - 2\frac{x^4}{4} + \frac{x^3}{3}$	I		M1 A1	Integral for E(<i>X</i>) including limits (which may appear later). Successfully integrated.	
		L	$-\frac{2}{4} + \frac{1}{3} = 12 \times \frac{1}{3}$	0		A1	Correct use of limits leading to final answer. C.a.o.	
	For m	iode,	f'(x) = 0			M1		
	. /	`	$x^{2} - 4x + 1) = 12($ or $x = 1$ and $x = \frac{1}{3}$			A1		
	-		cing argumen is the mode.	ut (e.g. f″(x)) th	$\operatorname{hat} \frac{1}{3}$	A1		6
(ii)	Cdf F	= 1	$2\left(\frac{x^{4}}{4} - 2\frac{x^{3}}{3} + \frac{x^{3}}{3}\right)$	$\left(\frac{c^2}{2}\right)$		M1	Definition of cdf, including limits (or use of "+c" and attempt to evaluate it), possibly implied later. Some valid method must be seen.	
	$= 3x^4 - 8x^3 + 6x^2$ $F(\frac{1}{4}) = \frac{3}{256} - \frac{8}{64} + \frac{6}{16} = \frac{3-32+96}{256} = \frac{67}{256}$			A1	Or equivalent expression; condone absence of domain [0,1].			
	$F\left(\frac{1}{2}\right) =$	$\frac{3}{16} - \frac{8}{8} - \frac{8}{8}$	$\frac{4}{4} + \frac{16}{16} - \frac{256}{256} - \frac{11}{256} + \frac{6}{4} = \frac{3 - 16 + 24}{16} = \frac{11}{16}$			B1	For all three; answers given; must show convincing working (such as common denominator)! Use of decimals is not acceptable.	3
(iii)	O _i	12	209	131	46		_	
	ei	6 13 4	352 – 134 = 218	486 – 352 = 134	26	B2	For e_i . B1 if any 2 correct, provided $\Sigma = 512$.	
	16 Refer Very I Very s no	highly strong t fit.) significant. evidence tha	0·0672 + 15·38 at the model do	es	M1 A1 M1	Must be some clear evidence of reference to χ_3^2 , probably implicit by reference to a critical point (5% : 7.815; 1% : 11.34). No ft (to the A marks) if incorrect χ^2 used, but E marks are still available. There must be at least one reference to "very …", i.e. the extremeness of the test statistic.	
	The n	nain fe	eature is that	we observe ma	any	ļ	Or e.g. "big/small" contributions	

4768	Mark Scheme		June 2006	
	more loads at the "top end" than expected. The other observations are below expectation, but discrepancies are comparatively small.	E1 E1	to X ² gets E1, and directions of discrepancies gets E1.	9
				18

1			i	
Q2	A to B : $X \sim N(26, \sigma = 3)$ B to C : $Y \sim N(15, \sigma = 2)$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.	
(i)	$P(X < 24) = P\left(Z < \frac{24 - 26}{3} = -0.6667\right)$	M1 A1	For standardising. Award once, here or elsewhere.	
	= 1 - 0.7476 = 0.2524	A1	c.a.o.	3
(ii)	$X + Y \sim N(41,$	B1	Mean.	
	$\sigma^2 = 9 + 4 = 13 [\sigma = 3.6056])$	B1	Variance. Accept sd.	
	P(this < 42) = P $\left(Z < \frac{42 - 41}{3 \cdot 6056} = 0 \cdot 2774\right) = 0 \cdot 6093$	A1	C.a.o.	3
(iii)	$0 \cdot 85X \sim N(22 \cdot 1,$	B1	Mean.	_
	$\sigma^{2} = (0.85)^{2} \times 9 = 6.5025 \ [\sigma = 2.55])$	B1	Variance. Accept sd.	
	P(this < 24) = $P\left(Z < \frac{24 - 22 \cdot 1}{2 \cdot 55} = 0 \cdot 7451\right)$			
	= 0.7719	A1	с.а.о.	3
(iv)	$0.9X + 0.8Y \sim N(23.4 + 12 = 35.4,$	B1	Mean.	
	$\sigma^{2} = (0.9)^{2} \times 9 + (0.8)^{2} \times 4 = 9.85 \left[\sigma = 3.138\frac{3}{2}\right]$	B1	Variance. Accept sd.	
	Require <i>t</i> such that $0.75 = P($ this $< t$ $)$	M1	Formulation of requirement (using c's parameters). Any use	
	$= P\left(Z < \frac{t - 35 \cdot 4}{3 \cdot 1385}\right) = P(Z < 0 \cdot 6745)$	B1	of a continuity correction scores M0 (and hence A0). 0.6745	
	$\therefore t - 35 \cdot 4 = 3 \cdot 1385 \times 0 \cdot 6745 = 2 \cdot 1169$	A1		
	$\Rightarrow t = 37 \cdot 52$ Must therefore take scheduled time as 38	M1	c.a.o. Round to next integer above c's	6
			value for <i>t</i> .	
(v)	CI is given by			
	$13 \cdot 4 \pm 1 \cdot 96 \frac{2}{\sqrt{15}}$	M1	If <u>both</u> 13.4 and $2/\sqrt{15}$ are correct. (N.B. 13.4 is given as \overline{x} in the question.) (If $3/\sqrt{15}$ used, treat as mis-read and award this M1, but not the final A1.)	
	= 13·4 ± 1·0121 = (12·38(79),	B1 A1	For 1.96 c.a.o. Must be expressed as an	3
	14·41(21))		interval.	
				18

Q3				
(i)	Simple random sample might not be representative - e.g. it might contain only managers.	E1 E1	Or other sensible comment.	2
(ii)	Presumably there is a list of staff, so systematic sampling would be possible.	E1		
	List is likely to be alphabetical, in which case systematic sampling might not be representative.	E1		
	But if the list is in categories, systematic sampling could work well.	E1	Or other sensible comments.	3
(iii)	Would cover the entire population. Can get information for each category.	E1 E1		2
(iv)	5, 11, 24	B1	(4.8, 11.2, 24)	1
(V)	\overline{x} = 345818, s_{n-1} = 69241 Underlying Normality H ₀ : μ = 300000, H ₁ : μ > 300000		All given in the question.	
	Test statistic is $\frac{345818 - 300000}{\frac{69241}{\sqrt{11}}}$	M1	Allow alternatives: 300000 + (c's 1.812) × $\frac{69241}{\sqrt{11}}$ (= 337829) for	
	=2·19(47).	A1	subsequent comparison with 345818. or 345818 – (c's 1·812) × $\frac{69241}{\sqrt{11}}$ (= 307988) for comparison with 300000. c.a.o. but ft from here in any case if wrong. Use of $\mu - \overline{d}$ scores M1A0, but ft.	
	Refer to <i>t</i> ₁₀ . Upper 5% point is 1·812. Significant. Evidence that mean wealth is greater than 300 000.	M1 A1 A1 A1	No ft from here if wrong. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic. Special case: (t_{11} and 1.796) can score 1 of these last 2 marks if either form of conclusion is given.	
	CI is given by 345818 \pm 2.228 $\times \frac{69241}{\sqrt{11}}$	M1 B1 M1		
	= 345818 ± 46513·84 = (299304(·2),	A1	c.a.o. Must be expressed as an	10

4768		Mark Scheme	June 2006	
	392331(·8))		interval. ZERO/4 if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0. Recovery to t_{10} is OK.	
				18

Q4				
(i)	DifferenceRank of diff S -2 -2 2 -1 1 -6 5 -3 3 4 4	M1	For differences. ZERO in this section if differences not used.	
	$ \begin{array}{c ccc} -12 & 9 \\ \hline 7 & 6 \\ \hline -8 & 7 \\ \hline -10 & 8 \end{array} $	M1 A1	For ranks. FT from here if ranks wrong	
	T = 4 + 6 = 10 (or $1 + 2 + 3 + 5 + 7 + 8 + 9 = 35$)	B1		
	Refer to tables of Wilcoxon paired (/single sample) statistic.	M1	No ft from here if wrong.	
	Lower (or upper if 35 used) 5% tail is needed.	M1	i.e. a 1-tail test. No ft from here if wrong.	
	Value for <i>n</i> = 9 is 8 (or 37 if 35 used). Result is not significant.	A1 A1	No ft from here if wrong. ft only c's test statistic.	
	No evidence to suggest a real change.	A1	ft only c's test statistic.	9
(ii)	Normality of <u>differences</u> is required.	B1		
	CI MUST be based on DIFFERENCES.		ZERO/6 for the CI if differences not used. Accept negatives throughout.	
	82, 70 $\overline{d} = 46 \cdot 5714$ $s_{n-1} = 27 \cdot 0485$	B1	Accept $s_{n-1}^2 = 731.62$ [$s_n = 25.0420$, but do <u>NOT</u> allow this here or in construction of CI.]	
	CI is given by 46·5714 ±	M1	Allow c's $\overline{d} \pm \dots$	
	3.707	B1 B1	If <i>t</i> ₆ used. 99% 2-tail point for c's <i>t</i> distribution. (Independent of previous mark.)	
	$\times \frac{27 \cdot 0485}{\sqrt{7}}$	M1	Allow c's s_{n-1} .	
	= 46·5714 ± 37·8980 = (8·67(34), 84·47)	A1	c.a.o. Must be expressed as an interval. [Upper boundary is 84·4694]	
	Cannot base CI on Normal distribution because sample is small population s.d. is not known	E1 E1	Insist on "population", but allow "ơ".	9
				18

Mark Scheme 4769 June 2006 ÷

Q1				
(i)	$L = \frac{1}{\sigma_1 \sqrt{2\pi}} e^{-\frac{(W_1 - \mu)^2}{2\sigma_1^2}} \cdot \frac{1}{\sigma_2 \sqrt{2\pi}} e^{-\frac{(W_2 - \mu)^2}{2\sigma_2^2}}$	M1 M1 A1	Product form. Two Normal terms. Fully correct.	
	$\ln L = \text{const} - \frac{1}{2\sigma_1^2} (W_1 - \mu)^2 - \frac{1}{2\sigma_2^2} (W_2 - \mu)^2$	M1 A1		
	$\frac{d \ln L}{d\mu} = \frac{2}{2\sigma_1^2} (W_1 - \mu) + \frac{2}{2\sigma_2^2} (W_2 - \mu)$ $= 0 \Longrightarrow \sigma_2^2 W_1 - \sigma_2^2 \mu + \sigma_1^2 W_2 - \sigma_1^2 \mu = 0$	M1 A1 A1	Differentiate w.r.t. μ.	
	$\Rightarrow \hat{\mu} = \frac{\sigma_2^2 W_1 + \sigma_1^2 W_2}{\sigma_1^2 + \sigma_2^2}$	A1	BEWARE PRINTED ANSWER.	
	Check this is a maximum.	M1		
	E.g. $\frac{d^2 \ln L}{d\mu^2} = -\frac{1}{\sigma_1^2} - \frac{1}{\sigma_2^2} < 0$	A1		11
(ii)	$E(\hat{\mu}) = \frac{\sigma_2^2 \mu + \sigma_1^2 \mu}{\sigma_1^2 + \sigma_2^2} = \mu$	M1		
	∴ unbiased.	A1		2
(iii)	$\operatorname{Var}(\hat{\mu}) = \left(\frac{1}{\sigma_1^2 + \sigma_1^2}\right)^2 \cdot (\sigma_2^4 \sigma_1^2 + \sigma_1^4 \sigma_2^2)$	B1 B1	First factor. Second factor.	
	$=\frac{\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2}$		Simplification not required at this point.	2
(iv)	$T = \frac{1}{2}(W_1 + W_2)$			
	$Var(T) = \frac{1}{4}(\sigma_1^2 + \sigma_2^2)$ Relative efficiency (y) = $\frac{Var(\hat{\mu})}{Var(T)}$	B1 M1 M1	Any attempt to compare variances. If correct.	
	$=\frac{\sigma_{2}^{4}\sigma_{1}^{2}+\sigma_{1}^{4}\sigma_{2}^{2}}{(\sigma_{1}^{2}+\sigma_{2}^{2})^{2}}\cdot\frac{4}{\sigma_{1}^{2}+\sigma_{2}^{2}}$	A1		
	$=\frac{4\sigma_{1}^{2}\sigma_{2}^{2}}{(\sigma_{1}^{2}+\sigma_{2}^{2})^{2}}$	A1	BEWARE PRINTED ANSWER.	5
(v)	E.g. consider $\sigma_1^2 + \sigma_2^2 - 2\sigma_1\sigma_2 = (\sigma_1 - \sigma_2)^2 \ge 0$ \therefore Denominator \ge numerator, \therefore fraction \le 1	M1 E1		
	[Both $\hat{\mu}$ and <i>T</i> are unbiased,] $\hat{\mu}$ has smaller variance than <i>T</i> and is therefore better.	E1 E1		4
				24

Q2	$f(x) = \frac{\lambda^{k+1} x^k e^{-\lambda x}}{k!}, [x > 0 (\lambda > 0, k \text{ integer} \ge 0)]$			
	Given: $\int_0^\infty u^m e^{-u} du = m!$			
(i)	$M_X(\theta) = E[e^{\theta x}]$	M1		
	$= \int_0^\infty \frac{\lambda^{k+1}}{k!} x^k e^{-(\lambda-\theta)x} dx$	M1		
	Put $(\lambda - \theta)x = u$	M1		
	$=\frac{\lambda^{k+1}}{k!(\lambda-\theta)^{k+1}}\int_0^\infty u^k \mathrm{e}^{-u}\mathrm{d}u$	A1	For obtaining this expression after substitution.	
		A1 A1	Take out constants. (Dep on	
	$=\left(rac{\lambda}{\lambda- heta} ight)^{k+1}$	A1	subst.) Apply "given": integral = <i>k</i> ! (Dep	7
			on subst.) BEWARE PRINTED ANSWER.	
(ii)	$Y = X_1 + X_2 + \dots + X_n$ By convolution theorem:- mgf of Y is			
	$\{M_X(\theta)\}^n$	54		
	i.e. $\left(\frac{\lambda}{\lambda-\theta}\right)^{nk+n}$	B1		
	$\mu = \mathbf{M}'(0)$			
	$M'(\theta) = \lambda^{nk+n} (-nk-n)(\lambda - \theta)^{-nk-n-1} (-1)$	M1 A1		
	$\therefore \mu = \frac{nk+n}{\lambda}$	A1		
	$\sigma^2 = \mathbf{M}''(0) - \mu^2$			
	$M''(\theta) = (nk+n)\lambda^{nk+n}(-nk-n-1)(\lambda-\theta)^{-nk-n-2}(-1)$	M1		
	$\therefore M''(0) = (nk + n)(nk + n + 1) / \lambda^2$	A1		
	$\therefore \sigma^2 = \frac{(nk+n)(nk+n+1)}{\lambda^2} - \frac{(nk+n)^2}{\lambda^2}$	M1		
	$=\frac{nk+n}{\lambda^2}$	A1		8
(:::)				
(iii)	[Note that $M_{Y}(t)$ is of the same functional form as $M_{X}(t)$ with $k + 1$ replaced by $nk + n$,			
	i.e. <i>k</i> replaced by <i>nk</i> + <i>n</i> −1. This must also be true of the pdf.]			
		B1	One mark for each factor of the	
	Pdf of Y is $\frac{\lambda^{nk+n}}{(nk+n-1)!} \times y^{nk+n-1} \times e^{-\lambda y}$	B1	expression. Mark for third factor	
	[for <i>y</i> > 0]	B1	shown here depends on at least one of the other two earned.	3
(iv)	$\lambda = 1, \ k = 2, \ n = 5,$ Exact P(Y > 10) = 0.9165			
	Use of N(15, 15)	M1	Mean. ft (ii).	
		M1	Variance. ft (ii).	

P(this > 10) = P(N(0, 1) > $\frac{10 - 15}{\sqrt{15}} = -1 \cdot 291$)	A1	C.a.o.	
= 0.9017 Reasonably good agreement – CLT working for only small <i>n</i> .	A1 E2	c.a.o. (E1, E1) [Or other sensible comments.]	6
			24

Q3				
(i)	$\overline{x} = 36.48$ $s = 9.6307$ $s^2 = 92.7507$ $\overline{y} = 45.5$ $s = 14.8129$ $s^2 = 219.4218$	B1	If all correct. [No marks for use of s_n which are 9.1365 and 14.1823 respectively.]	
	Assumptions: Normality of <u>both</u> populations equal variances $H_0: \mu_A = \mu_B$ $H_1: \mu_A \neq \mu_B$ Where μ_A, μ_B are the population means.	B1 B1 B1 B1	Do <u>NOT</u> accept $\overline{X} = \overline{Y}$ or similar.	
	Pooled $s^2 = \frac{9 \times 92.7507 + 11 \times 219.4218}{20}$ = $\frac{834.756 + 24136.64}{20} = 162.4198$ Test statistic is $\frac{36.48 - 45.5}{\sqrt{162.4198}}$ = $\frac{-9.02}{5.4568} = -1.653$	B1 M1	= (12.7444) ²	
	Refer to t_{20} . Double tailed 5% point is 2.086. Not significant. No evidence that population mean times differ.	A1 M1 A1 A1 A1	No ft from here if wrong. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic.	12
(ii)	Assumption: Normality of underlying population of <u>differences</u> . $H_0: \mu_D = 0$ $H_1: \mu_D > 0$ Where μ_D is the population mean of "before – after" differences.	B1 B1 B1	Do <u>NOT</u> accept $\overline{D} = 0$ or similar. The " <u>direction</u> " of <i>D</i> must be CLEAR. Allow $\mu_A = \mu_B$ etc.	
	Differences are 6.4, 4.4, 3.9, -1.0, 5.6, 8.8, -1.8, 12.1 $(\bar{x} = 4.8$ $s = 4.6393)$	M1	[A1 can be awarded here if NOT awarded in part (i)]. Use of s_n (=4.3396) is <u>NOT</u> acceptable,	
	Test statistic is $\frac{4.8 - 0}{4.6393 / \sqrt{8}}$ =2.92(64)	M1 A1	even in a denominator of $\frac{S_n}{\sqrt{n-1}}$	
	Refer to <i>t</i> ₇ . Single tailed 5% point is 1.895. Significant. Seems mean is lowered.	M1 A1 A1 A1	No ft from here if wrong. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic.	10
(iii)	The paired comparison in part (ii) eliminates the variability between workers.	E2	(E1, E1)	2
				24

Q4				
(i)	Latin square.	B1		
	Layout such as:			
	Locations 1 2 3 4 5 I A B C D E Surf II B C D E A -aces III C D E A B C D V D E A B C D	B1 B1	(letters = paints) Correct rows and columns. A correct arrangement of letters. SC. For a description instead of an example allow max 1 out of 2.	3
(ii)	$X_{ij} = \mu + \alpha_i + e_{ij}$	B1		
	μ = population grand mean for whole	B1 B1		
	experiment.			
	α_i = population mean amount by which the <i>i</i> th	B1		
	treatment differs from μ .	B1		
	e_{ij} are experimental errors ~ ind N(0, σ^2).	B1 B1 B1 B1	Allow "uncorrelated". Mean. Variance.	9
(iii)	Totals are: 322, 351, 307, 355, 291 (each from sample of size 5) Grand total: 1626			
	"Correction factor" CF = $\frac{1626^2}{25} = 105755.04$			
	Total SS = $106838 - CF = 1082.96$	M1		
	Between paints SS = $\frac{322^2}{5} + + \frac{291^2}{5} - CF$	M1	For correct methods for any two SS.	
	= 106368 – CF =612.96 Residual SS (by subtraction) = 1082.96 – 612.96	A1	If each calculated SS is correct.	
	= 470.00			
	Source of variationSSdfMSBetween paints612.964153.2	B1 B1	Degrees of freedom "between paints".	
	Residual 470.00 20 23.5	M1	Degrees of freedom "residual". MS column.	
	Total 1082.96 24	M1	Independent of previous M1.	
	MS ratio = $\frac{153.24}{23.5} = 6.52$	A1	Dep only on this M1.	

June 2006

Refer to F _{4, 20}	M1	No ft if wrong. But allow ft of wrong d.o.f. above.	
Upper 5% point is 2.87	A1	No ft if wrong.	
Significant.	A1	ft only c's test statistic and d.o.f.'s.	
Seems performances of paints are not all the same.	A1	ft only c's test statistic and d.o.f.'s.	12
			24

Mark Scheme 4771 June 2006

2.

2		
2	•	

•			
	(i)	M = 1	B1
		f(M) = -1	B1
		L = 1	B1
		M = 1.5	B1
		f(M) = 0.25	B1
		R = 1.5	B1
	(ii)	Solves equations (Allow "Finds root 2".)	B1
		- · · · · · · · · · · · · · · · · · · ·	
	(iii)	A termination condition	B1

6.

year 1: 00 - 09 failure, otherwise no failure M1 A1 (i) year 2: 00 - 04year 3: 00 - 01year 4: 00 – 19 A1 year 5: 00 – 19 year 6: 00 - 29(ii)(A)Run Run Run Run Run Run Run Run Run Run 1 2 3 4 5 6 7 8 9 10 $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ year Х х $\sqrt{}$ 1 $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ year $\sqrt{}$ 2 $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ year 3 year $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ х $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ Х 4 M1 ticks and crosses A1 run 1 A1 runs 2-4 A1 runs 5–7 B1 runs 8–10 (B) 0.6 B1 (iii) (A) if no failure then continue after year 3 – but using rules B1 B1 for yrs 1 to 3 (B) Run 1 2 3 4 5 6 8 9 10 7 year $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ х х $\sqrt{}$ 1 $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ year 2 $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ year 3 vear $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ х 4 M1 A1 runs 1–5 A1 runs 6–10 0.3 B1 (C) B1 (iv) more repetitions

Mark Scheme 4772 June 2006

1		
I	•	

(i)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	M1 4 lines A1 T and S
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1 and S A1 \sim T (twice) and \sim S A1 \Rightarrow A1 \wedge A1 \sim on LHS M1 A1 result
(ii)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1
	$\sim (\sim T \Rightarrow \sim S) \Leftrightarrow \sim (T \lor \sim S) \Leftrightarrow \sim T \land S$	M1 Boolean A1 applying result A1 correct negating
(iii)	Joanna will not try and will succeed	B1 not tryB1 andB1 succeed

(i)											
(1)		•	•	_	ı г						
	1	2	3	4		1	2	3 3	4	M1	sca Floyd
1	8	2	6	4	1	1	2		4	A1	distance
2	2	8	3	1	2	1	2	3	4	Al	route
3	6	3	8	1	3	1	2	3	4	111	Toute
4	4	1	1	8	4	1	2	3	4		
	1	2	3	4		1	2	3	4		
1	x	2	6	4	1	1	2	3	4	A1	
2	2	4	3	1	2	1	1	3	4	111	
3	6	3	12	1	3	1	2	1	4		
4	4	1	1	8	4	1	2	3	1		
	1	2	3	4	[1	2	3	4	A1	
1	4	2	5	3	1	2	2	2	2	111	
2	2	4	3	1	2	1	1	3	4		
3	5	3	6	1	3	2	2	2	4		
4	3	1	1	2	4	2	2	3	2		
	1	2	3	4	I F	1	2	3	4	A1	no change
1	4	2	5	3	1	2	2	2	2	111	no enange
2	2	4	3	1	2	1	1	3	4		
3	5	3	6	1	3	2	2	2	4		
4	3	1	1	2	4	2	2	3	2		
									<u> </u>	A1	circled element
	1	2	3	4	Г	1	2	3	4	A1 A1	rest
1	4	2	<u> </u>	4 3	1	2	2	2	4 2	111	1001
2	2	2	2	- 3 - 1	2	1	4	4	4		
3	4	2	2	1	3	4	4	4	4		
4	3	1	1	2	4	2	2	3	2	M1	A1
		L •	•	-		-				M1	
	4		(11	, .f .i: .	= 4)				
(ii)					3 of dist					B1	
	route	= 1, 2	, 4, 5 ((1 - r)	c3 - r2c	$r_{2} - r_{2}$	+03 01	route n	natrix)	M1	A1
()	1 0	1 7 1								B1	
(111)	1, 2,	, ,	A 1								
		4, 3, 4,	2, 1								
1	8									1	
	U										

2.

(i) M1 pay-offs (In £s) 990 .995 / A1 990) M1 chance nodes insure 0.005 990 A1 995 M1 decision node 0.995 1000 A1 do not 995 insure 0.005 0 (ii) Do not insure. **B**1 Pay no more than £5 for it. **B**1 **B**1 (iii) Yes $\left(\sqrt[3]{990} \times (0.995 + 0.005) \vee (0.995 \times \sqrt[3]{1000})\right)$ M1 A1 $\sqrt[3]{1000 - x} = 9.95$ giving $x = \pounds 14.93$ 0.995 /990 (iv) (In £s) 990 insure 0.005 990 995 0.995/1000 no do not 995 check insure 0.005 `0 M1 check/no check A1 990 0.999 ? M1 positive/negative 990 A1 insure 0.001 990 M1 insure/not insure 999 0.999/1000 A1 check positive do not 999 M1 go/no go insure 0.75 0.001 A1 <u>`</u>0 996.75 ,990 0.983 0.25 990) negative insure 0.017 990 990 0.983/1000 **B**1 do not 983 insure pay no more than 0.017 0 \pounds 1.75 for the check

3.

4. (i) a									1		•	B1	
			ality m								int nstraint	M1 A1	
			ality r									111	
,	That	would	l mode	l a "	pair	s of	glas	s eyes	" coi	nstrai	int.	B1	
· /	-	proble er any		n IP,	so t	the n	umb	er of e	eyes	used	will be	B1	
(iii) d	e.g.												
P		а	b		с	S	51	s2		s3	RHS		
1		-3	-5		-2		0	0		0	0		
0		0.5 2	1		<u>1</u> 1		1 0	0		0	11	M1	
0		2	1.5 2		2		0	0		0 1	24 30	A1	
1		-0.5	0		3		5	0		0	55	M1	pivot choice
0		0.5	1		1	-	1	0		0	11	A1	pivot
0		1.25 1	0). <u>5</u> 0		1.5 -2	1 0	_	0 1	7.5 8		
1		0	0	-	2.8	-	.4	0.4		0	58	1	nivet chains
0		0	1	1	.2	1	.6	-0.4		0	8	M1 A1	pivot choice pivot
0		1	0		0.4		1.2	0.8	_	0	6	111	pivot
ľ	Make	e 6 aar	dvarks	and	8 b	ears	givi	ng £58	8 pro	ofit.		B1	B1
	2 eye	s are l	eft ove	er.								B1	
(iv)													
Р	а	b	С		s 1	s 2	s 3	su 4	а	RH	S		
1	-3	-5	_		0	2	0	4 M	0	-21	M		
			(2+N	<i>I</i>)									
0	0.5		1		1	0	0	0	0	11		B1	new constraint
0	2	1.5 2	1		0 0	1 0	0 1	0 0	0 0	24 30		M1	objective
0	0	0	1		0	0	0	-1	1	2		A1	
or													
С	Ρ	а	b	С	s 1	s 2	s 3	su 4	а	R	HS		
1	0	0	0	1	0	0	0	-1	0		2		
0	1	-3	-5	–2	0	0	0	0	0		0		
0	0	0.5	1	1	1	0	0		0		1		
0	0 0	2	1.5 2	1 2	0	1	0	0	0		24 30		
0	0	0	0	1	0	0			1		2		
(\mathbf{v})	2~0.4	5 ± 2^{-1}	1 + 5~	1 — 1	11								
(v) $8 \times 0.5 + 2 \times 1 + 5 \times 1 = 11$ $8 \times 2 + 2 \times 1.5 + 5 \times 1 = 24$					B1								
			+ 5×2 =										
2	3×8 -	+ 5×2 -	+ 2×5 =	= 44	hu	t 3×	(6 +	5×6+	2×2	= 57	2	B1	
	•		olly ma						_^~	52	-	B1 B1	
			-				5						

Mark Scheme 4773 June 2006

Qu. 1

(i)	Variables ai = amount invested in A in year i, i = 1, 2, 3, 4, 5	M1 A1 a's
	bi = amount invested in B in year i, $i = 1, 2, 3$	A1 b's
	ci = amount invested in C in year i, $i = 3, 4, 5$	A1 c's
	• • • • • •	
	Maximise 1.15a5+1.55b3+1.20c5	B1
	st a1+b1 = 50000 a2+b2 = 1.15a1	B1 B1
	$a_2+b_2 = 1.15a_1$ $a_3+b_3+c_3 = 1.15a_2$	B1
	a4+c4 = 1.15a3+1.55b1+1.20c3	B1
	a5+c5 = 1.15a4+1.55b2+1.20c4	B1
(ii)	OBJECTIVE FUNCTION VALUE	
	1) 114264.0	
	VARIABLE VALUE REDUCED COST	
	A5 0.000000 0.050000	
	B3 0.000000 0.178000	M1
	C5 95220.000000 0.000000	A1
	A1 50000.00000 0.000000	
	B1 0.000000 0.053280	
	A2 57500.00000 0.00000 B2 0.00000 0.127200	
	A3 0.000000 0.072000	
	C3 66125.000000 0.000000	
	A4 0.000000 0.060000	
	C4 79350.000000 0.000000	
	Invest all in A in year 1. Put all into A in year 2	B1
	Thence all into C in years 3, 4 and 5.	D4
	Gives £114264 at the end of 5 years.	B1
(iii)	£1.59	M1 A1 (£1.57 to £1.61)
		A1

Qu. 2

(i)	See below – first two columns of s/sheet	M1 A1 A1
(ii)	$x^2 - x - 1 = 0$	M1
	$\mathbf{x} = \frac{1 \pm \sqrt{5}}{2}$	A1
	$\mathbf{x} = \mathbf{A} \left(\frac{1 + \sqrt{5}}{2} \right)^n + \mathbf{B} \left(\frac{1 - \sqrt{5}}{2} \right)^n$	B1
	A + B = 1 and $A\left(\frac{1+\sqrt{5}}{2}\right) + B\left(\frac{1-\sqrt{5}}{2}\right) = 1$	B1 B1
	giving $u_n = \frac{1}{\sqrt{5}} \frac{\sqrt{5}+1}{2} \left(\frac{1+\sqrt{5}}{2}\right)^n + \frac{1}{\sqrt{5}} \frac{\sqrt{5}-1}{2} \left(\frac{1-\sqrt{5}}{2}\right)^n$	M1 solving A1 A1
	$=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}$	B1
(iii)	=(1/SQRT(5))*(((1+SQRT(5))/2)^(A2+1)-((1- SQRT(5))/2)^(A2+1))	M1 A1
	plus printout	M1 A1
(iv)	See s/sheet below.	B1
	Converges to 1.61803	
	$\left(\frac{1+\sqrt{5}}{2}\right)$	M1 A1

n	F(n)	Formula	Ratios				
0	1	1		10	89	89	1.61818
1	1	1	1	11	144	144	1.61798
2	2	2	2	12	233	233	1.61806
3	3	3	1.5	13	377	377	1.61803
4	5	5 1	1.66667	14	610	610	1.61804
5	8	8	1.6	15	987	987	1.61803
6	13	13	1.625	16	1597	1597	1.61803
7	21	21 1	1.61538	17	2584	2584	1.61803
8	34	34 1	1.61905	18	4181	4181	1.61803
9	55	55 1	1.61765	19	6765	6765	1.61803

Qu. 3

(i)	Min 2W1S1+2	W1S2+W1S3+5W1S4+3	3W2S1+2W2S2	B1 M1	variables objective
	+2W2S3- 4	4W2S4+5W3S1+5W3S2	2+W3S3+2W3S	A1	
					w/house
		1S2+W1S3+W1S4<20 2S2+W2S3+W2S4<20		A1	availabilities
	-	3S2+W3S3+W3S4<20		M1	shop
	-	2S1+W3S1>10		A1	-
	-	2S2+W3S2>15 2S3+W3S3>12			
		2S4+W3S4>20			
(ii)					
	OBJECTIVE F	JNCTION VALUE			
	1) 104.0000				
	VARIABLE V		ЭТ		
		0.000000			
	W1S2 0.00 W1S3 12.00	00001.00000000000.000000			
		3.00000			
		0.000000 0.0000		5.4	
	W2S2 15.00 W2S3 0.00	0.000000 0.000000000000000000000000000		B1	
		0.0000000000000000000000000000000000000			
		3.00000			
		0000 4.000000			
	W3S3 0.00 W3S4 20.00	0.000000 0.00000 0.000000 0.0000			
	VV334 20.00	0.00000		M1	
				A1	
		vith 8 from warehouse 1	and 2 from 2		
		rom warehouse 2 rom warehouse 1		B1	
		rom warehouse 3		- •	
	Cost = £104				

Qu. 3 (cont)

(iii)	Min	2W1S1+2W1S2+W1S3+5W1S4+3W2S1+2W2S2	B1	new variables
	4	+2W2S3+4W2S4+5W3S1+5W3S2+W3S3+2W3S	B1	new objective
	st	+4S1C1+6S2C1+3S3C1+2S4C1 +S1C2+4S2C2+2S3C2+5S4C2 W1S1+W1S2+W1S3+W1S4<20 W2S1+W2S2+W2S3+W2S4<20	B1	supply constraints
		W3S1+W3S2+W3S3+W3S4<20 S1C1+S2C1+S3C1+S4C1=30 S1C2+S2C2+S3C2+S4C2=27 S1C1+S1C2-W1S1-W2S1-W3S1=0	B1	receipt constraints
		S2C1+S2C2-W1S2-W2S2-W3S2=0 S3C1+S3C2-W1S3-W2S3-W3S3=0 S4C1+S4C2-W1S4-W2S4-W3S4=0	B1	in/out constraints
	A so	lution is:		
	W2 1	to S3 20 to S3 17 to S4 20	B1	
	S4 to	b C1 10 b C1 20 b C2 27	B1	

4773

Qu.	4
-----	---

(i)	0.22, 0.2325,	0.5475				M1	A1 A1 A1
(ii)	e.g.		wet(1)sl	howery(2)	dry(3)		
	look-up tables	wet	0	0	0		
		showery	0.2	0.4	0.15		arababilit <i>i</i>
		dry	0.5	0.55	0.4	M1 A1	probability distributions
	simulation run	day	0	1	2	M1	0
		rand		0.14227	0.43734 🖣	A1	by weather
		weather	dry	wet	dry	M1	sampling from
	=IF(B8="wet",LO showery",	OKUP(C7,	\$B\$2:\$B\$	4,\$A\$2:\$A	\$4),(IF(B8="	A1	distribution
		OOKUP(C7	,\$C\$2:\$C	\$4,\$A\$2:\$	A\$4),	B1	two days handled
(iii)	repeating and	tabulating					
	calculating exp	perimental	probabili	ties		B1	
(1).	20 transitions					M1	A1
(iv)	20 transitions handling \$s	tab latas				B1	
	repeating and experimental p		2, 0.24 and	B1 B1			
	0.54)					B1	

Mark Scheme 4776 June 2006 **Mark Scheme**

June 2006

1 Sketch, with explanation. [M1A1E1] $f'(x) = 1/(2\sqrt{x})$ [M1A1] 0.01581 hence mpe is approx 0.05 / $(2\sqrt{2.5})$ = (0.016) [M1A1] 1 0.01597 **0.01565** (or 0.05 / 2√2.45 = 2 or 0.05 / 2√2.55 = 6) [TOTAL 7] 2 0 1 х 1 -3 change of sign so root [M1A1] f(x)b а f(a) f(b) х f(x) -0.24902 0 1 -3 0.25 [M1A1] 1 0.20015 0 0.25 1 -0.24902 -0.00046 6 [A1] 0.200 to 3 dp [A1] 0.1995 0.2005 Х 0.00281 f(x) 6 -0.00218 sign change so root is correct to 3 dp [M1A1] [TOTAL 8] 3 h Т S Μ 3.46410 3.65028 3.52616 2 2 values 2 2 3.55719 3.52600 3.51041 1 1 2 4 [A1A1A1A1A1] evidence of efficient formulae for T and S [M1M1] 3.526(0) appears to be justified [A1] [TOTAL 8] h 0 0.1 0.01 0.001 4 f(2 + h)1.4427 1.3478 1.4324 1.4416 est f -0.949 -1.03 -1.1 [M1A1A1A1] '(2) Clear loss of significant figures as h is reduced [E1] Impossible to know which estimate is most accurate [E1] [TOTAL 6] $\Delta^2 g$ g(x)Х Δg 5 1 3.2 9.6 6 table 2 second differences nearly 12.8 15.6 6.2 constant [M1A1] 3 28.4 5.9 so approximately quadratic 21.8 [E1] 4 50.2 27.7 6 5 77.9 33.7 6 111.6

	g(1.5) = 3.2	∠ + 0.5^9	0-)^2.0 + 0.5	.5)"0/2 =	7.25			[M1A1A1A1]	
								[TOTAL 7]	
6 (i)	x 1	x 4.6 4.7 <i>NB: 3 pi /2 =4.71 (not</i> 12.2998							
	x ² -tan(x)	3	-58.6228	change of	sign, so root			[M1A1]	
	a 4.6 4.65	b 4.7 4.7	sign f(a) 1 1	sign f(b) -1 -1	x 4.65 4.675	sign f(x) 1 -1	mpe 0.05 0.025	[M1A1 [M1A1]	
	4.65	4.675	1	-1	4.6625 root is 4.66 0.0125	25 with mpe	0.012 5	[M1A1] [A1]	
(ii)		7.7 52.8471 3	7.9 84.1251					[subtotal 9	
	x ² -tan(x) Sketch showing So x ² curve is a	of root	[M1A1] [G2] [E1] [subtotal 5]						
(iii)	best possible e	[A1]							
	x x ² -tan(x) 5	7.75 0.4801	7.85 -189.529	change of	sign so 7.8 is	s correct to ⁻	1 dp	[M1] [A1E1] [subtotal 4]	
								[TOTAL 18]	
7 (i)	D = (36 - 8) / (4 I = 0.5 (-3 + 8) ·	,						[M1A1] [M1A1] [subtotal 4]	
(ii)	q(x) = -3 (x-2)(x) = - (x ² -6x+8) = x ² + 8x - 1	[M1A1A1A1] [A1] [A1]							
	q'(x) = 2x + 8 so	o D = 12						[M1A1]	
	$\int q(x) dx = x^3/3$	+ 4x ² - 1	2x so I = 45					[M1A1A1] [subtotal 11]	
(iii)	Large relative d Small relative d To be expected	[E1] [E1] [E1] [subtotal 3]							
								[TOTAL 18]	

Mark Scheme

June 2006

4776

Mark Scheme 4777 June 2006 Mark Scheme

June 2006

	Numeric	al Comput	ation (4777)	June 2006				Mark sche	eme	
			x ₁ - α) / (x ₀ - α) to required res	ult.	to eliminate k				[M1A1A1] [A1A1]	
ii)	х		1	1.5					[subtotal 5	
.,	exp(x) -	tan(x)	1.160874	-9.61973	change of	sign (and no	o asymptote	e)	[M1A1]	
	Example	es of diverge	ence:							
	r .	0	1	2	3	4	5	6		
	Xr	1	0.443023	-0.74554 0.67982	#NUM!	#NUM!	#NUM!	#NUM!		
	Xr	1.25	1.101797	1	-0.21274	#NUM!	#NUM!	#NUM!		
	Xr	1.5	2.646275	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	[M1A1A1]	
	X _r	1.25	1.101797	0.67982 1	α:	1.330227			[M 1A1]	
		4 000007	4 405400	1.78895		4 040000				
	X _r	1.330227	1.405193	9	α:	1.312029 1.306628			[M1A1]	
	X _r	1.312029	1.329149	1.40054 1.31106	α:	1.300020				
	Xr	1.306628	1.307521	9	α:	1.306328				
	x _r	1.306328	1.30633	1.30634 1.30632	α:	1.306327				
	x _r	1.306327	1.306327	7	α:	1.306328 1.30633 to	5 dp		[M1] [A1]	
									[subtotal 11	
ii)	x exp(-x)			3.2 -0.01771	change of sign				[M 1A1]	
	Example	es of diverge	ence:							
	r	0	1	2	3	4	5	6		
	X _r	3.142	7.805847	-3.03297	2.21594 3	#NUM!	#NUM!	#NUM!		
	X _r	3.2	2.839176	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	[M1A1]	
	Ea									
	Eg: x _r	3.18	3.259015	2.13737	α:	3.1852				
	X _r X _r	3.1852	3.131898	#NUM!	α:	#NUM!				
	X _r	#NUM!	#NUM!	#NUM!	α:	#NUM!				
	X _r	#NUM!	#NUM!	#NUM!	α:	#NUM!			[M1A1]	
	but:									
	Xr	3.184	3.159834	4.00395 6	α:	3.183327				
	x _r	3.183327	3.17584	3.37375 3	α:	3.183054				
	X r	3.183054	3.182409	3.19812 2	α:	3.183029				
		3.183029	3.183024	3.18313 7		3.183029				
	Xr		3 1 8 31 7/1		α:					

[subtotal 8]

4777

[E1E1] [subtotal 2]	(as ordinary differences nlike Lagrange).						2 (i)
					f	х	
					-3	1	
					-6.5	2	
					-8.03	2.5	
					-6.66	3.5	
					-2.25	4	
					5.65	4.5	
			0.29333				
table	-0.01911	1.064	3	-3.5	-3	1	i)
[844444		1.00666	2.95333	2.06	6 5	2	
[M1A1A1]		7	3 4.96666	-3.06	-6.5	2	
			4.00000 7	1.37	-8.03	2.5	
				8.82	-6.66	3.5	
estimates [M1A1A1A1A1]					-2.25	4	
	-4.54778	-4.55733	4 00000				
	-4.34770	-4.33733	-4.82333	-4.75	-3	1.5	
J IE1E11	quartic	cubic	-4.82333 quadratic	-4.75 linear	-3	1.5	
ا [E1E1] [subtotal 10]	quartic	cubic ould be -4.5 1.00666 7 1.00666	quadratic uncertain: c 4.96666 7 3.45666	linear n data), 1st dp 1.37	reliable (fron -6.66	2nd dp un 3.5	iii)
[subtotal 10]	quartic or -4.6	cubic buld be -4.5 1.00666 7	quadratic uncertain: c 4.96666 7 3.45666 7	linear n data), 1st dp 1.37 3.853333	reliable (fron -6.66 -8.03	2nd dp un 3.5 2.5	iii)
[subtotal 10] rearrange	quartic or -4.6	cubic ould be -4.5 1.00666 7 1.00666	quadratic uncertain: c 4.96666 7 3.45666	linear n data), 1st dp 1.37 3.853333 2.125	reliable (fron -6.66 -8.03 -2.25	2nd dp un 3.5 2.5 4	iii)
[subtotal 10] rearrange data and	quartic or -4.6	cubic ould be -4.5 1.00666 7 1.00666	quadratic uncertain: c 4.96666 7 3.45666 7	linear n data), 1st dp 1.37 3.853333	-6.66 -8.03 -2.25 -6.5	2nd dp un 3.5 2.5 4 2	iii)
[subtotal 10] rearrange data and re-run	quartic or -4.6 -4.4E-16	cubic buld be -4.5 1.00666 7 1.00666 7	quadratic uncertain: c 4.96666 7 3.45666 7 5.47	linear n data), 1st dp 1.37 3.853333 2.125 4.86	reliable (fron -6.66 -8.03 -2.25 -6.5 5.65	2nd dp un 3.5 2.5 4	iii)
[subtotal 10] rearrange data and re-run	quartic or -4.6	cubic ould be -4.5 1.00666 7 1.00666	quadratic uncertain: c 4.96666 7 3.45666 7	linear n data), 1st dp 1.37 3.853333 2.125	-6.66 -8.03 -2.25 -6.5	2nd dp un 3.5 2.5 4 2 4.5	iii)
[subtotal 10] rearrange data and re-run [M1A1]	quartic or -4.6 -4.4E-16 -8.335	cubic buld be -4.5 1.00666 7 1.00666 7 - 8.335 cubic	quadratic uncertain: c 4.96666 7 3.45666 7 5.47 -8.58667 quadratic	linear n data), 1st dp 1.37 3.853333 2.125 4.86 -7.345	reliable (fron -6.66 -8.03 -2.25 -6.5 5.65 -6.66	2nd dp un 3.5 2.5 4 2 4.5 3	iii)
[subtotal 10] rearrange data and re-run [M1A1]	quartic or -4.6 -4.4E-16 -8.335 quartic	cubic buld be -4.5 1.00666 7 1.00666 7 -8.335 cubic ble: -8.3 1.00666	quadratic uncertain: c 4.96666 7 3.45666 7 5.47 -8.58667 quadratic seems relia	linear n data), 1st dp 1.37 3.853333 2.125 4.86 -7.345 linear n data), 1st dp	reliable (fron -6.66 -8.03 -2.25 -6.5 <u>5.65</u> -6.66 reliable (fron	2nd dp uni 3.5 2.5 4 2 4.5 3 2nd dp uni	iii)
[subtotal 10] rearrange data and re-run [M1A1]	quartic or -4.6 -4.4E-16 -8.335	cubic buld be -4.5 1.00666 7 1.00666 7 -8.335 cubic ble: -8.3 1.00666 7	quadratic uncertain: c 4.96666 7 3.45666 7 5.47 -8.58667 quadratic seems relia 6.98	linear n data), 1st dp 1.37 3.853333 2.125 4.86 -7.345 linear	reliable (fron -6.66 -8.03 -2.25 -6.5 5.65 -6.66	2nd dp un 3.5 2.5 4 2 4.5 3	iii)
[subtotal 10] rearrange data and re-run [M1A1]	quartic or -4.6 -4.4E-16 -8.335 quartic	cubic buld be -4.5 1.00666 7 1.00666 7 -8.335 cubic ble: -8.3 1.00666	quadratic uncertain: c 4.96666 7 3.45666 7 5.47 -8.58667 quadratic seems relia 6.98 4.96666 7	linear n data), 1st dp 1.37 3.853333 2.125 4.86 -7.345 linear n data), 1st dp	reliable (fron -6.66 -8.03 -2.25 -6.5 <u>5.65</u> -6.66 reliable (fron	2nd dp uni 3.5 2.5 4 2 4.5 3 2nd dp uni	iii)
[subtotal 10] rearrange data and re-run [M1A1] [E1]	quartic or -4.6 -4.4E-16 -8.335 quartic	cubic buld be -4.5 1.00666 7 1.00666 7 - 8.335 cubic ble: -8.3 1.00666 7 1.00666	quadratic uncertain: c 4.96666 7 3.45666 7 5.47 -8.58667 quadratic seems relia 6.98 4.96666	linear n data), 1st dp 1.37 3.853333 2.125 4.86 -7.345 linear n data), 1st dp 15.8	reliable (fron -6.66 -8.03 -2.25 -6.5 5.65 -6.66 reliable (fron 5.65	2nd dp uni 3.5 2.5 4 2 4.5 3 2nd dp uni 4.5	iii)
	quartic or -4.6 -4.4E-16 -8.335 quartic	cubic buld be -4.5 1.00666 7 1.00666 7 - 8.335 cubic ble: -8.3 1.00666 7 1.00666	quadratic uncertain: c 4.96666 7 3.45666 7 5.47 -8.58667 quadratic seems relia 6.98 4.96666 7 2.95333	linear n data), 1st dp 1.37 3.853333 2.125 4.86 -7.345 linear n data), 1st dp 15.8 8.82	reliable (fron -6.66 -8.03 -2.25 -6.5 <u>5.65</u> -6.66 reliable (fron 5.65 -2.25	2nd dp uni 3.5 2.5 4 2 4.5 3 2nd dp uni 4.5 4	(111)
[subtotal 10] rearrange data and re-run [M1A1] [E1] rearrange	quartic or -4.6 -4.4E-16 -8.335 quartic	cubic buld be -4.5 1.00666 7 1.00666 7 - 8.335 cubic ble: -8.3 1.00666 7 1.00666	quadratic uncertain: c 4.96666 7 3.45666 7 5.47 -8.58667 quadratic seems relia 6.98 4.96666 7 2.95333	linear n data), 1st dp 1.37 3.853333 2.125 4.86 -7.345 linear n data), 1st dp 15.8 8.82 1.37	reliable (fron -6.66 -8.03 -2.25 -6.5 <u>5.65</u> -6.66 reliable (fron 5.65 -2.25 -6.66	2nd dp uni 3.5 2.5 4 2 4.5 3 2nd dp uni 4.5 4 3.5	iii)
[subtotal 10] rearrange data and re-run [M1A1] [E1] rearrange data and	quartic or -4.6 -4.4E-16 -8.335 quartic	cubic buld be -4.5 1.00666 7 1.00666 7 - 8.335 cubic ble: -8.3 1.00666 7 1.00666	quadratic uncertain: c 4.96666 7 3.45666 7 5.47 -8.58667 quadratic seems relia 6.98 4.96666 7 2.95333	linear n data), 1st dp 1.37 3.853333 2.125 4.86 -7.345 linear n data), 1st dp 15.8 8.82 1.37	reliable (fron -6.66 -8.03 -2.25 -6.5 <u>5.65</u> -6.66 reliable (fron 5.65 -2.25 -6.66 -8.03	2nd dp uni 3.5 2.5 4 2 4.5 3 2nd dp uni 4.5 4 3.5 2.5	(iii)

June 2006

[E1] [subtotal 6]

2nd dp unreliable (from data), 1st dp seems reliable: 17.8

		1.00666					
	-4.4E-16	7	6.98	15.8	-2.25	4	(iv)
		1.00666					
		7	5.47	12.31	5.65	4.5	
			2.95333				
rearrange			3	1.37	-6.66	3.5	
data and				-3.06	-8.03	2.5	
re-rur					-6.5	2	
[M1A1]	-0.13786	-0.13786	-0.10171	0.278	-2.25	4.16	
		0.00658	0.04442				
[M1A1]	0.006584	4	2	0.436	-2.25	4.17	
_			0.30757				
	-0.06582	-0.06582	1	1.52615	5.65	4.165	
		0.07936	0.11801				
[A1]	0.079366	6	2	0.515	-2.25	4.175	
	quartic	cubic	quadratic	linear			
[A1]	-		-	dp	t is 4.17 to 2	Hence roo	
[subtotal 6							

[TOTAL 24]

3 (i)

)	Substitu	ite central diffe	erence formula	e for y' and	y" to obtain given result (*)	[M1A1]
	Central	difference form	nula for y' at x	=0 to show y	$y_1 = y_{-1}$	[M1A1]
	Use of (*) to show $y_1 =$	= (2h ² - (1 + 2h)y ₋₁)/(1 - 2h))	[M1A1]
		$v_1 = h^2$ as given		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		[M1]
	h	x	У	k		
	0.1	0	0	1		
		0.1	0.01			
		0.2	0.047618			[M1A1]
		0.3	0.124458			
		0.4	0.25785			
		0.5	0.473034			
		0.6	0.805379			
		0.7	1.301401			
		0.8	2.015508			
		0.9	2.996344			
		1	4.253311	as require	d	[A1]
	h	β	diffs	ratio of	extrapolated	
	0.1	4.253311		diffs	value	
	0.05	4.190790	-0.06252			re-runs
				0.24040		
	0.025	4.175759	-0.01503	6		[A1A1A1]
	0.012			0.24760	4.17079	
	5	4.172037	-0.00372	4	7	
	ratio of o	differences ap	proximately 0.2	25 so secon		[M1A1E1]
					4.17 to 2 dp is secure	[A1]
						[subtotal 17]
'ii)		0				
11)	k	ß	1		20	1

mods [M1A1]

June 2006	Mark Scheme		4777
values [A1A1A1]		7.4 6	-2 -1
graph [G2]		4.9 4.2 3.6	0 1 2
		3.2 2.9 2.6	3 4 5
[subtotal 7]		2.0	5

[TOTAL 24]

4 (i)	to sum	of moduli of	e: modulus of dia other elements c ce exists (with at	on the same	row.				[E1]
	-	s-Seidel is a	•		loquality of				[E1]
	G-S usi	ng the given	non-dominant d	iagonal:		x O	y 0	z 0	[M1]
						0.2	0.02857	-0.01587	[M1A1]
						0.192381	0.04199 5	-0.0191	
						0.186262	0.04733 5	-0.01866	
						 0.180325 0.180327 0.180328	 0.04918 0.04918 0.04918	 -0.01639 -0.01639 -0.01639	
						0.180328	0.04918	-0.01639	[M1A1] [subtotal 7]
(ii)	a=3	x	у	z	a=4	x	у	z	
		0 0.3333333 0.447619 0.54449	0 -0.06667 -0.12 -0.16267	0 -0.04762 -0.09116 -0.12987		0 0.5 0.9375 1.583333	0 -0.25 -0.64583 -1.25694	0 -0.04167 -0.07639 -0.10532	mods [M1A1]
		1	 -0.33333	 -0.33333		2.543403 3.976273	-2.18808 -3.59684	-0.12944 -0.14953	a=3 [M1A1]
		1 1	-0.33333 -0.33333	-0.33333 -0.33333		6.119551 9.329443 14.1401 21.35259	-5.72002 -8.91317 -13.7099 -20.9107	-0.16628 -0.18023 -0.19186 -0.20155	a=4 [M1A1]
						 2.6E+18 3.91E+1	 -2.6E+18	 0	
					132	8	-3.9E+18	0	

	5.86E+1 8	-5.9E+18	0	
G-S scheme converges for a=3.3 diverges for a=3.4 (diverges for a=3.35)				[M1A1] [M1A1]
So a=3.3 (to 1dp) is required value				[A1] [subtotal 11]

(iii)	Gauss-Jacobi	x	у	z	
. ,	a=0	0	Ō	0	
		0.166667	0.125	0.1	[M1A1]
		0.054167	-0.00833	-0.04583	
			0.12083	0.07708	
		0.19375	3	3	
		0.067708	-0.01042	-0.05729	
			0.11979	0.07135	
		0.200521	2	4	[M1A1]
		0 000770	0.11944	0.06944	
		0.202778	4	4	
		0.072222	-0.01111	-0.06111	
			0.11944	0.06944	
		0.202778	4	4	
		0.072222	-0.01111	-0.06111	
			0.11944	0.06944	
		0.202778	4	4	
		0.072222	-0.01111	-0.06111	[A1]
	Diverges: diagonal	dominance not st	rict.		[E1]
					[subtotal 6]
					[TOTAL 24]

7895-8,3895-3898 AS and A2 MEI Mathematics June 2006 Assessment Series

Unit Threshold Marks

Unit		Maximum Mark	Α	В	С	D	E	U
All units	UMS	100	80	70	60	50	40	0
4751	Raw	72	53	45	37	30	23	0
4752	Raw	72	55	48	41	34	27	0
4753	Raw	72	51	44	38	31	24	0
4753/02	Raw	18	14	12	10	9	8	0
4754	Raw	90	57	49	41	33	26	0
4755	Raw	72	58	50	43	36	29	0
4756	Raw	72	52	45	38	31	25	0
4757	Raw	72	51	44	38	32	26	0
4758	Raw	72	62	54	46	37	28	0
4758/02	Raw	18	14	12	10	9	8	0
4761	Raw	72	55	47	40	33	26	0
4762	Raw	72	43	37	31	25	20	0
4763	Raw	72	60	52	44	36	29	0
4764	Raw	72	46	40	35	30	25	0
4766	Raw	72	54	47	40	33	27	0
4767	Raw	72	58	51	44	37	30	0
4768	Raw	72	59	51	43	36	29	0
4769	Raw	72	52	45	38	32	26	0
4771	Raw	72	53	46	39	33	27	0
4772	Raw	72	57	49	41	34	27	0
4773	Raw	72	48	42	36	30	25	0
4776	Raw	72	51	44	37	30	23	0
4776/02	Raw	18	13	11	9	8	7	0
4777	Raw	72	55	47	39	32	25	0

Specification Aggregation Results

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

	Maximum Mark	Α	В	С	D	E	U
7895-7898	600	480	420	360	300	240	0
3895-3898	300	240	210	180	150	120	0

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates	
7895	40.4	61.2	77.2	89.2	96.9	100	9024	
7896	60.2	77.5	88.7	95.6	99.0	100	1237	
7897	70.5	90.9	90.9	93.2	95.5	100	44	
7898	100	100	100	100	100	100	5	
3895	27.7	43.6	57.9	71.2	82.0	100	11502	
3896	50.9	68.6	82.4	90.0	95.6	100	1247	
3897	80.7	86.8	94.0	98.8	98.8	100	83	
3898	58.8	64.7	76.5	88.2	94.1	100	17	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Information Bureau

(General Qualifications)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: helpdesk@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

