Mathematics (MEI)

Advanced GCE A2 7895-8

Mark Schemes for the Units

June 2006

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2006
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annersley
NOTTINGHAM
NG15 0DL
Telephone: 08708706622
Facsimile: 08708706621
E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Further Mathematics (MEI) (7896)
Advanced GCE Further Mathematics (Additional) (MEI) (7897)
Advanced GCE Mathematics (MEI) (7895)
Advanced GCE Pure Mathematics (MEI) (7898)
Advanced Subsidiary GCE Further Mathematics (MEI) (3896)
Advanced Subsidiary GCE Further Mathematics (Additional) (MEI) (3897)
Advanced Subsidiary GCE Mathematics (MEI) (3895)
Advanced Subsidiary GCE Pure Mathematics (MEI) (3898)

MARK SCHEME ON THE UNITS

Unit	Content	Page
4751	Introduction to Advanced Mathematics	1
4752	Concepts for Advanced Mathematics	5
4753	Methods for Advanced Mathematics	9
4754	Applications of Advanced Mathematics	15
4755	Further Concepts for Advanced Mathematics	21
4756	Further Methods for Advanced Mathematics	27
4757	Further Applications of Advanced Mathematics	35
4758	Differential Equations	47
4761	Mechanics 1	53
4762	Mechanics 2	59
4763	Mechanics 3	65
4764	Mechanics 4	71
4766	Statistics 1	75
4767	Statistics 2	81
4768	Statistics 3	89
4769	Statistics 4	97
4771	Decision Mathematics 1	105
4772	Decision Mathematics 2	111
4773	Decision Mathematics Computation	117
4776	Numerical Methods	123
4777	Numerical Computation	127
*	Grade Thresholds	135

Mark Scheme 4751 June 2006

Section A

1	$[r]=[\pm] \sqrt{\frac{3 V}{\pi h}}$ o.e. 'double-decker'	3	2 for $r^{2}=\frac{3 V}{\pi h}$ or $r=\sqrt{\frac{V}{\frac{1}{3} \pi h}}$ o.e. or M1 for correct constructive first step or for $r=\sqrt{k} \mathrm{ft}$ their $r^{2}=k$	3
2	$a=1 / 4$	2	M1 for subst of -2 or for $-8+4 a+7=0$ o.e. obtained eg by division by $(x+2)$	2
3	$3 x+2 y=26$ or $y=-1.5 x+13$ isw	3	M1 for $3 x+2 y=c$ or $y=-1.5 x+c$ M1 for subst $(2,10)$ to find c or for or for $y-10=$ their gradient $\times(x-2)$	3
4	(i) $\mathrm{P} \Leftarrow \mathrm{Q}$ (ii) $P \Leftrightarrow Q$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	condone omission of P and Q	2
5	$x+3(3 x+1)=6 \text { o.e. }$ $10 x=3$ or $10 y=19$ o.e. $(0.3,1.9)$ or $x=0.3$ and $y=1.9$ o.e.	M1 A1 A1	for subst or for rearrangement and multn to make one pair of coefficients the same or for both eqns in form ' $y=$ ' (condone one error) graphical soln: (must be on graph paper) M1 for each line, A1 for $(0.3,1.9)$ o.e cao; allow B3 for ($0.3,1.9$) o.e.	3
6	$\begin{aligned} & -3<x<1 \\ & {[\text { condone } x<1, x>-3 \text {] }} \end{aligned}$	4	B3 for -3 and 1 or M1 for $x^{2}+2 x-3[<0]$ or $(x+1)^{2}<1=4$ and M1 for $(x+3)(x-1)$ or $x=(-2 \pm 4) / 2$ or for $(x+1)$ and ± 2 on opp. sides of eqn or inequality; if 0 , then SC1 for one of $x<1, x>-3$	4
7	(i) $28 \sqrt{6}$ (ii) $49-12 \sqrt{5}$ isw	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	1 for $30 \sqrt{6}$ or $2 \sqrt{6}$ or $2 \sqrt{ } 2 \sqrt{ } 3$ or $28 \sqrt{ } 2 \sqrt{ } 3$ 2 for 49 and 1 for $-12 \sqrt{ } 5$ or M1 for 3 correct terms from $4-6 \sqrt{ } 5-6 \sqrt{ } 5+45$	5
8	$\begin{aligned} & 20 \\ & -160 \text { or } \mathrm{ft} \text { for }-8 \times \text { their } 20 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	0 for just 20 seen in second part; M1 for $6!/(3!3!)$ or better condone $-160 x^{3}$; M1 for $[-] 2^{3} \times[$ their 20 seen or for [their] $20 \times(-2 x)^{3}$; allow B1 for 160	4
9	(i) $4 / 27$ (ii) $3 a^{10} b^{8} c^{-2}$ or $\frac{3 a^{10} b^{8}}{c^{2}}$	2 3	1 for 4 or 27 2 for 3 'elements' correct, 1 for 2 elements correct, -1 for any adding of elements; mark final answer; condone correct but unnecessary brackets	5
10	$\begin{aligned} & x^{2}+9 x^{2}=25 \\ & 10 x^{2}=25 \\ & \\ & x= \pm(\sqrt{ } 10) / 2 \text { or. } \pm \sqrt{ }(5 / 2) \text { or } \pm 5 / \sqrt{ } 10 \text { oe } \\ & y=[\pm] 3 \sqrt{ }(5 / 2) \text { o.e. eg } y=[\pm] \sqrt{ } 22.5 \end{aligned}$	M1 M1 A2 B1	for subst for x or y attempted or $x^{2}=2.5$ o.e.; condone one error from start [allow $10 x^{2}-25=0+$ correct substn in correct formula] allow $\pm \sqrt{ } 2.5$; A 1 for one value ft $3 \times$ their x value(s) if irrational; condone not written as coords.	5

Section B

\begin{tabular}{|c|c|c|c|c|c|}
\hline 11 \& i
ii

iii \& \begin{tabular}{l}
$$
\begin{aligned}
& \text { grad } \mathrm{AB}=8 / 4 \text { or } 2 \text { or } y=2 x-10 \\
& \text { grad } \mathrm{BC}=1 /-2 \text { or }-1 / 2 \text { or } \\
& y=-1 / 2 x+2.5 \\
& \text { product of grads }=-1 \text { [so perp] } \\
& \text { (allow seen or used) } \\
& \text { midpt } \mathrm{E} \text { of } \mathrm{AC}=(6,4.5) \\
& \mathrm{AC}^{2}=(9-3)^{2}+(8-1)^{2} \text { or } 85 \\
& \text { rad }=1 / 2 \sqrt{ } 85 \text { o.e. } \\
& (x-6)^{2}+(y-4.5)^{2}=85 / 4 \text { o.e. } \\
& (5-6)^{2}+(0-4.5)^{2}=1+81 / 4[= \\
& 85 / 4] \\
& \overrightarrow{B E}=\overrightarrow{E D}=\binom{1}{4.5}
\end{aligned}
$$

D has coords $(6+1,4.5+4.5) \mathrm{ft}$ or
$$
\begin{aligned}
& (5+2,0+9) \\
& =(7,9)
\end{aligned}
$$

 \&

1

1

1

1

M1

A1

B2

1

M1

M1

A1

 \&

or M1 for $\mathrm{AB}^{2}=4^{2}+8^{2}$ or 80 and $\mathrm{BC}^{2}=2^{2}+1^{2}$ or 5 and $\mathrm{AC}^{2}=6^{2}+7^{2}$ or 85; M1 for $A C^{2}=A B^{2}+B C^{2}$ and 1 for [Pythag.] true so $A B$ perp to $B C$; if 0 , allow G 1 for graph of $\mathrm{A}, \mathrm{B}, \mathrm{C}$

allow seen in (i) only if used in (ii); or $\mathrm{AE}^{2}=(9-\text { their } 6)^{2}+(8-\text { their } 4.5)^{2}$ or rad. ${ }^{2}=85 / 4$ o.e. e.g. in circle eqn M1 for $(x-a)^{2}+(y-b)^{2}=r^{2}$ soi or for lhs correct some working shown; or 'angle in semicircle [$\left.=90^{\circ}\right]^{\prime}$

o.e. ft their centre; or for $\overrightarrow{B C}=\binom{-2}{1}$

or (9-2, $8+1$); condone mixtures of vectors and coords. throughout part iii allow B3 for $(7,9)$
\end{tabular} \& 3

6
6
3

\hline 12 \& ii
iii
iv

v \& \begin{tabular}{l}
$$
\begin{aligned}
& f(-2) \text { used } \\
& -8+36-40+12=0
\end{aligned}
$$

divn attempted as far as $x^{2}+3 x$
$$
x^{2}+3 x+2 \text { or }(x+2)(x+1)
$$
$$
(x+2)(x+6)(x+1)
$$

sketch of cubic the right way up through 12 marked on y axis intercepts $-6,-2,-1$ on x axis
$$
\begin{aligned}
& {[x]\left(x^{2}+9 x+20\right)} \\
& {[x](x+4)(x+5)} \\
& x=0,-4,-5
\end{aligned}
$$

 \&

M1

A1

M1

A1

2

G1

G1

G1

M1

M1

A1

 \&

or M1 for division by $(x+2)$ attempted as far as $x^{3}+2 x^{2}$ then A 1 for $x^{2}+7 x+$ 6 with no remainder or inspection with $b=3$ or $c=2$ found; B2 for correct answer allow seen earlier; M1 for $(x+2)(x+1)$ with 2 turning pts; no 3rd tp curve must extend to $x>0$ condone no graph for $x<-6$ or other partial factorisation

or B1 for each root found e.g. using factor theorem
\end{tabular} \& 2

2
2
3

\hline 13 \& ii

iii

iv \& | $\begin{aligned} & y=2 x+3 \text { drawn on graph } \\ & x=0.2 \text { to } 0.4 \text { and }-1.7 \text { to }-1.9 \\ & 1=2 x^{2}+3 x \\ & 2 x^{2}+3 x-1[=0] \end{aligned}$ |
| :--- |
| attempt at formula or completing square $x=\frac{-3 \pm \sqrt{17}}{4}$ |
| branch through $(1,3)$, branch through ($-1,1$), approaching $y=2$ from below -1 and $1 / 2$ or ft intersection of their curve and line [tolerance 1 mm] | \& M1

A2
M1
M1

M1

A2
1
1
1

2 \& | 1 each; condone coords; must have line drawn for multiplying by x correctly for correctly rearranging to zero (may be earned first) or suitable step re completing square if they go on ft , but no ft for factorising |
| :--- |
| A1 for one soln and approaching $y=2$ from above and extending below x axis 1 each; may be found algebraically; ignore y coords. | \& 3

5

\hline
\end{tabular}

Mark Scheme 4752 June 2006

Section A

1	1, 3	1,1		2	
2	$r=0.2$	3	M1 for $10=8 /(1-r)$, then M1 dep't for any correct step	3	
3	1/V15 i.s.w. not +/-	3	M2 for $\sqrt{ } 15$ seen M1 for rt angled triangle with side 1 and hyp 4 , or $\cos ^{2} \theta=1-1 / 4^{2}$.	3	
4	$x^{5} / 5-3 x^{-1} /-1+x$ [value at 2 - value at 1] attempted $5.7 \text { с.a.о. }$	B3 M1 A1	1 each term dep't on B2	5	
5	$\begin{aligned} & {[y=] 3 x-x^{3} / 3} \\ & +c \end{aligned}$ subst of $(6,1)$ in their eqn with c $y=3 x-x^{3} / 3+55 \text { с.а.о }$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Dep't on integration attempt Dep't on B0B1 Allow $c=55$ isw	4	17
6	(i) $3,8,13,18$ (ii) use of $n / 2[2 a+(n-1) d]$ $\left(\mathrm{S}_{100}=\right) 25050$ or $\left(\mathrm{S}_{50}=\right) 6275$ $\left(\mathrm{S}_{49}=\right) 6027$ or $\left(\mathrm{S}_{51}=\right) 6528$ their $\left(S_{100}-S_{50}\right)$ dep't on M1 18775 cao	B1 M1 A1 M1 A1	Ignore extras Use of $a+(n-1) d$ $u_{51}=253 u_{100}=498$ $u_{50}=248 \quad u_{52}=258$ 50/2(their $\left(u_{51}+u_{100}\right)$) dep't on M1 or $50 / 2\left[2 \times\right.$ their $\left.\left(u_{51}\right)+49 \times 5\right]$	5	
7	(i) sketch of correct shape correct period and amplitude period halved for $y=\cos 2 x$; amplitude unchanged (ii) 30, 150, 210, 330	G1 G1 G1 B2	Not ruled lines need 1 and -1 indicated; nos. on horiz axis not needed if one period shown B1 for 2 of these, ignore extras outside range.	5	
8	$\begin{aligned} & \hline \sqrt{ } x=x^{1 / 2} \text { soi } \\ & 18 x^{2}, 1 / 2 x^{-1 / 2} \\ & 36 x \\ & \mathrm{~A} x^{-3 / 2}\left(\text { from } B x^{-1 / 2}\right. \text {) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & -1 \text { if } \mathrm{d} / \mathrm{d} x(3) \text { not }=0 \\ & \text { any } \mathrm{A}, \mathrm{~B} \end{aligned}$	5	
9	$\begin{aligned} & 3 x \log 5=\log 100 \\ & 3 x=\log 100 / \log 5 \\ & x=0.954 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { M1 } \\ & \text { A2 } \end{aligned}$	allow any or no base or $3 x=\log _{5} 100$ dep't A1 for other rot versions of $0.9537 \ldots$ SC B2/4 for 0.954 with no \log wkg SC B1 r.o.t. 0.9537...	4	19

Section B

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 10 \& \begin{tabular}{l}
i \\
(A) \\
i \\
(B) \\
ii
\end{tabular} \& \[
\begin{aligned}
\& 5.2^{2}+6.3^{2}-2 \times 5.2 \times 6.3 \times \cos \text { " } 57^{\prime \prime} \\
\& \mathrm{ST}=5.6 \text { or } 5.57 \text { cao } \\
\& \sin \mathrm{T} / 5.2=\sin (\text { their } 57 \text {)/their } \mathrm{ST} \\
\& \mathrm{T}=51 \text { to } 52 \text { or } \mathrm{S}=71 \text { to } 72 \\
\& \text { bearing } 285+\text { their } \mathrm{T} \\
\& \text { or } 408-\text { their } \mathrm{S} \\
\& \\
\& 5.2 \theta, 24 \times 26 / 60 \\
\& \theta=1.98 \text { to } 2.02 \\
\& \theta=\text { their } 2 \times 180 / \pi \text { or } 114.6^{\circ} \ldots \\
\& \text { Bearing }=293 \text { to } 294 \text { cao }
\end{aligned}
\] \& \begin{tabular}{l}
M2 \\
A1 \\
M1 \\
A1 \\
B1 \\
B1B1 \\
B1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
M1 for recognisable attempt at cos rule. or greater accuracy \\
Or \(\sin \mathrm{S} / 6.3=\ldots\) or cosine rule \\
If outside 0 to 360 , must be adjusted \\
Lost for all working in degrees Implied by 57.3
\end{tabular} \& 3
3 \& 11 \\
\hline 11 \& ii \& \begin{tabular}{l}
\[
\begin{aligned}
\& y^{\prime}=3 x^{2}-6 x \\
\& \text { use of } y^{\prime}=0 \\
\& (0,1) \text { or }(2,-3)
\end{aligned}
\] \\
sign of \(y^{\prime \prime}\) used to test or \(y^{\prime}\) either side
\[
\begin{aligned}
\& y^{\prime}(-1)=3+6=9 \\
\& 3 x^{2}-6 x=9 \\
\& x=3
\end{aligned}
\] \\
At \(P y=1\) \\
grad normal \(=-1 / 9\) cao
\[
y-1=-1 / 9(x-3)
\] \\
intercepts 12 and \(4 / 3\) or use of
\[
\begin{aligned}
\& \int_{0}^{12} 4 / 3-1 / 9 x \mathrm{~d} x \text { (their normal) } \\
\& 1 / 2 \times 12 \times 4 / 3 \text { cao } \\
\& \hline
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A2 \\
T1 \\
B1 \\
M1 \\
A1 \\
B1 \\
B1 \\
M1 \\
B1 \\
A1
\end{tabular} \& \begin{tabular}{l}
condone one error \\
A1 for one correct or \(x=0,2\) SC B1 for \((0,1)\) from their \(y^{\prime}\) Dep't on M1 or \(y\) either side or clear cubic sketch \\
ft for their \(y^{\prime}\) implies the M1 \\
ft their \((3,1)\) and their grad, not 9 ft their normal (linear)
\end{tabular} \& 5

8 \& 13

\hline 12 \& ii
iii

iv \& $$
\begin{aligned}
& \log _{10} P=\log _{10} a+\log _{10} 10^{b t} \\
& \log _{10} 10^{b t}=b t \\
& \text { intercept indicated as } \log _{10} a \\
& \\
& 3.9(0), 3.94,4(.00), 4.05,4.11 \\
& \text { plots ft } \\
& \text { line of best fit } \mathrm{ft} \\
& \text { (gradient }=) 0.04 \text { to } 0.06 \text { seen } \\
& \text { (intercept }=) 3.83 \text { to } 3.86 \text { seen } \\
& (a=) 6760 \text { to } 7245 \text { seen } \\
& P=7000 \times 10^{0.05 t} \mathrm{oe} \\
& 17000 \text { to } 18500
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { B1 } \\
& \text { B1 } \\
& \text { B1 } \\
& \text { T1 } \\
& \text { P1 } \\
& \text { L1 } \\
& \\
& \text { M1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { A1 } \\
& \\
& \text { B2 }
\end{aligned}
$$

\] \& | condone omission of base |
| :--- |
| to 3 sf or more; condone one error 1 mm ruled and reasonable $\begin{aligned} & 7000 \times 1.12^{t} \\ & \text { SC P }=10^{0.05 t+3.85} \text { left A2 } \\ & 14000 \text { to } 22000 \text { B1 } \end{aligned}$ | \& 3

3
4
4
2 \& 12

\hline
\end{tabular}

$\begin{aligned} & \mathbf{1} \quad\|3 x-2\|=x \\ & \Rightarrow \quad 3 x-2=x \Rightarrow 2 x=2 \Rightarrow x=1 \\ & \text { or } \quad 2-3 x=x \Rightarrow 2=4 x \Rightarrow x=1 / 2 \\ & \text { or } \quad(3 x-2)^{2}=x^{2} \\ & \Rightarrow 8 x^{2}-12 x+4=0 \Rightarrow 2 x^{2}-3 x+1=0 \\ & \Rightarrow(x-1)(2 x-1)=0, \\ & \Rightarrow \quad x=1,1 / 2 \end{aligned}$	B1 M1 A1 M1 A1 A1 [3]	$x=1$ solving correct quadratic
$\begin{aligned} & 2 \quad \text { let } u=x, \mathrm{~d} v / \mathrm{d} x=\sin 2 x \Rightarrow v=-1 / 2 \cos 2 x \\ & \Rightarrow \int_{0}^{\pi / 6} x \sin 2 x d x=\left[x \cdot-\frac{1}{2} \cos 2 x\right]_{0}^{\pi / 6}+\int_{0}^{\pi / 6} \frac{1}{2} \cos 2 x \cdot 1 \cdot d x \\ &=\frac{\pi}{6} \cdot-\frac{1}{2} \cos \frac{\pi}{3}-0+\left[\frac{1}{4} \sin 2 x\right]_{0}^{\frac{\pi}{6}} \\ &=-\frac{\pi}{24}+\frac{\sqrt{3}}{8} \\ &=\frac{3 \sqrt{3}-\pi *}{24} \end{aligned}$	M1 A1 B1ft M1 B1 E1 [6]	parts with $u=x, \mathrm{~d} v / \mathrm{d} x=\sin 2 x$ $\ldots+\left[\frac{1}{4} \sin 2 x\right]_{0}^{\frac{\pi}{6}}$ substituting limits $\cos \pi / 3=1 / 2, \sin \pi / 3=\sqrt{ } 3 / 2$ soi www
3 (i) $\begin{array}{ll} & x-1=\sin y \\ \Rightarrow \quad & x=1+\sin y \\ \Rightarrow \quad & \mathrm{~d} x / \mathrm{d} y=\cos y \end{array}$ (ii) When $x=1.5, y=\arcsin (0.5)=\pi / 6$ $\begin{aligned} \frac{d y}{d x} & =\frac{1}{\cos y} \\ & =\frac{1}{\cos \pi / 6} \\ & =2 / \sqrt{ } 3 \end{aligned}$	M1 A1 E1 M1 A1 M1 A1 [7]	www condone 30° or 0.52 or better or $\frac{d y}{d x}=\frac{1}{\sqrt{1-(x-1)^{2}}}$ or equivalent, but must be exact
4(i) $\begin{aligned} & V=\pi h^{2}-\frac{1}{3} \pi h^{3} \\ & \Rightarrow \frac{d V}{d h}=2 \pi h-\pi h^{2} \end{aligned}$ $\begin{aligned} & \text { (ii) } \frac{d V}{d t}=0.02 \\ & \frac{d V}{d t}=\frac{d V}{d h} \cdot \frac{d h}{d t} \\ & \Rightarrow \frac{d h}{d t}=\frac{0.02}{d V / d h}=\frac{0.02}{2 \pi h-\pi h^{2}} \end{aligned}$ When $h=0.4, \Rightarrow \frac{d h}{d t}=\frac{0.02}{0.8 \pi-0.16 \pi}=0.0099 \mathrm{~m} / \mathrm{min}$	M1 A1 B1 M1 M1dep A1cao [6]	expanding brackets (correctly) or product rule oe soi $\frac{d V}{d t}=\frac{d V}{d h} \cdot \frac{d h}{d t}$ oe substituting $h=0.4$ into their $\frac{d V}{d h}$ and $\begin{aligned} & \frac{d V}{d t}=0.02 \\ & 0.01 \text { or better } \\ & \text { or } 1 / 32 \pi \end{aligned}$

5(i) $\begin{aligned} a^{2}+b^{2} & =(2 t)^{2}+\left(t^{2}-1\right)^{2} \\ & =4 t^{2}+t^{4}-2 t^{2}+1 \\ & =t^{4}+2 t^{2}+1 \\ & =\left(t^{2}+1\right)^{2}=c^{2} \end{aligned}$	M1 M1 E1	substituting for a, b and c in terms of t Expanding brackets correctly www
(ii) $c=\sqrt{ }\left(20^{2}+21^{2}\right)=29$ For example: $\begin{array}{ll} & 2 t=20 \Rightarrow t=10 \\ \Rightarrow \quad & t^{2}-1=99 \text { which is not consistent with } 21 \end{array}$	B1 M1 E1 [6]	Attempt to find t Any valid argument or E2 'none of 20, 21, 29 differ by two'.
6 (i)	$\begin{array}{\|l} \mathrm{B} 1 \\ \mathrm{~B} 1 \end{array}$	Correct shape Passes through ($0, M_{0}$)
(ii) $\frac{M}{M_{0}}=e^{-0.000121 \times 5730}=e^{-0.6933 \ldots} \approx \frac{1}{2}$	M1 E1	substituting $k=-0.00121$ and $t=5730$ into equation (or ln eqn) showing that $M \approx 1 / 2 M_{0}$
$\text { (iii) } \begin{aligned} & \frac{M}{M_{0}}=e^{-k T}=\frac{1}{2} \\ & \Rightarrow \ln \frac{1}{2}=-k T \\ & \Rightarrow \ln 2=k T \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$	substituting $M / M_{0}=1 / 2$ into equation (oe) taking lns correctly
$\Rightarrow T=\frac{\ln 2}{k} *$ (iv) $T=\frac{\ln 2}{2.88 \times 10^{-5}} \approx 24000$ years	E1 B1 [8]	24000 or better

Section B

7(i) $x=1$	$\begin{gathered} \text { B1 } \\ {[1]} \end{gathered}$	
(ii) $\begin{aligned} & \qquad \begin{aligned} \frac{d y}{d x} & =\frac{(x-1) 2 x-\left(x^{2}+3\right) \cdot 1}{(x-1)^{2}} \\ & =\frac{2 x^{2}-2 x-x^{2}-3}{(x-1)^{2}} \\ & =\frac{x^{2}-2 x-3}{(x-1)^{2}} \end{aligned} \\ & \mathrm{dy} / \mathrm{d} x=0 \text { when } x^{2}-2 x-3=0 \\ & \Rightarrow(x-3)(x+1)=0 \\ & \Rightarrow x=3 \text { or }-1 \end{aligned} \text { When } x=3, y=(9+3) / 2=6$	M1 A1 M1 M1 A1 B1ft [6]	Quotient rule correct expression their numerator $=0$ solving quadratic by any valid method $x=3$ from correct working $y=6$
$\text { (iii) } \begin{aligned} & \text { Area }=\int_{2}^{3} \frac{x^{2}+3}{x-1} d x \\ & u=x-1 \Rightarrow \mathrm{~d} u / \mathrm{d} x=1, \mathrm{~d} u=\mathrm{d} x \\ & \text { When } x=2, u=1 \text {; when } x=3, u=2 \\ & =\int_{1}^{2} \frac{(u+1)^{2}+3}{u} d u \\ & =\int_{1}^{2} \frac{u^{2}+2 u+4}{u} d u \\ & =\int_{1}^{2}\left(u+2+\frac{4}{u}\right) d u * \\ & =\left[\frac{1}{2} u^{2}+2 u+4 \ln u\right]_{1}^{2} \\ & =(2+4+4 \ln 2)-(1 / 2+2+4 \ln 1) \\ & =31 / 2+4 \ln 2 \end{aligned}$		Correct integral and limits Limits changed, and substituting $\mathrm{d} x=\mathrm{d} u$ substituting $\frac{(u+1)^{2}+3}{u}$ www $\left[1 / 2 u^{2}+2 u+4 \ln u\right]$ substituting correct limits
$\begin{aligned} & \text { (iv) } \quad e^{y}=\frac{x^{2}+3}{x-1} \\ & \Rightarrow \quad e^{y} \frac{d y}{d x}=\frac{x^{2}-2 x-3}{(x-1)^{2}} \\ & \Rightarrow \quad \frac{d y}{d x}=e^{-y} \frac{x^{2}-2 x-3}{(x-1)^{2}} \end{aligned}$ When $x=2, \mathrm{e}^{y}=7 \Rightarrow$ $\Rightarrow \quad \mathrm{d} y / \mathrm{d} x=\frac{1}{7} \cdot \frac{4-4-3}{1}=-\frac{3}{7}$	M1 A1ft B1 A1cao [4]	$\begin{aligned} & \mathrm{e}^{y} \mathrm{~d} y / \mathrm{d} x=\text { their } \mathrm{f}^{\prime}(x) \\ & \text { or } x e^{y}-e^{y}=x^{2}+3 \\ & \Rightarrow e^{y}+x e^{y} \frac{d y}{d x}-e^{y} \frac{d y}{d x}=2 x \\ & \Rightarrow \frac{d y}{d x}=\frac{2 x-e^{y}}{e^{y}(x-1)} \\ & \mathrm{y}=\ln 7 \text { or } 1.95 \ldots \text { or } \mathrm{e}^{y}=7 \\ & \text { or } \frac{d y}{d x}=\frac{4-7}{7(2-1)}=-\frac{3}{7} \text { or }-0.43 \text { or better } \end{aligned}$

8 (i) (A) (B)	B1 B1 M1 A1 [4]	Zeros shown every $\pi / 2$. Correct shape, from $-\pi$ to π Translated in x-direction π to the left
$\text { (ii) } \begin{aligned} & \mathrm{f}^{\prime}(x)=-\frac{1}{5} e^{-\frac{1}{5} x} \sin x+e^{-\frac{1}{5} x} \cos x \\ & \mathrm{f}^{\prime}(x)=0 \text { when }-\frac{1}{5} e^{-\frac{1}{5} x} \sin x+e^{-\frac{1}{5} x} \cos x=0 \\ & \Rightarrow \frac{1}{5} e^{-\frac{1}{5} x}(-\sin x+5 \cos x)=0 \\ & \Rightarrow \sin x=5 \cos x \\ & \Rightarrow \frac{\sin x}{\cos x}=5 \\ & \Rightarrow \tan x=5^{*} \\ & \Rightarrow x=1.37(34 \ldots) \\ & \Rightarrow y=0.75 \text { or } 0.74(5 \ldots) \end{aligned}$	B1 B1 M1 E1 B1 B1 [6]	$\begin{aligned} & e^{-\frac{1}{5} x} \cos x \\ & \ldots-\frac{1}{5} e^{-\frac{1}{5} x} \sin x \end{aligned}$ dividing by $e^{-\frac{1}{5} x}$ www 1.4 or better, must be in radians 0.75 or better
(iii) $\begin{aligned} & \mathrm{f}(x+\pi)=e^{-\frac{1}{5}(x+\pi)} \sin (x+\pi) \\ & =e^{-\frac{1}{5} x} e^{-\frac{1}{5} \pi} \sin (x+\pi) \\ & =-e^{-\frac{1}{5} x} e^{-\frac{1}{5} \pi} \sin x \\ & =-e^{-\frac{1}{5} \pi} \mathrm{f}(x)^{*} \end{aligned}$ $\begin{aligned} & \int_{\pi}^{2 \pi} \mathrm{f}(x) d x \quad \text { let } u=x-\pi, \mathrm{d} u=\mathrm{d} x \\ & =\int_{0}^{\pi} \mathrm{f}(u+\pi) d u \\ & =\int_{0}^{\pi}-e^{-\frac{1}{5} \pi} \mathrm{f}(u) d u \\ & =-e^{-\frac{1}{5} \pi} \int_{0}^{\pi} \mathrm{f}(u) d u^{*} \end{aligned}$ Area enclosed between π and 2π $=(-) e^{-\frac{1}{5} \pi} \times$ area between 0 and π.	M1 A1 A1 E1 B1 B1dep E1 B1 [8]	$\begin{aligned} & e^{-\frac{1}{5}(x+\pi)}=e^{-\frac{1}{5} x} \cdot e^{-\frac{1}{5} \pi} \\ & \sin (x+\pi)=-\sin x \\ & \text { www } \\ & \int f(u+\pi) d u \\ & \text { limits changed } \end{aligned}$ using above result or repeating work or multiplied by 0.53 or better

Mark Scheme 4754
 June 2006

$$
\begin{array}{ll}
1 & \sin x-\sqrt{ } 3 \cos x=R \sin (x-\alpha) \\
& =R(\sin x \cos \alpha-\cos x \sin \alpha) \\
\Rightarrow & R \cos \alpha=1, R \sin \alpha=\sqrt{ } 3 \\
\Rightarrow & R^{2}=1^{2}+(\sqrt{ } 3)^{2}=4, R=2 \\
& \tan \alpha=\sqrt{ } 3 / 1=\sqrt{ } 3 \Rightarrow \alpha=\pi / 3
\end{array}
$$

$$
\Rightarrow \sin x-\sqrt{3} \cos x=2 \sin (x-\pi / 3)
$$

$$
x \text { coordinate of } \mathrm{P} \text { is when } x-\pi / 3=\pi / 2
$$

$$
\Rightarrow x=5 \pi / 6
$$

$$
y=2
$$

So coordinates are $(5 \pi / 6,2)$

2(i) $\frac{3+2 x^{2}}{(1+x)^{2}(1-4 x)}=\frac{A}{1+x}+\frac{B}{(1+x)^{2}}+\frac{C}{1-4 x}$
$\Rightarrow \quad 3+2 x^{2}=A(1+x)(1-4 x)+B(1-4 x)+C(1+x)^{2}$
$x=-1 \Rightarrow 5=5 B \Rightarrow B=1$
$x=1 / 4 \Rightarrow 3 \frac{1}{8}=\frac{25}{16} C \Rightarrow C=2$
coeff t of $x^{2}: 2=-4 A+C \Rightarrow A=0$
.
D
(ii) $(1+x)^{-2}=1+(-2) x+(-2)(-3) x^{2} / 2!+\ldots$

$$
=1-2 x+3 x^{2}+\ldots
$$

$$
(1-4 x)^{-1}=1+(-1)(-4 x)+(-1)(-2)(-4 x)^{2} / 2!+\ldots
$$

$$
=1+4 x+16 x^{2}+\ldots
$$

$$
\frac{3+2 x^{2}}{(1+x)^{2}(1-4 x)}=(1+x)^{-2}+2(1-4 x)^{-1}
$$

$$
\approx 1-2 x+3 x^{2}+2\left(1+4 x+16 x^{2}\right)
$$

$$
=3+6 x+35 x^{2}
$$

$$
\begin{array}{|cc}
& \\
\hline \mathbf{3} & \sin (\theta+\alpha)=2 \sin \theta \\
\Rightarrow & \sin \theta \cos \alpha+\cos \theta \sin \alpha=2 \\
\Rightarrow & \tan \theta \cos \alpha+\sin \alpha=2 \tan \theta \\
\Rightarrow & \sin \alpha=2 \tan \theta-\tan \theta \cos \alpha \\
& =\tan \theta(2-\cos \alpha) \\
\Rightarrow & \tan \theta=\frac{\sin \alpha}{2-\cos \alpha}^{*} \\
& \sin \left(\theta+40^{\circ}\right)=2 \sin \theta \\
\Rightarrow & \tan \theta=\frac{\sin 40}{2-\cos 40}=0.5209^{\Rightarrow} \\
\Rightarrow \quad \theta=27.5^{\circ}, 207.5^{\circ}
\end{array}
$$

B1	$R=2$
M1	$\tan \alpha=\sqrt{ } 3$ or $\sin \alpha=\sqrt{ } 3 /$ their R or $\cos \alpha=1 /$ their R
A1	$\alpha=\pi / 3,60^{\circ}$ or 1.05 (or better) radians www
M1	Using x-their $\alpha=\pi / 2$ or $90^{\circ} \alpha \neq 0$
A1ft B1ft	exact radians only (not $\pi / 2$) their R (exact only)
[6]	
M1	Clearing fractions (or any 2 correct equations)
B1	$B=1$ www
B1	$C=2$ www
E1	$A=0$ needs justification
[4]	
$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Binomial series (coefficients unsimplified - for either)
A1	
	or $\left(3+2 x^{2}\right)(1+\mathrm{x})^{-2}(1-4 \mathrm{x})^{-1}$ expanded
$\begin{aligned} & \text { A1ft } \\ & {[4]} \end{aligned}$	theirA,B,C and their expansions
$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$	Using correct Compound angle formula in a valid equation dividing by $\cos \theta$
M1	collecting terms in $\tan \theta$ or $\sin \theta$ or dividing by $\tan \theta$ oe
E1	www (can be all achieved for the method in reverse)
M1	
A1 A1	$\tan \theta=\frac{\sin 40}{2-\cos 40}$
$\begin{aligned} & \text { A1 A1 } \\ & {[7]} \end{aligned}$	-1 if given in radians
	-1 extra solutions in the range

4 (a) $\frac{d x}{d t}=k \sqrt{x}$	M1 A1 [2]	$\begin{aligned} & \frac{d x}{d t}=\ldots \\ & k \sqrt{x} \end{aligned}$
$\begin{aligned} & \text { (b) } \quad \frac{d y}{d t}=\frac{10000}{\sqrt{y}} \\ & \Rightarrow \quad \int \sqrt{y} d y=\int 10000 d t \\ & \Rightarrow \quad \frac{2}{3} y^{\frac{3}{2}}=10000 t+c \\ & \text { When } t=0, y=900 \Rightarrow 18000=c \\ & \Rightarrow \quad y=\left[\frac{3}{2}(10000 t+18000)\right]^{\frac{2}{3}} \\ & \quad=(1500(10 t+18))^{\frac{2}{3}} \end{aligned}$ $\text { When } t=10, y=3152$	M1 A1 B1 A1 M1 A1 [6]	separating variables condone omission of c evaluating constant for their integral any correct expression for $y=$ for method allow substituting $t=10$ in their expression cao
$\begin{aligned} & 5 \text { (i) } \begin{aligned} & \int x e^{-2 x} d x \quad \text { let } u=x, \mathrm{~d} v / \mathrm{d} x=\mathrm{e}^{-2 x} \\ & \Rightarrow v=-1 / 2 \mathrm{e}^{-2 x} \\ &=-\frac{1}{2} x e^{-2 x}+\int \frac{1}{2} e^{-2 x} d x \\ &=-\frac{1}{2} x e^{-2 x}-\frac{1}{4} e^{-2 x}+c \\ &=-\frac{1}{4} e^{-2 x}(1+2 x)+c \end{aligned} \\ & \begin{aligned} \text { or } \frac{d}{d x}\left[-\frac{1}{2} x e^{-2 x}-\frac{1}{4} e^{-2 x}+c\right] & =-\frac{1}{2} e^{-2 x}+x e^{-2 x}+\frac{1}{2} e^{-2 x} \\ & =x \mathrm{e}^{-2 x} \end{aligned} \end{aligned}$	M1 A1 E1 M1 A1 E1 [3]	Integration by parts with $u=x, \mathrm{~d} v / \mathrm{d} x=\mathrm{e}^{-2 x}$ $=-\frac{1}{2} x e^{-2 x}+\int \frac{1}{2} e^{-2 x} d x$ condone omission of c product rule
$\text { (ii) } \begin{aligned} V & =\int_{0}^{2} \pi y^{2} d x \\ & =\int_{0}^{2} \pi\left(x^{1 / 2} e^{-x}\right)^{2} d x \\ & =\pi \int_{0}^{2} x e^{-2 x} d x \\ & =\pi\left[-\frac{1}{4} e^{-2 x}(1+2 x)\right]_{0}^{2} \\ & =\pi\left(-1 / 4 \mathrm{e}^{-4} \cdot 5+1 / 4\right) \\ & =\frac{1}{4} \pi\left(1-\frac{5}{e^{4}}\right) * \end{aligned}$	M1 A1 DM1 E1 [4]	Using formula condone omission of limits $y^{2}=x e^{-2 x}$ condone omission of limits and π condone omission of π (need limits)

Section B

$\begin{array}{ll} 6 \text { (i) } & \text { At E, } \theta=2 \pi \\ \Rightarrow \quad & x=a(2 \pi-\sin 2 \pi)=2 a \pi \\ & \text { So OE }=2 a \pi . \\ & \text { Max height is when } \theta=\pi \\ \Rightarrow \quad & y=a(1-\cos \pi)=2 a \end{array}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ {[4]} \end{gathered}$	$\theta=\pi, 180^{\circ}, \cos \theta=-1$
$\text { (ii) } \begin{aligned} & \frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta} \\ &=\frac{a \sin \theta}{a(1-\cos \theta)} \\ &=\frac{\sin \theta}{(1-\cos \theta)} \end{aligned}$	M1 M1 A1 [3]	$\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}$ for theirs $\frac{d}{d \theta}(\sin \theta)=\cos \theta, \frac{d}{d \theta}(\cos \theta)=-\sin \theta \text { both }$ or equivalent www condone uncancelled a
$\begin{array}{ll} \text { (iii) } & \tan 30^{\circ}=1 / \sqrt{ } 3 \\ \Rightarrow & \frac{\sin \theta}{(1-\cos \theta)}=\frac{1}{\sqrt{3}} \\ \Rightarrow & \sin \theta=\frac{1}{\sqrt{3}}(1-\cos \theta) \end{array}$ When $\theta=2 \pi / 3, \sin \theta=\sqrt{ } 3 / 2$ $\begin{aligned} & (1-\cos \theta) / \sqrt{ } 3=(1+1 / 2) / \sqrt{ } 3=\frac{3}{2 \sqrt{3}}=\frac{\sqrt{3}}{2} \\ & \mathrm{BF}=a(1+1 / 2)=3 a / 2^{*} \\ & \mathrm{OF}=a(2 \pi / 3-\sqrt{ } 3 / 2) \end{aligned}$	M1 E1 M1 E1 E1 B1 [6]	Or gradient $=1 / \sqrt{ } 3$ $\sin \theta=\sqrt{ } 3 / 2, \cos \theta=-1 / 2$ or equiv.
(iv) $\begin{aligned} \mathrm{BC} & =2 a \pi-2 a(2 \pi / 3-\sqrt{ } 3 / 2) \\ & =a(2 \pi / 3+\sqrt{ } 3) \\ \mathrm{AF} & =\sqrt{ } 3 \times 3 a / 2=3 \sqrt{ } 3 a / 2 \\ \mathrm{AD} & =\mathrm{BC}+2 \mathrm{AF} \\ & =a(2 \pi / 3+\sqrt{ } 3+3 \sqrt{ } 3) \\ & =a(2 \pi / 3+4 \sqrt{ } 3) \\ & =20 \\ \Rightarrow a & =2.22 \mathrm{~m} \end{aligned}$	B1ft M1 A1 M1 A1 [5]	their OE -2their OF

7 (i) $\mathrm{AE}=\sqrt{ }\left(15^{2}+20^{2}+0^{2}\right)=25$	$\begin{aligned} & \text { M1 A1 } \\ & \text { [2] } \end{aligned}$	
(ii) $\overline{\mathrm{AE}}=\left(\begin{array}{l} 15 \\ -20 \\ 0 \end{array}\right)=5\left(\begin{array}{l} 3 \\ -4 \\ 0 \end{array}\right)$ Equation of BD is $\mathbf{r}=\left(\begin{array}{l}-1 \\ -7 \\ 11\end{array}\right)+\lambda\left(\begin{array}{l}3 \\ -4 \\ 0\end{array}\right)$ $\begin{aligned} & \mathrm{BD}=15 \Rightarrow \lambda=3 \\ & \Rightarrow \mathrm{D} \text { is }(8,-19,11) \end{aligned}$	M1 A1 M1 A1cao [4]	Any correct form $\begin{aligned} & \text { or } \mathbf{r}=\left(\begin{array}{l} -1 \\ -7 \\ 11 \end{array}\right)+\lambda\left(\begin{array}{l} 15 \\ -20 \\ 0 \end{array}\right) \\ & \lambda=3 \text { or } 3 / 5 \text { as appropriate } \end{aligned}$
$\begin{aligned} & \text { (iii) At A: }-3 \times 0+4 \times 0+5 \times 6=30 \\ & \text { At B: }-3 \times(-1)+4 \times(-7)+5 \times 11=30 \\ & \text { At C: }-3 \times(-8)+4 \times(-6)+5 \times 6=30 \\ & \text { Normal is }\left(\begin{array}{c} -3 \\ 4 \\ 5 \end{array}\right) \end{aligned}$	M1 A2,1,0 B1 [4]	One verification (OR B1 Normal, M1 scalar product with 1 vector in the plane, Altwo correct, A1 verification with a point OR M1 vector form of equation of plane eg $\mathrm{r}=0 \mathrm{i}+0 \mathrm{j}+6 \mathrm{k}+\mu(\mathrm{i}+7 \mathrm{j}-5 \mathrm{k})+v(8 \mathrm{i}+6 \mathrm{j}+0 \mathrm{k})$ M1 elimination of both parameters A1 equation of plane B1 Normal *)
$\left.\begin{array}{l} \text { (iv) }\left(\begin{array}{l} 4 \\ 3 \\ 5 \end{array}\right) \cdot \overrightarrow{A E}=\left(\begin{array}{l} 4 \\ 3 \\ 5 \end{array}\right) \cdot\left(\begin{array}{l} 15 \\ -20 \\ 0 \end{array}\right)=60-60=0 \\ \Rightarrow \quad\left(\begin{array}{l} 4 \\ 3 \\ 5 \end{array}\right) \overrightarrow{A B}=\left(\begin{array}{l} 4 \\ 3 \\ 5 \end{array}\right) \cdot\left(\begin{array}{l} -1 \\ -7 \\ 5 \end{array}\right)=-4-21+25=0 \\ 5 \end{array}\right) \text { is normal to plane }$ (iv) Equation is $4 x+3 y+5 z=30$.	M1 E1 M1 A1 [4]	scalar product with one vector in plane $=$ 0 scalar product with another vector in plane $=0$ $4 x+3 y+5 z=\ldots$ 30 OR as * above OR M1 for subst 1 point in $4 \mathrm{x}+3 \mathrm{y}+5 \mathrm{z}=, \mathrm{A} 1$ for subst 2 further points $=30$ A1 correct equation, B1 Normal
(v) Angle between planes is angle between $\begin{aligned} & \text { normals }\left(\begin{array}{l} 4 \\ 3 \\ 5 \end{array}\right) \text { and }\left(\begin{array}{l} -3 \\ 4 \\ 5 \end{array}\right) \\ & \cos \theta=\frac{4 \times(-3)+3 \times 4+5 \times 5}{\sqrt{50} \times \sqrt{50}}=\frac{1}{2} \\ \Rightarrow \quad & \theta=60^{\circ} \end{aligned}$	M1 M1 A1 A1 [4]	Correct method for any 2 vectors their normals only (rearranged) or 120° cao

	Comprehension Paper 2		
Qu	Answer	Mark	Comment
1.	$\left(26+\frac{385}{1760}\right) \times 4$ minutes 1 hour 44 minutes 52.5 seconds	$\begin{array}{\|l} \text { M1 } \\ \text { A1 } \end{array}$	Accept all equivalent forms, with units. Allow ... 52 and 53 seconds.
2.	$\begin{aligned} & R=259.6-0.391(T-1900) \\ & \therefore 259.6-0.391(T-1900)=0 \\ & \Rightarrow T=2563.9 \end{aligned}$ R will become negative in 2563	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{array}$	$\mathrm{R}=0$ and attempting to solve. $\mathrm{T}=2563,2564,2563.9 \ldots$..any correct cao
3.	The value of L is 120.5 and this is over 2 hours or (120 minutes)	E1	or $R>120.5$ minutes or showing there is no solution for $120=120.5+54.5 \mathrm{e}^{-}$
4.(i)	Substituting $t=0$ in $R=L+(U-L) \mathrm{e}^{-k t}$ gives $\begin{aligned} R & =L+(U-L) \times 1 \\ & =U \end{aligned}$	M1 A1 E1	$\mathrm{e}^{0}=1$
4.(ii)	As $t \rightarrow \infty, \mathrm{e}^{-k t} \rightarrow 0$ and so $R \rightarrow L$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { E1 } \\ \hline \end{array}$	
5.(i)		M1 A1 A1	Increasing curve Asymptote A and B marked correctly
5.(ii)	Any field event: long jump, high jump, triple jump, pole vault, javelin, shot, discus, hammer, etc.	B1	
6.(i)	$t=104$	B1	
6.(ii)	$\begin{aligned} & R=115+(175-115) \mathrm{e}^{-0.0467 t^{0.997}} \\ & R=115+60 \times \mathrm{e}^{-0.0467 \times 104^{0.977}} \\ & R=115+60 \times \mathrm{e}^{-1.892} \\ & R=124.047 \ldots \\ & 2 \text { hours } 4 \text { minutes } 3 \text { seconds } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Substituting their t $124,124.05$, etc.

Mark Scheme 4755 June 2006

\begin{tabular}{|c|c|c|c|}
\hline Qu \& Answer \& Mark \& Comment \\
\hline \multicolumn{4}{|l|}{Section A} \\
\hline 1 (i)
1(ii)
1(iii) \& Reflection in the \(x\)-axis.
\[
\begin{aligned}
\& \left(\begin{array}{cc}
0 \& -1 \\
1 \& 0
\end{array}\right) \\
\& \left(\begin{array}{cc}
1 \& 0 \\
0 \& -1
\end{array}\right)\left(\begin{array}{cc}
0 \& -1 \\
1 \& 0
\end{array}\right)=\left(\begin{array}{cc}
0 \& -1 \\
-1 \& 0
\end{array}\right)
\end{aligned}
\] \& \[
\begin{gathered}
\mathrm{B} 1 \\
{[1]} \\
\\
\mathrm{B} 1 \\
{[1]} \\
\mathrm{M} 1 \\
\\
\mathrm{~A} 1 \\
\text { c.a.o. } \\
{[2]} \\
\hline
\end{gathered}
\] \& Multiplication of their matrices in the correct order or B2 for correct matrix without working \\
\hline 2 \& \[
\begin{aligned}
\& (x+2)\left(A x^{2}+B x+C\right)+D \\
\& =A x^{3}+B x^{2}+C x+2 A x^{2}+2 B x+2 C+D \\
\& =A x^{3}+(2 A+B) x^{2}+(2 B+C) x+2 C+D \\
\& \Rightarrow A=2, B=-7, C=15, D=-32
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
B1 \\
B1 \\
F1 \\
F1 \\
OR \\
B5 \\
[5]
\end{tabular} \& \begin{tabular}{l}
Valid method to find all coefficients \\
For \(A=2\) \\
For \(D=-32\) \\
F1 for each of \(B\) and \(C\) \\
For all correct
\end{tabular} \\
\hline 3(i)

3(ii) \& $$
\alpha+\beta+\gamma=-4
$$

$$
\alpha \beta+\beta \gamma+\alpha \gamma=-3
$$

$$
\alpha \beta \gamma=-1
$$

\[
$$
\begin{aligned}
& \alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\beta \gamma+\alpha \gamma) \\
& =16+6=22
\end{aligned}
$$

\] \& | B1 |
| :--- |
| B1 |
| B1 |
| [3] |
| M1 |
| A1 |
| E1 |
| [3] | \& | Attempt to use $(\alpha+\beta+\gamma)^{2}$ |
| :--- |
| Correct |
| Result shown |

\hline 4 (i)

4(ii) \& Argand diagram with solid circle, centre $3-\mathrm{j}$, radius 3, with values of z on and within the circle clearly indicated as satisfying the inequality. \& \begin{tabular}{l}
B1

B1

B1

[3]

B1

B1

[2]

 \&

Circle, radius 3, shown on diagram

Circle centred on 3 - j

Solution set indicated (solid circle with region inside)

Hole, radius 1, shown on diagram Boundaries dealt with correctly
\end{tabular}

\hline
\end{tabular}

Section B Total: 36
Total: 72

Mark Scheme 4756 June 2006

1(a)(i)		B1 B1 2	Correct shape for $-\frac{1}{2} \pi<\theta<\frac{1}{2} \pi$ including maximum in 1st quadrant Correct form at O and no extra sections
(ii)	$\text { Area is } \begin{aligned} & \int \frac{1}{2} r^{2} \mathrm{~d} \theta=\int_{-\frac{3}{4} \pi}^{\frac{3}{4} \pi} \frac{1}{2} a^{2}(\sqrt{2}+2 \cos \theta)^{2} \mathrm{~d} \theta \\ & =\int_{-\frac{3}{4} \pi}^{\frac{3}{4} \pi} a^{2}(1+2 \sqrt{2} \cos \theta+1+\cos 2 \theta) \mathrm{d} \theta \\ & =\left[a^{2}\left(2 \theta+2 \sqrt{2} \sin \theta+\frac{1}{2} \sin 2 \theta\right)\right]_{-\frac{3}{4} \pi}^{\frac{3}{4} \pi} \\ & =3(\pi+1) a^{2} \end{aligned}$	M1 A1 B1 B1B1 ft M1 A1 7	For integral of $(\sqrt{2}+2 \cos \theta)^{2}$ For a correct integral expression including limits (may be implied by later work) Using $2 \cos ^{2} \theta=1+\cos 2 \theta$ Integration of $\cos \theta$ and $\cos 2 \theta$ Evaluation using $\sin \frac{3}{4} \pi=(\pm) \frac{1}{\sqrt{2}}$
(b)(i)	$\begin{aligned} & \mathrm{f}^{\prime}(x)=\sec ^{2}\left(\frac{1}{4} \pi+x\right) \\ & \mathrm{f}^{\prime \prime}(x)=2 \sec ^{2}\left(\frac{1}{4} \pi+x\right) \tan \left(\frac{1}{4} \pi+x\right) \\ & \mathrm{f}(0)=1, \quad \mathrm{f}^{\prime}(0)=2, \quad \mathrm{f}^{\prime \prime}(0)=4 \\ & \mathrm{f}(x)=1+2 x+2 x^{2}+\ldots \end{aligned}$ $\begin{array}{\|rr} \text { OR } \mathrm{g}^{\prime}(u)=\sec ^{2} u \quad(\text { where } \mathrm{g}(u)=\tan u) & \mathrm{B} 1 \\ \mathrm{~g}^{\prime \prime}(u)=2 \sec ^{2} u \tan u & \mathrm{~B} 1 \\ \mathrm{~g}\left(\frac{1}{4} \pi\right)=1, \mathrm{~g}^{\prime}\left(\frac{1}{4} \pi\right)=2, \mathrm{~g}^{\prime \prime}\left(\frac{1}{4} \pi\right)=4 & \mathrm{M} 1 \\ \mathrm{f}(x)=\mathrm{g}\left(\frac{1}{4} \pi+x\right)=1+2 x+2 x^{2}+\ldots & \mathrm{B} 1 \mathrm{~A} 1 \mathrm{~A} 1 \end{array}$	B1 B1 M1 B1A1A1 6	Any correct form Evaluating $\mathrm{f}^{\prime}(0)$ or $\mathrm{f}^{\prime \prime}(0)$ Condone $\sec ^{2} x$ etc Evaluating $\mathrm{g}^{\prime}\left(\frac{1}{4} \pi\right)$ or $\mathrm{g}^{\prime \prime}\left(\frac{1}{4} \pi\right)$
(ii)	$\begin{aligned} \int_{-h}^{h} & x^{2}\left(1+2 x+2 x^{2}+\ldots\right) \mathrm{d} x \\ & =\left[\frac{1}{3} x^{3}+\frac{1}{2} x^{4}+\frac{2}{5} x^{5}+\ldots\right]_{-h}^{h} \\ & \approx\left(\frac{1}{3} h^{3}+\frac{1}{2} h^{4}+\frac{2}{5} h^{5}\right)-\left(-\frac{1}{3} h^{3}+\frac{1}{2} h^{4}-\frac{2}{5} h^{5}\right) \\ & =\frac{2}{3} h^{3}+\frac{4}{5} h^{5} \end{aligned}$	M1 A1 ft A1 (ag) 3	Using series and integrating (ft requires three non-zero terms) Correctly shown Allow ft from $1+k x+2 x^{2}$ with $k \neq 0$

2 (a)(i)	$z^{n}+\frac{1}{z^{n}}=2 \cos n \theta, \quad z^{n}-\frac{1}{z^{n}}=2 \mathrm{j} \sin n \theta$	B1B1	2

3 (i)	$\mathbf{M}^{-1}=\frac{1}{5-k}\left(\begin{array}{ccc}1 & 5 k-13 & 5-2 k \\ 1 & 52-8 k & 3 k-20 \\ -1 & -12 & 5\end{array}\right)$	M1 A1 M1 A1 M1 A1 6	Evaluating determinant For ($5-k$) must be simplified Finding at least four cofactors At least 6 signed cofactors correct Transposing matrix of cofactors and dividing by determinant Fully correct
	OR Elementary row operations applied to M (LHS) and I (RHS), and obtaining at least two zeros in LHS Obtaining one row in LHS consisting of two zeros and a multiple of ($5-k$) Obtaining one row in RHS which is a multiple of a row of the inverse matrix		or elementary column operations
(ii)	$\begin{aligned} & \left(\begin{array}{l} x \\ y \\ z \end{array}\right)=-\frac{1}{2}\left(\begin{array}{rrr} 1 & 22 & -9 \\ 1 & -4 & 1 \\ -1 & -12 & 5 \end{array}\right)\left(\begin{array}{l} 12 \\ m \\ 0 \end{array}\right) \\ & x=-11 m-6, \quad y=2 m-6, \quad z=6 m+6 \end{aligned}$	M1 M1 M1 A2 ft 5	Substituting $k=7$ into inverse Correct use of inverse Evaluating matrix product Give A1 ft for one correct Accept unsimplified forms or solution left in matrix form
	OR e.g. eliminating x, $\begin{aligned} & 3 y-z=-24 \\ & 5 y-z=4 m-36 \\ & y=2 m-6 \end{aligned}$ $x=-11 m-6, \quad y=2 m-6, \quad z=6 m+6$		Eliminating one variable in two different ways Obtaining one of x, y, z Give M3 for any other valid method leading to one of x, y, z in terms of m Give A1 for one correct
(iii)		M2 A1 M1	Eliminating one variable in two different ways Two correct equations Dependent on previous M2
	OR Replacing one column of matrix with column from RHS, and evaluating determinant M2 determinant $12+12 p$ or $-12-12 p$ For solutions, det $=0$		Dependent on previous M2

OR Any other method leading to an equation from which p could be found M3 Correct equation		
$p=-1$ Let $z=\lambda$, $x=5-\lambda, \quad y=-8-\lambda, \quad z=\lambda$	A1 M1 (or M3) A1 7	Obtaining a line of solutions Give M3 when M0 for finding p or $x=13+\lambda, y=\lambda, z=-8-\lambda$ or $x=\lambda, y=-13+\lambda, z=5-\lambda$ Accept $x=5-z, y=-8-z$ or $x=y+13=5-z$ etc

4 (i)	$\begin{aligned} 1+2 \sinh ^{2} x & =1+2\left[\frac{1}{2}\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)\right]^{2} \\ & =1+\frac{1}{2}\left(\mathrm{e}^{2 x}-2+\mathrm{e}^{-2 x}\right) \\ & =\frac{1}{2}\left(\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}\right) \\ & =\cosh 2 x \end{aligned}$	B1 B1 B1 (ag)	For $\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)^{2}=\mathrm{e}^{2 x}-2+\mathrm{e}^{-2 x}$ For $\cosh 2 x=\frac{1}{2}\left(\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}\right)$ For completion
(ii)	$\begin{aligned} & 2\left(1+2 \sinh ^{2} x\right)+\sinh x=5 \\ & 4 \sinh ^{2} x+\sinh x-3=0 \\ & (4 \sinh x-3)(\sinh x+1)=0 \\ & \sinh x=\frac{3}{4},-1 \\ & x=\operatorname{arsinh}\left(\frac{3}{4}\right)=\ln \left(\frac{3}{4}+\sqrt{\frac{9}{16}+1}\right)=\ln 2 \\ & x=\operatorname{arsinh}(-1)=\ln (-1+\sqrt{1+1})=\ln (\sqrt{2}-1) \end{aligned}$	M1 M1 A1A1 A1 ft A1 ft	Using (i) Solving to obtain a value of $\sinh x$ or $-\ln (\sqrt{2}+1)$ SR Give A1 for $\pm \ln 2, \pm \ln (\sqrt{2}-1)$
	$\begin{array}{\|lr} \text { OR } 2 \mathrm{e}^{4 x}+\mathrm{e}^{3 x}-10 \mathrm{e}^{2 x}-\mathrm{e}^{x}+2=0 \\ & \left(\mathrm{e}^{x}-2\right)\left(2 \mathrm{e}^{x}+1\right)\left(\mathrm{e}^{2 x}+2 \mathrm{e}^{x}-1\right)=0 \\ & x=\ln 2, \ln (\sqrt{2}-1) \end{array} \text { A1A1 } 1 \text { A1A1 ft }$		Obtaining a linear or quadratic factor For $\left(\mathrm{e}^{x}-2\right)$ and $\left(\mathrm{e}^{2 x}+2 \mathrm{e}^{x}-1\right)$
(iii)	$\begin{aligned} \int_{0}^{\ln 3} & \frac{1}{2}(\cosh 2 x-1) \mathrm{d} x \\ & =\left[\frac{1}{4} \sinh 2 x-\frac{1}{2} x\right]_{0}^{\ln 3} \\ & =\frac{1}{8}\left(9-\frac{1}{9}\right)-\frac{1}{2} \ln 3 \\ & =\frac{10}{9}-\frac{1}{2} \ln 3 \end{aligned}$	M1 A1A1 M1 A1 (ag)	Expressing in integrable form or $\int \frac{1}{4}\left(\mathrm{e}^{2 x}-2+\mathrm{e}^{-2 x}\right) \mathrm{d} x$ or $\left(\frac{1}{8} \mathrm{e}^{2 x}-\frac{1}{8} \mathrm{e}^{-2 x}\right)-\frac{1}{2} x$ For $\mathrm{e}^{2 \ln 3}=9$ and $\mathrm{e}^{-2 \ln 3}=\frac{1}{9}$ MO for just stating $\sinh (2 \ln 3)=\frac{40}{9}$ etc Correctly obtained
(iv)	$\begin{aligned} & \text { Put } \begin{aligned} & x=3 \cosh u \\ & \text { when } x=3, u=0 \\ & \text { when } x=5, u=\operatorname{arcosh} \frac{5}{3}=\ln 3 \end{aligned} \\ & \begin{aligned} \int_{3}^{5} \sqrt{x^{2}-9} \mathrm{~d} x & =\int_{0}^{\ln 3}(3 \sinh u)(3 \sinh u \mathrm{~d} u) \\ & =9 \int_{0}^{\ln 3} \sinh ^{2} u \mathrm{~d} u \\ & =10-\frac{9}{2} \ln 3 \end{aligned} \end{aligned}$		Any cosh substitution For $\ln 3$ Not awarded for $\operatorname{arcosh} \frac{5}{3}$ Limits not required

Mark Scheme 4757 June 2006

1 (i)	$\left(\begin{array}{c}-1 \\ 4 \\ 3\end{array}\right) \times\left(\begin{array}{c}-k \\ 4 \\ k+2\end{array}\right)=\left(\begin{array}{l}4 k-4 \\ 2-2 k \\ 4 k-4\end{array}\right)\left[=2(k-1)\left(\begin{array}{c}2 \\ -1 \\ 2\end{array}\right)\right]$	B1 M1 A2	$\begin{aligned} & \overrightarrow{\mathrm{AB}} \text { and } \overrightarrow{\mathrm{CD}} \text { (Condone } \\ & \overrightarrow{\mathrm{BA}} \text { and } \overrightarrow{\mathrm{DC}} \text {) } \\ & \text { Evaluating vector product } \\ & \text { Give } \mathrm{A} 1 \mathrm{ft} \text { for one element } \\ & \text { correct } \end{aligned}$
(ii)(A)	$k=1$	B1 	
(B)	$\overrightarrow{\mathrm{CA}} \times \overrightarrow{\mathrm{AB}}=\left(\begin{array}{c} -3 \\ -8 \\ 4 \end{array}\right) \times\left(\begin{array}{c} -1 \\ 4 \\ 3 \end{array}\right)=\left(\begin{array}{c} -40 \\ 5 \\ -20 \end{array}\right)$ Distance is $\frac{\|\overrightarrow{\mathrm{CA}} \times \overrightarrow{\mathrm{AB}}\|}{\|\overrightarrow{\mathrm{AB}}\|}=\frac{45}{\sqrt{26}} \quad(\approx 8.825)$	M1 M1 A1 M1 M1 A1	For appropriate vector product Evaluation Dependent on previous M1 Method for finding shortest distance Dependent on first M1 Calculating magnitudes Dependent on previous M1 Accept 8.82 to 8.83
	$\begin{aligned} & \text { OR } \overrightarrow{\mathrm{CP}} \cdot \overrightarrow{\mathrm{AB}}=\left(\begin{array}{c} -2-\lambda-1 \\ -3+4 \lambda-5 \\ 2+3 \lambda+2 \end{array}\right) \cdot\left(\begin{array}{c} -1 \\ 4 \\ 3 \end{array}\right)=0 \quad \text { M2A1 } \\ & \overrightarrow{\mathrm{CP}}=\frac{1}{26}\left(\begin{array}{c} -95 \\ -140 \\ 155 \end{array}\right) \text { Distance is } \frac{\sqrt{52650}}{26} \\ & \text { M1 } \\ & \text { M1A1 } \end{aligned}$		Finding $\overrightarrow{\mathrm{CP}}$ Dependent on previous M1 Dependent on previous M1
(C)	Normal vector is $\overrightarrow{\mathrm{CA}} \times \overrightarrow{\mathrm{AB}}=\left(\begin{array}{c}-40 \\ 5 \\ -20\end{array}\right)=-5\left(\begin{array}{c}8 \\ -1 \\ 4\end{array}\right)$ Equation of plane is $8 x-y+4 z=-16+3+8$ $8 x-y+4 z+5=0$	M1 M1 A1 3	Dependent on previous M1 Allow $-40 x+5 y-20 z=25$ etc
(iii)	$\frac{\overrightarrow{\mathrm{AC}} \cdot(\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{CD}})}{\|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{CD}}\|}=\frac{\left(\begin{array}{c} k+2 \\ 8 \\ -4 \end{array}\right) \cdot\left(\begin{array}{c} 2 \\ -1 \\ 2 \end{array}\right)(2 k-2)}{3(2 k-2)}$ Shortest distance is $\left\|\frac{2 k-12}{3}\right\|$		For $\overrightarrow{\mathrm{AC}} \cdot(\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{CD}})$ Fully correct method (evaluation not required) Dependent on previous M1 Correct evaluated expression for distance ft from (i) Simplified answer Modulus not required

(iv)	Intersect when $k=6$ $\begin{aligned} -2-\lambda & =6-6 \mu \\ -3+4 \lambda & =5+4 \mu \\ 2+3 \lambda & =-2+8 \mu \end{aligned}$ Solving, $\lambda=4, \mu=2$ Point of intersection is $(-6,13,14)$	B1 ft M1 A1 ft M1 A1 A1 6	Forming at least two equations Two correct equations Solving to obtain λ or μ Dependent on previous M1 One value correct
	$-2-\lambda=k-k \mu$ M1 OR $-3+4 \lambda=5+4 \mu$ A1 $2+3 \lambda=-2+(k+2) \mu$ M1A1 Solving, $k=6$ A1 $\lambda=4, \mu=2$ Point of intersection is $(-6,13,14)$ A1		Forming three equations All equations correct Dependent on previous M1 One value correct

2 (i)	Normal vector is $\left(\begin{array}{c}2 x-4 y \\ -4 x+6 y \\ -4 z\end{array}\right)$	M1 A1 A1 A1	Partial differentiation Condone $\mathbf{r}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)+\lambda\left(\begin{array}{c}2 x-4 y \\ -4 x+6 y \\ -4 z\end{array}\right)$ For 4 marks the normal must appear as a vector (isw)
(ii)	At Q normal vector is $\left(\begin{array}{c}18 \\ -44 \\ -4\end{array}\right)$ Tangent plane is $\begin{aligned} 18 x-44 y-4 z & =306-176-4=126 \\ 9 x-22 y-2 z & =63 \end{aligned}$	$\begin{array}{\|ll} \text { M1 } & \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 4 \end{array}$	For $18 x-44 y-4 z$ Dependent on previous M1 Using Q to find constant Accept any correct form
(iii)	$\begin{aligned} 18 \delta x-44 \delta y-4 \delta z & \approx 0 \\ 18 h-44 p-4(-h) & \approx 0 \\ p & \approx \frac{1}{2} h \end{aligned}$	M1 A1 ft M1 A1	For $18 \delta x-44 \delta y-4 \delta z$ If left in terms of x, y, z : M1A0M1A0
	$\begin{array}{\|lr\|} \text { OR } & 9(17+h)-22(4+p)-2(1-h) \approx 63 \\ p \approx \frac{1}{2} h & \text { M2A1 ft } \tag{A1}\\ & \text { A1 } \end{array}$		
	$\text { OR } \begin{align*} & (17+h)^{2}-4(17+h)(4+p)+\ldots=0 \\ & -44 p+22 h \approx 0 \\ \quad & p \approx \frac{1}{2} h \tag{A1} \end{align*}$ M2A1		Neglecting second order terms
	$\text { OR } \begin{align*} p & =\frac{4 h+44 \pm \sqrt{28 h^{2}+88 h+1936}}{6} \\ p & \approx \frac{1}{2} h \tag{A1} \end{align*}$ M2A1		
(iv)	Normal parallel to z-axis requires $\begin{aligned} & 2 x-4 y=0 \text { and }-4 x+6 y=0 \\ & x=y=0 ; \text { then }-2 z^{2}-63=0 \end{aligned}$ No solutions; hence no such points	M1A1 ft M1 A1 (ag) 4	Correctly shown
	OR $2 x-4 y=-4 x+6 y$, so $y=\frac{3}{5} x$ $-\frac{8}{25} x^{2}-2 z^{2}-63=0$, hence no points M2A2		Similarly if only $2 x-4 y=0$ used
(v)	$\begin{aligned} & 2 x-4 y=5 \lambda \\ &-4 x+6 y=-6 \lambda \\ &-4 z=2 \lambda \\ & x=-\frac{3}{2} \lambda, \quad y=-2 \lambda, \quad z=-\frac{1}{2} \lambda \end{aligned}$ Substituting into equation of surface $\begin{aligned} \frac{9}{4} \lambda^{2}-12 \lambda^{2}+12 \lambda^{2}-\frac{1}{2} \lambda^{2}-63 & =0 \\ \lambda & = \pm 6 \end{aligned}$	M1A1 ft M1 M1 M1 M1	Obtaining x, y, z in terms of λ or $x=3 z, y=4 z$ Obtaining a value of λ (or equivalent)

	Point $(-9,-12,-3)$ gives $k=-45+72-6=21$ Point $(9,12,3)$ gives $k=45-72+6=-21$	A 1		
A 1			\quad	Using a point to find k
:---				
If $\lambda=1$ is assumed:				
MOM1MOMOM1				

3 (i)	$\begin{aligned} \left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2} & =\left(6 t^{2}-6\right)^{2}+(12 t)^{2} \\ & =36 t^{4}+72 t^{2}+36 \\ & =36\left(t^{2}+1\right)^{2} \end{aligned}$ Arc length is $\int_{0}^{1} 6\left(t^{2}+1\right) \mathrm{d} t$ $\begin{aligned} & =\left[2 t^{3}+6 t\right]_{0}^{1} \\ & =8 \end{aligned}$	M1A1 A1 M1 A1 A1	Using $\int \sqrt{\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}} \mathrm{~d} t$ For $2 t^{3}+6 t$
(ii)	Curved surface area is $\begin{aligned} \int 2 \pi y \mathrm{~d} s & =\int_{0}^{1} 2 \pi\left(6 t^{2}\right) 6\left(t^{2}+1\right) \mathrm{d} t \\ & =\pi\left[\frac{72}{5} t^{5}+24 t^{3}\right]_{0}^{1} \\ & =\frac{192 \pi}{5} \quad(\approx 120.6) \end{aligned}$	M1 A1 M1 A1 A1 5	Using $\int \ldots y \mathrm{~d} s$ (in terms of t) with 'ds' the same as in (i) Any correct integral form in terms of t (limits required) Integration For $\pi\left(\frac{72}{5} t^{5}+24 t^{3}\right)$
(iii)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{12 t}{6 t^{2}-6}\left(=\frac{2 t}{t^{2}-1}\right)$ Equation of normal is $\begin{aligned} y-6 t^{2} & =\frac{1-t^{2}}{2 t}\left(x-2 t^{3}+6 t\right) \\ y-6 t^{2} & =\frac{1}{2}\left(\frac{1}{t}-t\right) x-t^{2}\left(1-t^{2}\right)+3\left(1-t^{2}\right) \\ y & =\frac{1}{2}\left(\frac{1}{t}-t\right) x+2 t^{2}+t^{4}+3 \end{aligned}$	M1 A1 M1 A1 (ag)	Method of differentiation At least one intermediate step required Correctly obtained
(iv)	Differentiating partially with respect to t $\begin{aligned} 0 & =\frac{1}{2}\left(-\frac{1}{t^{2}}-1\right) x+4 t+4 t^{3} \\ \frac{1}{2 t^{2}}\left(1+t^{2}\right) x & =4 t\left(1+t^{2}\right) \\ x & =8 t^{3} \\ t=\frac{1}{2} x^{\frac{1}{3}}, \text { so } y & =\frac{1}{2}\left(2 x^{-\frac{1}{3}}-\frac{1}{2} x^{\frac{1}{3}}\right) x+\frac{1}{2} x^{\frac{2}{3}}+\frac{1}{16} x^{\frac{4}{3}}+3 \\ y & =\frac{3}{2} x^{\frac{2}{3}}-\frac{3}{16} x^{\frac{4}{3}}+3 \end{aligned}$	M1 A2 M1 M1 A1	Give A1 if just one error or omission For obtaining $a x=b t^{3}$ Eliminating t

| (v) | P lies on the envelope of the normals | M 1 |
| :---: | :--- | :--- | :--- |
| Hence$a=\frac{3}{2} \times 64^{\frac{2}{3}}-\frac{3}{16} \times 64^{\frac{4}{3}}+3$
 $=-21$ | Or a fully correct method for
 finding the centre of curvature at
 a general pt
 $\left[\begin{array}{l}\left.\left(8 t^{3}, 6 t^{2}-3 t^{4}+3\right)\right]\end{array}\right.$
 A1 | Or $t=2$ and $a=6 \times 2^{2}-3 \times 2^{4}+3$ |

4 (i)		B6	Give B5 for 30 (bold) entries correct Give B4 for 24 (bold) entries correct Give B3 for 18 (bold) entries correct Give B2 for 12 (bold) entries correct Give B1 for 6 (bold) entries correct
(ii)	Eleme nt \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} - $\mathbf{- J}$ $\mathbf{- K}$ $\mathbf{- L}$ Invers \mathbf{I} $\mathbf{- J}$ $\mathbf{- K}$ $\mathbf{- L}$ $\mathbf{- I}$ \mathbf{J} \mathbf{K} \mathbf{L} e	B3 3	Give B2 for six correct Give B1 for three correct
(iii)	Eleme nt \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} $\mathbf{- I}$ $\mathbf{- J}$ $\mathbf{- K}$ $\mathbf{- L}$ Order 1 4 4 4 2 4 4 4	B3 3	Give B2 for six correct Give B1 for three correct
(iv)	Only two elements of G do not have order 4; so any subgroup of order 4 must contain an element of order 4 A subgroup of order 4 is cyclic if it contains an element of order 4 Hence any subgroup of order 4 is cyclic OR If a group of order 4 is not cyclic, it contains three elements of order 2 B1 G has only one element of order 2; so this cannot occur M1A1 So any subgroup of order 4 is cyclic A1	M1A1 B1 A1	(may be implied) For completion
(v)	$\begin{aligned} & \{\mathbf{I},-\mathbf{I}\} \\ & \{\mathbf{I}, \mathbf{J},-\mathbf{I},-\mathbf{J}\} \\ & \{\mathbf{I}, \mathbf{K},-\mathbf{I},-\mathbf{K}\} \\ & \{\mathbf{I}, \mathbf{L},-\mathbf{I},-\mathbf{L}\} \end{aligned}$	B1 B1 B1 B1 B1	For $\{\mathbf{I},-\mathbf{I}\}$, at least one correct subgroup of order 4, and no wrong subgroups. This mark is lost if G or $\{\mathbf{I}\}$ is included

(vi) | The symmetry group has 5 elements of order | M1 | |
| :--- | :--- | :--- |
| 2 | $\left(4\right.$ reflections and rotation through $\left.180^{\circ}\right)$ | A1 |
| | $\begin{array}{l}G \text { has only one element of order } 2 \text {, hence } G \\ \text { is not isomorphic to the symmetry group }\end{array}$ | A1 |

Considering elements of order 2 (or self-inverse elements)
Identification of at least two elements of order 2 in the symmetry group
3 For completion

Pre-multiplication by transition matrix

5 (i)	$\mathbf{P}=\left(\begin{array}{ccc}0.8 & 0.1 & 0 \\ 0.2 & 0.6 & 0.15 \\ 0 & 0.3 & 0.85\end{array}\right)$	$\mathrm{B1B1B1}^{3}$	For the three columns
(ii)	$\mathbf{P}^{7}\left(\begin{array}{c} 0.6 \\ 0.4 \\ 0 \end{array}\right)=\left(\begin{array}{lll} 0.3204 & 0.1545 & 0.0927 \\ 0.3089 & 0.2895 & 0.2780 \\ 0.3706 & 0.5560 & 0.6293 \end{array}\right)\left(\begin{array}{c} 0.6 \\ 0.4 \\ 0 \end{array}\right)=\left(\begin{array}{c} 0.254 \\ 0.301 \\ 0.445 \end{array}\right)$ Division 3 is the most likely	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Considering \mathbf{P}^{7} (or \mathbf{P}^{8} or \mathbf{P}^{6}) Evaluating a power of \mathbf{P} For \mathbf{P}^{7} (Allow ± 0.001 throughout) Evaluation of probabilities One probability correct Correctly determined
(iii)	$\mathbf{P}^{n} \rightarrow\left(\begin{array}{lll} 0.1429 & 0.1429 & 0.1429 \\ 0.2857 & 0.2857 & 0.2857 \\ 0.5714 & 0.5714 & 0.5714 \end{array}\right)$ Equilibrium probabilities are $0.143,0.286$, 0.571	M1 M1 A1	Considering powers of \mathbf{P} Obtaining limit Must be accurate to 3 dp if given as decimals
	OR $\begin{aligned} & \left(\begin{array}{l} p \\ \mathbf{P} \\ q \\ r \end{array}\right)=\left(\begin{array}{l} p \\ q \\ r \end{array}\right) \Rightarrow \begin{array}{l} 0.8 p+0.1 q=p \\ 0.2 p+0.6 q+0.15 r=q \\ 0.3 q+0.85 r=r \end{array} \\ & q=2 p, r=2 q=4 p \text { and } p+q+r=1 \\ & p=\frac{1}{7}, \quad q=\frac{2}{7}, \quad r=\frac{4}{7} \end{aligned}$		Obtaining at least two equations Solving (must use $p+q+r=1$)
(iv)	$\mathbf{Q}=\left(\begin{array}{cccc}0.8 & 0.1 & 0 & 0 \\ 0.2 & 0.6 & 0.15 & 0 \\ 0 & 0.3 & 0.75 & 0 \\ 0 & 0 & 0.1 & 1\end{array}\right)$	$\left\|\begin{array}{ll} \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & 3 \end{array}\right\|$	Third column Fourth column Fully correct
(v)	$\begin{aligned} & \left.\mathbf{Q}^{\mathbf{Q}^{5}} \begin{array}{l} 0 \\ 1 \\ 0 \\ 0 \end{array}\right)=\left(\begin{array}{llll} 0.4122 & 0.1566 & 0.0592 & 0 \\ 0.3131 & 0.2767 & 0.2052 & 0 \\ 0.2369 & 0.4105 & 0.4030 & 0 \\ 0.0378 & 0.1563 & 0.3326 & 1 \end{array}\right)\left(\begin{array}{l} 0 \\ 1 \\ 0 \\ 0 \end{array}\right) \\ & \quad=\left(\begin{array}{l} 0.1566 \\ 0.2767 \\ 0.4105 \\ 0.1563 \end{array}\right) \\ & \text { P(still in league) }=1-0.1563 \\ & =0.844 \end{aligned}$	M1 M1 A1 M1 A1 ft	Considering \mathbf{Q}^{5} (or \mathbf{Q}^{6} or \mathbf{Q}^{4}) Evaluating a power of \mathbf{Q} For 0.1563 (Allow 0.156 ± 0.001) For $1-a_{4,2}$ ft dependent on M1M1M1
(vi)	P (out of league) is element $a_{4,2}$ in \mathbf{Q}^{n} When $n=15, a_{4,2}=0.4849$ When $n=16, a_{4,2}=0.5094$ First year is 2031	M1 M1 A1 A1	Considering \mathbf{Q}^{n} for at least two more values of n Considering $a_{4,2}$ Dep on previous M1 For $n=16$ SR With no working, $\begin{array}{ll} n=16 \text { stated } & \text { B3 } \\ 2031 \text { stated } & \text { B4 } \end{array}$

Post-multiplication by transition matrix

5 (i)	$\mathbf{P}=\left(\begin{array}{ccc}0.8 & 0.2 & 0 \\ 0.1 & 0.6 & 0.3 \\ 0 & 0.15 & 0.85\end{array}\right)$	${ }^{\text {B1B1B1 }} 3$	For the three rows
(ii)	$\begin{aligned} & \left(\begin{array}{lll} 0.6 & 0.4 & 0 \end{array}\right) \mathbf{P}^{7} \\ & \quad=\left(\begin{array}{lll} 0.6 & 0.4 & 0 \end{array}\right)\left(\begin{array}{lll} 0.3204 & 0.3089 & 0.3706 \\ 0.1545 & 0.2895 & 0.5560 \\ 0.0927 & 0.2780 & 0.6293 \end{array}\right) \\ & \quad=\left(\begin{array}{lll} 0.254 & 0.301 & 0.445 \end{array}\right) \end{aligned}$ Division 3 is the most likely	M1 M1 A1 M1 A1 A1 6	Considering \mathbf{P}^{7} (or \mathbf{P}^{8} or \mathbf{P}^{6}) Evaluating a power of \mathbf{P} For \mathbf{P}^{7} (Allow ± 0.001 throughout) Evaluation of probabilities One probability correct Correctly determined
(iii)	$\mathbf{P}^{n} \rightarrow\left(\begin{array}{lll} 0.1429 & 0.2857 & 0.5714 \\ 0.1429 & 0.2857 & 0.5714 \\ 0.1429 & 0.2857 & 0.5714 \end{array}\right)$ Equilibrium probabilities are $0.143,0.286$, 0.571	M1 M1 A1 3	Considering powers of \mathbf{P} Obtaining limit Must be accurate to 3 dp if given as decimals
			Obtaining at least two equations Solving (must use $p+q+r=1$)
(iv)	$\mathbf{Q}=\left(\begin{array}{cccc}0.8 & 0.2 & 0 & 0 \\ 0.1 & 0.6 & 0.3 & 0 \\ 0 & 0.15 & 0.75 & 0.1 \\ 0 & 0 & 0 & 1\end{array}\right)$	B1 B1 B1 3	Third row Fourth row Fully correct
(v)	$\left.\begin{array}{l} \left(\begin{array}{llll} 0 & 1 & 0 & 0 \end{array}\right) \mathbf{Q}^{5} \\ =\left(\begin{array}{llll} 0 & 1 & 0 & 0 \end{array}\right)\left(\begin{array}{cccc} 0.4122 & 0.3131 & 0.2369 & 0.0378 \\ 0.1566 & 0.2767 & 0.4105 & 0.1563 \\ 0.0592 & 0.2052 & 0.4030 & 0.3326 \\ 0 & 0 & 0 & 1 \end{array}\right) \\ =\left(\begin{array}{lll} 0.1566 & 0.2767 & 0.4105 \end{array} 0.1563\right. \end{array}\right) .$	M1 M1 A1 M1 A1 ft	Considering \mathbf{Q}^{5} (or \mathbf{Q}^{6} or \mathbf{Q}^{4}) Evaluating a power of \mathbf{Q} For 0.1563 (Allow 0.156 ± 0.001) For $1-a_{2,4}$ ft dependent on M1M1M1

(vi)	P (out of league) is element $a_{2,4}$ in \mathbf{Q}^{n} When $n=15, a_{2,4}=0.4849$ When $n=16, a_{2,4}=0.5094$ First year is 2031	M1 M1 A1 A1 4	Considering \mathbf{Q}^{n} for at least two more values of n Considering $a_{2,4}$ Dep on previous M1 For $n=16$ $S R$ With no working, $n=16$ stated B3 2031 stated B4

Mark Scheme 4758 June 2006

1(i) $\lambda=0$
$x=A \cos \sqrt{5} t+B \sin \sqrt{5} t$
(ii) $(2 \lambda)^{2}-4 \cdot 5<0$
$0<\lambda<\sqrt{5}$
(iii) $\alpha^{2}+2 \alpha+5=0$
$\alpha=-1 \pm 2 j$
$x=\mathrm{e}^{-t}(C \cos 2 t+D \sin 2 t)$
(iv) $x_{0}=C$
$\dot{x}=-\mathrm{e}^{-t}(C \cos 2 t+D \sin 2 t)+\mathrm{e}^{-t}(-2 C \sin 2 t+2 D \cos 2 t)$
$0=-C+2 D$
D $=\frac{1}{2} x_{0}$
$x=x_{0} \mathrm{e}^{-t}\left(\cos 2 t+\frac{1}{2} \sin 2 t\right)$
(v) $\cos 2 t+\frac{1}{2} \sin 2 t=0$
$\tan 2 t=-2$
$t=1.017$
(vi) $\quad \alpha^{2}+6 \alpha+5$
$\alpha=-1,-5$
$x=E \mathrm{e}^{-t}+F \mathrm{e}^{-5 t}$
$x_{0}=E+F$
$\dot{x}=-E \mathrm{e}^{-t}-5 F \mathrm{e}^{-5 t}$
$0=-E-5 F$
$E=\frac{5}{4} x_{0}, F=-\frac{1}{4} x_{0}$
$x=\frac{1}{4} x_{0}\left(5 \mathrm{e}^{-t}-\mathrm{e}^{-5 t}\right)$
$x=\frac{1}{4} x_{0} \mathrm{e}^{-t}\left(5-\mathrm{e}^{-4 t}\right)$
$t>0 \Rightarrow 5>\mathrm{e}^{-4 t}, x_{0}>0, \mathrm{e}^{-t}>0 \Rightarrow x>0$ i.e. never zero
$\cos \sqrt{5} t$ or $\sin \sqrt{5} t$ or $A \cos \omega t+B \sin \omega t$ seen or GS for their λ

M1 Use of discriminant
A1 Correct inequality
A1 Accept lower limit omitted or $-\sqrt{5}$
M1 Auxiliary equation
A1
F1 CF for their roots

M1 Condition on x
M1 Differentiate (product rule)
M1 Condition on \dot{x}

A1 cao

M1
M1
A1 cao

M1 Auxiliary equation
A1
F1 CF for their roots
M1 Condition on x

M1 Condition on \dot{x}

A1 cao
M1 Attempt complete method
E1 Fully justified (only $\neq 0$ required)

$$
\text { 2(i) } \begin{aligned}
& \lambda+2=0 \Rightarrow \lambda=-2 \\
& \text { CF } x=A \mathrm{e}^{-2 t} \\
& \text { PI } x=a t+b \\
& a+2(a t+b)=t+1 \\
& 2 a=1, a+2 b=1 \\
& a=\frac{1}{2}, b=\frac{1}{4} \\
& x=\frac{1}{2} t+\frac{1}{4}+A \mathrm{e}^{-2 t} \\
& t=0, x=1 \Rightarrow 1=\frac{1}{4}+A \\
& x=\frac{1}{2} t+\frac{1}{4}+\frac{3}{4} \mathrm{e}^{-2 t} \\
& \text { Alternatively: } \\
& I=\exp \left(\int 2 \mathrm{~d} t\right)=\mathrm{e}^{2 t} \\
& \mathrm{e}^{2 t} \frac{\mathrm{~d} x}{\mathrm{~d} t}+2 \mathrm{e}^{2 t} x=\mathrm{e}^{2 t}(t+1) \\
& \mathrm{e}^{2 t} x=\int \mathrm{e}^{2 t}(t+1) \mathrm{d} t \\
& =\frac{1}{2} \mathrm{e}^{2 t}(t+1)-\int \frac{1}{2} \mathrm{e}^{2 t} \mathrm{~d} t \\
& \mathrm{e}^{2 t} x=\frac{1}{2} \mathrm{e}^{2 t}(t+1)-\frac{1}{4} \mathrm{e}^{2 t}+A \\
& x=\frac{1}{2} t+\frac{1}{4}+A \mathrm{e}^{-2 t} \\
& t=0, x=1 \Rightarrow 1=\frac{1}{4}+A \\
& x=\frac{1}{2} t+\frac{1}{4}+\frac{3}{4} \mathrm{e}^{-2 t}
\end{aligned}
$$

(ii) $\frac{2}{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{x}$
$\int \frac{2}{y} \mathrm{~d} y=\int \frac{1}{x} \mathrm{~d} x$
$2 \ln y=\ln x+c$
$y=B \sqrt{x}$
$(t=0), x=1, y=4 \Rightarrow y=4 \sqrt{x}$
$y=4 \sqrt{\frac{1}{2} t+\frac{1}{4}+\frac{3}{4} \mathrm{e}^{-2 t}}$
(iii) $\frac{\mathrm{d} z}{\mathrm{~d} x}+\frac{2}{x} z=6$
$I=\exp \left(\int \frac{2}{x} \mathrm{~d} x\right)$
$=x^{2}$
$\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{2} z\right)=6 x^{2}$
$x^{2} z=2 x^{3}+C$
$z=2 x+C x^{-2}$
$(t=0), x=1, z=3 \Rightarrow C=1$
$z=2 x+x^{-2}$
$t=1 \Rightarrow x=0.852$
$y=3.69$
$z=3.08$

F1 CF + PI
M1 Condition on x
F1 Follow a non-trivial GS

M1
A1 Integrating factor
B1 Multiply DE by their I
M1 Attempt integral
M1 Integration by parts

F1 Divide by their I (must also divide constant)
M1 Condition on x
F1 Follow a non-trivial GS

M1 Separate

M1 Integrate

M1 Make y subject, dealing properly with constant
M1 Condition
F1 $\quad y=4 \sqrt{ }($ their x in terms of $t)$

M1 Divide DE by x
M1 Attempt integrating factor
A1 Simplified
F1 Follow their integrating factor
A1
F1 Divide by their I (must also divide constant)
M1 Condition on z
A1 cao (in terms of x)

B1 Any 2 values (at least 3sf)
B1 All 3 correct (and 3sf)

3(i) $\frac{\mathrm{d} v}{\mathrm{~d} x}=\frac{1}{v} \mathrm{f}(x)$ so (unless $\left.\mathrm{f}(x)=0\right), v \rightarrow 0 \Rightarrow \frac{\mathrm{~d} v}{\mathrm{~d} x} \rightarrow \pm \infty$
i.e. gradient parallel to v-axis (vertical)
$x=4000 \Rightarrow v \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{1}{5000^{2}}-\frac{1}{5000^{2}}=0$
so if $v \neq 0$ then gradient parallel to x-axis (horizontal)
(ii)

(iii) $\int v \mathrm{~d} v=\int\left((9000-x)^{-2}-(1000+x)^{-2}\right) \mathrm{d} x$
$\frac{1}{2} v^{2}=\frac{1}{9000-x}+\frac{1}{1000+x}+c$
$\frac{1}{2} V_{0}^{2}=\frac{1}{9000}+\frac{1}{1000}+c$
$v^{2}=\frac{2}{9000-x}+\frac{2}{1000+x}+V_{0}^{2}-\frac{1}{450}$
(iv) minimum when $x=4000$
$v_{\min }^{2}=\frac{2}{5000}+\frac{2}{5000}+V_{0}^{2}-\frac{1}{450}$
need $v_{\text {min }}{ }^{2}>0$
$v_{\min }^{2}>0$ if $V_{0}^{2}>\frac{1}{450}-\frac{4}{5000}$
$V_{0}>0.0377$

Consider $\frac{\mathrm{d} v}{\mathrm{~d} x}$ or $\frac{\mathrm{d} x}{\mathrm{~d} v}$ when $v=0$, but not if
M1 $\frac{\mathrm{d} v}{\mathrm{~d} x}=0$
E1 Must conclude about direction
M1 Consider $\frac{\mathrm{d} v}{\mathrm{~d} x}$ when $x=4000$
E1 Must conclude about direction
M1 Add to tangent field
A1 Several vertical direction indicators on x-axis
M1 Attempt one curve
A1
M1 Attempt second curve
A1

B1 Must be consistent with their curve
B1 Must be consistent with their curve N.B. Cannot score these if curve not drawn

M1 Separate
M1 Integrate
B1 LHS
A1 RHS
M1 Condition
A1

B1 Clearly stated
M1 Substitute their x into v or v^{2}
F1 Their v^{2} or v when $x=4000$
M1 For $v_{\min }^{2}>0$
M1 Attempt inequality for $V_{0}{ }^{2}$
A1 cao

4(i) $\quad \ddot{x}=2 \dot{x}-\dot{y}$
$=2 \dot{x}-(5 x-4 y+18)$
$y=2 x+3-\dot{x}$
$\ddot{x}=2 \dot{x}-5 x+4(2 x+3-\dot{x})-18$
$\ddot{x}+2 \dot{x}-3 x=-6$
(ii) $\quad \lambda^{2}+2 \lambda-3=0$
$\lambda=1$ or -3
CF $x=A \mathrm{e}^{-3 t}+B \mathrm{e}^{t}$
PI $x=a$
$-3 a=-6 \Rightarrow a=2$
$x=2+A \mathrm{e}^{-3 t}+B \mathrm{e}^{t}$
$y=2 x+3-\dot{x}$
$=4+2 A \mathrm{e}^{-3 t}+2 B \mathrm{e}^{t}+3-\left(-3 A \mathrm{e}^{-3 t}+B \mathrm{e}^{t}\right)$
$y=7+5 A \mathrm{e}^{-3 t}+B \mathrm{e}^{t}$
(iii) $4=2+A+B$
$17=7+5 A+B$
$A=2, B=0$
$x=2+2 \mathrm{e}^{-3 t}$
$y=7+10 \mathrm{e}^{-3 t}$

M1 Differentiate first equation
M1 Substitute for \dot{y}
M1 y in terms of x, \dot{x}
M1 Substitute for y
E1 LHS
E1 RHS
M1 Auxiliary equation
A1
F1 CF for their roots
B1 Constant PI
B1 Pl correct
F1 Their CF + PI
M1 y in terms of x, \dot{x}
M1 Differentiate x and substitute
A1 Constants must correspond with those in x

M1 Condition on x
M1 Condition on y
M1 Solve
F1 Follow their GS
F1 Follow their GS

B1 Sketch of x starts at 4 and decreases
B1 Asymptote $x=2$

B1 Sketch of y starts at 17 and decreases
B1 Asymptote $y=7$

Mark Scheme 4761 June 2006

Q 1

$$
\begin{aligned}
0 & =u-9.8 \times 3 \\
u & =29.4 \text { so } 29.4 \mathrm{~m} \mathrm{~s}^{-1} \\
s & =0.5 \times 9.8 \times 9=44.1 \text { so } 44.1 \mathrm{~m}
\end{aligned}
$$

mark

M1 uvast leading to u with $t=3$ or $t=6$
A1 Signs consistent
M1 uvast leading to s with $t=3$ or $t=6$ or their u
F1 FT their u if used with $t=3$. Signs consistent.
Award for 44.1, 132.3 or 176.4 seen.
[Award maximum of 3 if one answer wrong]

Q 2
mark

M1 Accept $\sqrt{-6^{2}+13^{2}}$

B1 May not be explicit. If diagram used it must have correct orientation. Give if final angle correct.
M1 Use of $\arctan \left(\pm \frac{8}{3}\right)$ or $\arctan \left(\pm \frac{3}{8}\right)\left(\pm 20.6^{\circ}\right.$ or $\pm 69.4^{\circ}$) or equivalent on their resultant

A1 cao. Do not accept -21°.

M1 Use of N2L with accn used in vector form
A1 Any form. Units not required. isw.
(iii) $\binom{-3}{5}=5 \mathbf{a}$
so $(-0.6 \mathbf{i}+\mathbf{j}) \mathrm{m} \mathrm{s}^{-2}$
change in velocity is $(-6 \mathbf{i}+10 \mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$

F1 10a seen. Units not required. Must be a vector.
[SC1 for $a=\sqrt{3^{2}+5^{2}} / 5=1.17$]
mark

M1 Use of N2L. Allow $F=m g a$ and wrong mass. No extra forces.
A1

B1 FT F from (i). Condone negative answer.

M1 N2L applied to truck (or engine) using all forces required. No extras. Correct mass. Do not allow use of $F=m g a$. Allow sign errors.
so 150 N
A1 cao

M1 Attempt to find cpt of weight (allow wrong mass). Accept $\sin \leftrightarrow \cos$. Accept use of $m \sin \theta$.

M1 May be implied. Correct mass. No extra forces. Must have resolved weight component. Allow $\sin \leftrightarrow \cos$
$14000 \mathrm{~g} \sin 3^{\circ}$
$=14000 \times 9.8 \times 0.0523359 \ldots=7180.49 \ldots$
so 7180 N (3 s. f.)
or

$$
D-500-14000 g \sin 3=14000 \times 0.25
$$

$D=11180.49 \ldots$ so extra is $7180 \mathrm{~N}(3 \mathrm{~s} . \mathrm{f}$.
either
Component of weight down slope is

Extra driving force is cpt of $m g$ down slope

A1
M1 Attempt to find cpt of weight (allow wrong mass). Accept $\sin \leftrightarrow \cos$. Accept use of $m \sin \theta$.
N 2 L with all terms present with correct signs and mass.
No extras. FT 500 N. Accept their $500+150$ for resistance. Must have resolved weight component. Allow $\sin \leftrightarrow \cos$.
A1 Must be the extra force.

Q4
(i) either

Need \mathbf{j} cpt 0 so $18 t^{2}-1=0$
$\Rightarrow t^{2}=\frac{1}{18}$. Only one root as $t>0$
or
Establish sign change in \mathbf{j} cpt
Establish only one root
(ii) $\mathbf{v}=3 \mathbf{i}+36 t \mathbf{j}$

Need \mathbf{i} cpt 0 and this never happens
(iii) $x=3 t$ and $y=18 t^{2}-1$

Eliminate t to give
$y=18\left(\frac{x}{3}\right)^{2}-1$
so $y=2 x^{2}-1$

Q 5
(i) $0^{2}=V^{2}-2 \times 9.8 \times 22.5$
$V=21$ so $21 \mathrm{~m} \mathrm{~s}^{-1}$
(ii) $28 \sin \theta=21$
so $\theta=48.59037 \ldots$
(iii) Time to highest point is $\frac{21}{9.8}=\frac{15}{7}$

Distance is $2 \times \frac{15}{7} \times 28 \times \cos ($ their $\theta)$.
$79.3725 \ldots$ so 79.4 m (3 s. f.)
mark

M1 Need not solve
E1 Must establish only one of the two roots is valid

B1
B1

B1 Or equivalent (time of whole flight)

M1 Valid method for horizontal distance. Accept $1 / 2$ time.
Do not accept 28 used for horizontal speed or vertical speed when calculating time.
B1 Horizontal speed correct
A1 cao. Accept answers rounding to 79 or 80 . [If angle with vertical found in (ii) allow up to full marks in (iii). If $\sin \leftrightarrow \cos$ allow up to B1 B1 M0 A1] [If $u^{2} \sin 2 \theta / g$ used then
M1* Correct formula used. FT their angle.
M1 Dep on *. Correct subst. FT their angle. A2 cao]

Q 6
(i) $0.5 \times 2 \times 12+0.5 \times 4 \times 12$
so 36 m
(ii)
$8-\frac{36}{12}=5$ seconds
mark

M1 Attempt at sum of areas or equivalent. No extra areas.
A1

B1 cao

M1 Attempt at acen for $0 \leq t \leq 2$
B1 must be - ve or equivalent

M1 Use of uvast with 12 and 58.5
A1

M1 Differentiation

A1 cao

M1 Attempt to integrate
A1 At least one term correct
A1 All correct. Accept $+C$ omitted
A1* Clearly shown
A1 cao (award even if A1* is not given)

B1 Both calculated correctly from their s. No further marks if their $s(2) \leq s(4)$
E1
E1 Do not need car going backwards throughout the interval.
B1 e.g. $v(3)=-1.125$
No further marks if their $v \geq 0$
E1
E1 Do not need car going backwards throughout the interval
[Award WW2 for 'car going backwards'; WW1 for velocity or displacement negative]

Q 7
(i) $T_{\mathrm{AB}} \sin \alpha=147$
so $T_{\mathrm{AB}}=\frac{147}{0.6}$
$=245$ so 245 N
(ii) $T_{\mathrm{BC}}=245 \cos \alpha$
$=245 \times 0.8=196$
(iii) Geometry of A, B and C and weight of B the same and these determine the tension
(iv)

either

Realise that 196 N and 90 N are horiz and vert forces where resultant has magnitude and line of action of the tension
$\tan \beta=90 / 196$
$\beta=24.6638$... so 24.7 (3 s. f.)
$T=\sqrt{196^{2}+90^{2}}$
$T=215.675 \ldots$ so 216 N (3 s. f.)
or
$\uparrow T \sin \beta-90=0$
$\rightarrow T \cos \beta-196=0$
Solving $\tan \beta=\frac{90}{196}=0.45918$...
$\beta=24.6638 \ldots$ so 24.7 (3 s. f.)
$T=215.675 \ldots$ so 216 N (3 s. f.)
(v) Tension on block is $215.675 . . \mathrm{N}$ (pulley is smooth and string is light) $M \times 9.8 \times \sin 40=215.675 \ldots+20$
$M=37.4128 \ldots$ so 37.4 (3 s. f.)
mark

M1 Attempt at resolving. Accept $\sin \leftrightarrow \cos$. Must have T resolved and equated to 147 .

B1 Use of 0.6. Accept correct subst for angle in wrong expression.
A1 Only accept answers agreeing to 3 s. f.
[Lami: M1 pair of ratios attempted; B1 correct sub;A1]
M1 Attempt to resolve 245 and equate to T, or equiv Accept $\sin \leftrightarrow \cos$
E1 Substitution of 0.8 clearly shown
[SC1 $245 \times 0.8=196$]
[Lami: M1 pair of ratios attempted; E1]
E1 Mention of two of: same weight: same direction AB : same direction BC
E1 Specific mention of same geometry \& weight or recognition of same force diagram

No extra forces.
B1 Correct orientation and arrows
B1 ' T ' 196 and 90 labelled. Accept 'tension' written out.

M1 Allow for only β or T attempted

B1 Use of $\arctan (196 / 90)$ or $\arctan (90 / 196)$ or equiv
A1
M1 Use of Pythagoras
E1

B1 Allow if $T=216$ assumed
B1 Allow if $T=216$ assumed
M1 Eliminating T, or...
A1 [If $T=216$ assumed, B 1 for $\beta ; \mathrm{B} 1$ for check in $2^{\text {nd }}$ E1 equation; E0]

B1 May be implied. Reasons not required.
M1 Equating their tension on the block unresolved ± 20 to weight component. If equation in any other direction, normal reaction must be present.
A1 Correct
A1 Accept answers rounding to 37 and 38

Mark Scheme 4762
June 2006

Q1		mark		Sub
(a) (i) (A)	PCLM $\rightarrow+$ ve $2 \times 4-6 \times 2=8 v$ $v=-0.5$ so $0.5 \mathrm{~m} \mathrm{~s}^{-1}$ in opposite	M1 A1 direction to initial motion of P	Ase of PCLM and correct mass on RHS Any form Direction must be negative and consistent or clear. Accept use of a diagram.	
(B)	$0.5 \times 2 \times 4^{2}+0.5 \times 6 \times 2^{2}-0.5 \times 8 \times(-0.5)^{2}$ $=27 \mathrm{~J}$	M1	Use of KE. Must sum initial terms. Must have correct masses FT their (A) only	

Q 2		mark		b
(i)	Diagrams cw moments about A $\begin{aligned} & 2 \times 90-3 R_{\mathrm{B}}=0 \\ & R_{\mathrm{B}}=60 \text { so } 60 \mathrm{~N} \text { upwards } \end{aligned}$ cw moments about R: $T \downarrow$ $75 \times 1+3 T-60 \times 0.5=0$ $T=-15$ so 15 N upwards	B1 M1 A1 M1 A1 A1	Internal force at B must be shown $1^{\text {st }}$ moments equation attempted for either force. Accept direction not specified $2^{\text {nd }}$ moments equation for other force. All forces present. No extra forces. Allow only sign errors Direction must be clear (accept diag)	6
(ii)	cw moments about A $90 \times 2 \cos 30-V \times 3 \cos 30-U \times 3 \cos 60=0$ giving $60 \sqrt{3}=U+V \sqrt{3}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { E1 } \end{aligned}$	Moments equation with resolution. Accept terms missing All correct. Allow only sign errors. Clearly shown	3
(iii)	Diagram	B1	U and V correct with labels and arrows	1
(iv)	ac moments about C $75 \times 2 \cos 30+3.5 V \cos 30-3.5 U \cos 60=0$ $\frac{300}{7} \sqrt{3}=U-V \sqrt{3}$ Solving for U and V $\begin{aligned} & U=\frac{360 \sqrt{3}}{7}(=89.0768 \ldots) \\ & V=\frac{60}{7}(=8.571428 \ldots) \end{aligned}$ Resolve \rightarrow on BC $F=U$ so frictional force is $\frac{360 \sqrt{3}}{7} \mathrm{~N}$ $\text { (= } 89.1 \text { N (3 s. f. }) \text {) }$	M1 B1 A1 M1 A1 F1 M1 F1	Moments equation with resolution. Accept term missing At least two terms correct (condone wrong signs) Accept any form Any method to eliminate one variable Accept any form and any reasonable accuracy Accept any form and any reasonable accuracy [Either of U and V is cao. FT the other]	8
				18

Q 3		mark		Sub
(a)	$20000=(R+900 g \times 0.1) \times 16$ $R=368 \text { so } 368 \mathrm{~N}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Use of $P=F v$, may be implied. Correct weight term All correct	4
$\begin{aligned} & \hline \text { (b) } \\ & \text { (i) } \end{aligned}$	$F_{\max }=\mu m g \cos \alpha$ Force down slope is weight $\mathrm{cpt} m g \sin \alpha$ Require $\mu m g \cos \alpha \geq m g \sin \alpha$ so $\mu \geq \tan \alpha=\frac{5}{12}$	B1 B1 E1	Correct expression for $F_{\text {max }}$ or wt cpt down slope (may be implied and in any form) Identifying $\sin \alpha$ as $5 / 13$ or equivalent Proper use of $F \leq \mu R$ or equivalent. [$\mu=\tan \alpha$ used WW; SC1]	3
(ii)	either $\begin{aligned} & 0.5 \times 11 \times v^{2} \\ & =11 g \times 1.5 \times \frac{5}{13}+0.2 \times 11 g \times 1.5 \times \frac{12}{13}+9 \end{aligned}$ $\begin{aligned} & v^{2}=18.3717 \ldots \\ & v=4.2862 \ldots \text { so } 4.29 \mathrm{~m} \mathrm{~s}^{-1}(3 \text { s. f. }) \end{aligned}$ or + ve up the slope $\begin{aligned} & -11 g \times \frac{5}{13}-0.2 \times 11 g \times \frac{12}{13}-6=11 a \\ & a=-6.1239 \mathrm{~m} \mathrm{~s}^{-2} \\ & v^{2}=-3 a \\ & v=4.286 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	M1 A1	Use of work energy with at least three required terms attempted Any term RHS. Condone sign error. Another term RHS. Condone sign error. All correct . Allow if trig consistent but wrong cao Use of N2L Any correct term on LHS use of appropriate uvast c.a.o.	5
(iii)	continued overleaf			

3 (iii)	$\begin{aligned} & \text { continued } \\ & \text { either } \\ & \text { Extra GPE balances WD against } \\ & \text { resistances } \\ & m g x \sin \alpha \\ & =6(x+3)+0.2 \times 11 g \times \cos \alpha(x+3) \\ & x=4.99386 \ldots \text { so } 4.99 \mathrm{~m}(3 \mathrm{s.f.}) \\ & \text { or } \\ & 0.5 \times 11 \times 18.3717 \ldots \\ & =(1.5+x) \times 11 g \times \frac{5}{13}-6(1.5+x) \\ & -(1.5+x) \times 0.2 \times 11 g \times \frac{12}{13} \\ & x=4.99386 \ldots \text { so } 4.99 \mathrm{~m}(3 \mathrm{~s} . \mathrm{f} .) \\ & \text { or } \\ & +\mathrm{ve} \mathrm{down} \mathrm{the} \mathrm{slope} \\ & 11 g \times 5 / 13-0.2 \times 11 g \times 12 / 13-6=11 a \\ & a=1.4145 \ldots \mathrm{~m} \mathrm{~s}-2 \\ & 4.286^{2}=2 \mathrm{a}(1.5+x) \\ & x=4.99 \end{aligned}$	M1 B1 B1 B1 A1 A1 M1 B1 B1 B1 A1 A1 M1 A1 A1 M1 B1 A1	Or equivalent One of $1^{\text {st }}$ three terms on RHS correct Another of $1^{\text {st }} 3$ terms on RHS correct All correct. FT their v if used. cao. Allow 1 term missing KE. FT their v Use of $1.5+x$ (may be below) WD against friction All correct cao. N2L with all terms present all correct except condone sign errors use of appropriate uvast for $(1.5+x)$ (may be implied) c.a.o.	6
				18

Q 4		mark		Sub
(i)	$100\binom{\bar{x}}{\bar{y}}=10\binom{5}{0}+30\binom{10}{15}+30\binom{20}{15}+30\binom{25}{30}$ $\begin{aligned} & 100\binom{\bar{x}}{\bar{y}}=\binom{1700}{1800} \\ & \bar{x}=17 \\ & \bar{y}=18 \end{aligned}$	M1 B1 B1 A1 A1	Correct method for c.m. Total mass correct One c.m. on RHS correct [If separate components considered, B1 for 2 correct] cao cao. [Allow SC $4 / 5$ for $\bar{x}=18$ and $\bar{y}=17$]	5
(ii)	$(17,18,20)$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	x - and y - coordinates. FT from (i). z coordinate	2
(iii)	cw moments about horizontal edge thro' D x component $P \times 20-60 \times(20-17)=0$ $P=9$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { A1 } \end{aligned}$	Or equivalent with all forces present One moment correct (accept use of mass or length) correct use of their \bar{x} in a distance FT only their \bar{x}	4
(iv)	Diagram	B1	Normal reaction must be indicated acting vertically upwards at edge on Oz and weight be in approximately the correct place.	1
(v)	On point of toppling ac moments about edge along Oz $\begin{aligned} & 30 \times Q-60 \times 17=0 \\ & Q=34 \end{aligned}$ Resolving horizontally $F=Q$ As $34>30$, slips first	$\begin{aligned} & \text { M1 } \\ & \mathrm{B} 1 \\ & \mathrm{~F} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Or equivalent with all forces present Any moment correct (accept use of mass or length) FT only their \bar{x} FT their Q correctly argued.	5
				17

Mark Scheme 4763 June 2006

1(a)(i)	$\begin{aligned} & {[\text { Force }]=\mathrm{MLT} \mathrm{~T}^{-2}} \\ & {\left[\begin{array}{rl} {[\text { Power }]} & =[\text { Force }] \times[\text { Distance }] \div[\text { Time }] \\ & =[\text { Force }] \times \mathrm{LT}^{-1} \\ & =\mathrm{ML}^{2} \mathrm{~T}^{-3} \end{array}\right.} \end{aligned}$	B1 M1 A1 3	$\begin{aligned} & \text { or [Energy] }=\mathrm{ML}^{2} \mathrm{~T}^{-2} \\ & \text { or [Energy] } \times \mathrm{T}^{-1} \end{aligned}$
(ii)	$\left.\begin{array}{rl} {[\mathrm{RHS}]} & =\frac{(\mathrm{L})^{3}\left(\mathrm{LT}^{-1}\right)^{2}\left(\mathrm{ML}^{-3}\right)}{\mathrm{ML}^{2} \mathrm{~T}^{-3}} \\ & =\mathrm{T} \end{array}\right][\text { LHS }]=\mathrm{L} \text { so equation is not consistent } .$	$\begin{aligned} & \text { B1B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { E1 } \end{aligned}$	For $\left(\mathrm{LT}^{-1}\right)^{2}$ and $\left(\mathrm{ML}^{-3}\right)$ Simplifying dimensions of RHS With all working correct (cao) SR '... $\mathrm{L}=\frac{28}{9} \pi \mathrm{~T}$, so inconsistent ' can earn B1B1M1A1E0
(iii)	[RHS] needs to be multiplied by LT^{-1} which are the dimensions of u Correct formula is $x=\frac{28 \pi r^{3} u^{3} \rho}{9 P}$	M1 A1 A1 cao 3	RHS must appear correctly
	$\begin{aligned} & \text { OR } x=k r^{\alpha} u^{\beta} \rho^{\gamma} P^{\delta} \\ & \beta=3 \\ & x=\frac{28 \pi r^{3} u^{3} \rho}{9 P} \end{aligned}$		Equating powers of one dimension
(b)(i)	$\begin{gathered} \text { Elastic energy is } \begin{array}{c} \frac{1}{2} \times 150 \times 0.8^{2} \\ =48 \mathrm{~J} \end{array} \end{gathered}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$ 2	Treat use of modulus $\lambda=150 \mathrm{~N}$ as $M R$
(ii)	In extreme position, length of string is $2 \sqrt{1.2^{2}+0.9^{2}} \quad(=3)$ elastic energy is $\frac{1}{2} \times 150 \times 1.4^{2} \quad(=147)$ By conservation of energy, $147-48=\frac{1}{2} \times m \times 10^{2}$ Mass is 1.98 kg	B1 M1 M1 A1 A1 5	for $\sqrt{1.2^{2}+0.9^{2}}$ or 1.5 or 3 allow M1 for $(2 \times) \frac{1}{2} \times 150 \times 0.7^{2}$ Equation involving EE and KE

$\begin{aligned} & 2 \\ & \text { (a)(i) } \end{aligned}$	Vertically, $\quad T \cos 55^{\circ}=0.6 \times 9.8$ Tension is 10.25 N	M1 2	
(ii)	Radius of circle is $r=2.8 \sin 55^{\circ} \quad(=2.294)$	B1	
	Towards centre, $T \sin 55^{\circ}=0.6 \times \frac{v^{2}}{2.8 \sin 55^{\circ}}$	M2	Give M1 for one error
	$\begin{aligned} \mathrm{OR} T \sin 55^{\circ} & =0.6 \times\left(2.8 \sin 55^{\circ}\right) \times \omega^{2} \\ \omega & =2.47 \\ v & =\left(2.8 \sin 55^{\circ}\right) \omega \end{aligned}$		or $T=0.6 \times 2.8 \times \omega^{2}$ Dependent on previous M1
	Speed is $5.67 \mathrm{~m} \mathrm{~s}^{-1}$	$\mathrm{A} 1$ 4	
(b)(i)	Tangential acceleration is $r \alpha=1.4 \times 1.12$ $\begin{aligned} F_{1} & =0.5 \times 1.4 \times 1.12 \\ & =0.784 \mathrm{~N} \end{aligned}$ Radial acceleration is $r \omega^{2}=1.4 \omega^{2}$ $\begin{aligned} F_{2} & =0.5 \times 1.4 \omega^{2} \\ & =0.7 \omega^{2} \mathrm{~N} \end{aligned}$	M1 A1 M1 A1	SR $\quad F_{1}=-0.784, F_{2}=-0.7 \omega^{2}$ penalise once only
(ii)	Friction $F=\sqrt{F_{1}{ }^{2}+F_{2}{ }^{2}}$ Normal reaction $R=0.5 \times 9.8$ About to slip when $F=\mu \times 0.5 \times 9.8$ $\sqrt{0.784^{2}+0.49 \omega^{4}}=0.65 \times 0.5 \times 9.8$ $\omega=2.1$	M1 M1 A1 A1 A1 cao 5	For LHS and RHS Both dependent on M1M1
(iii)	$\begin{aligned} \tan \theta & =\frac{F_{1}}{F_{2}} \\ & =\frac{0.784}{0.7 \times 2.1^{2}} \end{aligned}$ Angle is 14.25°	M1 A1 A1 3	Allow M 1 for $\tan \theta=\frac{F_{2}}{F_{1}}$ etc Accept 0.249 rad

3 (i)	$\begin{aligned} & T_{\mathrm{AP}}=\frac{1323}{3} \times 2 \quad(=882) \\ & T_{\mathrm{BP}}=\frac{1323}{4.5} \times 2.5 \quad(=735) \\ & T_{\mathrm{AP}}-m g-T_{\mathrm{BP}}=882-15 \times 9.8-735=0 \end{aligned}$ so P is in equilibrium	B1 B1 E1 3	
	$\begin{array}{ccc} \text { OR } \quad \frac{1323}{3}(\mathrm{AP}-3)=\frac{1323}{4.5}(\mathrm{BP}-4.5)+15 \times 9.8 & \mathrm{~B} 2 \\ \mathrm{AP}+\mathrm{BP}=12 \text { and solving, } \mathrm{AP}=5 & \mathrm{E} 1 \end{array}$		Give B1 for one tension correct
(ii)	Extension of AP is $5-x-3=2-x$ $T_{\mathrm{AP}}=\frac{1323}{3}(2-x)=441(2-x)$ Extension of BP is $7+x-4.5=2.5+x$ $T_{\mathrm{BP}}=\frac{1323}{4.5}(2.5+x)=294(2.5+x)$	$\begin{aligned} & \mathrm{E} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \end{aligned}$ 3	
(iii)	$\begin{aligned} 441(2-x)-15 \times 9.8-294(2.5+x) & =15 \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}} \\ \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}} & =-49 x \end{aligned}$ Motion is SHM with period $\frac{2 \pi}{\omega}=\frac{2 \pi}{7}=0.898 \mathrm{~s}$	M1 A1 M1 A1 4	Equation of motion involving 3 forces Obtaining $\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=-\omega^{2} x(+c)$ Accept $\frac{2}{7} \pi$
(iv)	Centre of motion is $\mathrm{AP}=5$ If minimum value of $A P$ is 3.5 , amplitude is 1.5 Maximum value of AP is 6.5 m	B1	
(v)	When $\mathrm{AP}=4.1, \quad x=0.9$ Using $v^{2}=\omega^{2}\left(A^{2}-x^{2}\right)$ $v^{2}=49\left(1.5^{2}-0.9^{2}\right)$ Speed is $8.4 \mathrm{~m} \mathrm{~s}^{-1}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$ 3	Accept ± 8.4 or -8.4
			$\begin{aligned} \text { or } & x=1.5 \cos 7 t \\ \text { or } & 7 t \end{aligned}=0.9273 \quad(t=0.1325)$

(vi)	$x=1.5 \cos 7 t$ When $1.5 \cos 7 t=0.5$ Time taken is 0.176 s	M1 A1 M1 A1		For $\cos (\sqrt{49} t)$ or $\sin (\sqrt{49} t)$ or $x=1.5 \sin 7 t$ M1A1 above can be awarded in (v) if not earned in (vi) or other fully correct method to find the required time e.g. $0.400-0.224$ or 0.224-0.049 Accept 0.17 or 0.18

4 (i)	$\begin{aligned} & \int \begin{aligned} & \pi y^{2} \mathrm{~d} x=\int_{1}^{4} \pi x \mathrm{~d} x \\ &=\left[\frac{1}{2} \pi x^{2}\right]_{1}^{4}=7.5 \pi \\ & \int \pi x y^{2} \mathrm{~d} x \end{aligned} \\ & \quad=\int_{1}^{4} \pi x^{2} \mathrm{~d} x=\left[\frac{1}{3} \pi x^{3}\right]_{1}^{4} \quad(=21 \pi) \\ & \bar{x}=\frac{21 \pi}{7.5 \pi} \\ & =2.8 \end{aligned}$	M1 A1 M1 A1 M1 A1 6	π may be omitted throughout
(ii)	Cylinder has mass $3 \pi \rho$ Cylinder has CM at $x=2.5$ $(4.5 \pi \rho) \bar{x}+(3 \pi \rho)(2.5)=(7.5 \pi \rho)(2.8)$ $\bar{x}=3$	B1 B1 M1 A1 E1 5	Or volume 3π Relating three CMs (ρ and / or π may be omitted) or equivalent, e.g. $\bar{x}=\frac{(7.5 \pi \rho)(2.8)-(3 \pi \rho)(2.5)}{7.5 \pi \rho-3 \pi \rho}$ Correctly obtained
(iii)(A)	Moments about A, $S \times 3-96 \times 2=0$ $S=64 \mathrm{~N}$ Vertically, $R+S=96$ $R=32 \mathrm{~N}$	M1 A1 M1 A1 4	Moments equation or another moments equation Dependent on previous M1
(B)	Moments about A $S \times 3-96 \times 2-6 \times 1.5=0$ $\begin{array}{ll} \text { Vertically, } & R+S=96+6 \\ & R=35 \mathrm{~N}, \quad S=67 \mathrm{~N} \end{array}$	M1 A1 3	Moments equation Both correct
	OR Add 3 N to each of R and $S \quad$ M1 $R=35 \mathrm{~N}, S=67 \mathrm{~N} \quad \mathrm{~A} 2$		Provided $R \neq S$ Both correct

Mark Scheme 4764 June 2006

1(i)	$m=\frac{4}{3} \pi r^{3} \rho$	M1	Expression for m	
	$\frac{\mathrm{d} m}{\mathrm{~d} t}=4 \pi r^{2} \rho \frac{\mathrm{~d} r}{\mathrm{~d} t}$	M1	Relate $\frac{\mathrm{d} m}{\mathrm{~d} t}$ to $\frac{\mathrm{d} r}{\mathrm{~d} t}$	
	$\lambda \cdot 4 \pi r^{2}=4 \pi r^{2} \rho \frac{\mathrm{~d} r}{\mathrm{~d} t}$	M1	Use of $\frac{\mathrm{d} m}{\mathrm{~d} t}$ proportional to surface area	
	$\frac{\mathrm{d} r}{\mathrm{~d} t}=\frac{\lambda}{\rho}=k$	E1	Accept alternative symbol for constant if used correctly (here and subsequently)	
	$r=r_{0}+k t$	M1	Integrate and use condition	
	$m=\frac{4}{3} \pi \rho\left(r_{0}+k t\right)^{3}$	A1		
				6
(ii)	$\frac{\mathrm{d}}{\mathrm{~d} t}(m v)=m g$	M1	N2L	
	$m v=\int m g \mathrm{~d} t=\int \frac{4}{3} \pi \rho\left(r_{0}+k t\right)^{3} g \mathrm{~d} t$	M1	Express $m v$ as an integral	
	$=\frac{4}{3} \pi \rho g\left[\frac{1}{4 k}\left(r_{0}+k t\right)^{4}+c\right]$	M1	Integrate	
	$t=0, v=0 \Rightarrow c=-\frac{1}{4 k} r_{0}^{4}$	M1	Use condition	
	$\frac{4}{3} \pi \rho\left(r_{0}+k t\right)^{3} v=\frac{4}{3} \pi \rho g \cdot \frac{1}{4 k}\left[\left(r_{0}+k t\right)^{4}-r_{0}^{4}\right]$	M1	Substitute for m	
	$v=\frac{g}{4 k}\left[r_{0}+k t-\frac{r_{0}{ }^{4}}{\left(r_{0}+k t\right)^{3}}\right]$	A1		
				6
2(i)	$A P=2 a \cos \theta$	M1	Attempt AP in terms of θ	
	$P B=\frac{5}{2} a-2 a \cos \theta$	E1		
	$V=-m g \cdot P B-m g \cdot P A \cos \theta$	M1	Attempt V in terms of θ	
	$=-m g\left(\frac{5}{2} a-2 a \cos \theta\right)-m g(2 a \cos \theta) \cos \theta$			
	$=-m g a\left(2 \cos ^{2} \theta-2 \cos \theta+\frac{5}{2}\right)$	E1		
				4
(ii)	$\frac{\mathrm{d} V}{\mathrm{~d} \theta}=m g a \sin \theta(4 \cos \theta-2)$	M1	Differentiate	
	$\frac{\mathrm{d} V}{\mathrm{~d} \theta}=0 \Rightarrow \sin \theta=0$ or $\cos \theta=\frac{1}{2}$	M1	Solve	
	$\Rightarrow \theta=0$ or $\pm \frac{1}{3} \pi$	A1	For 0 and either of $\frac{1}{3} \pi$ or $-\frac{1}{3} \pi$	
		M1	Differentiate again	
	$\frac{\mathrm{d} v}{\mathrm{~d} \theta^{2}}=m g a \sin \theta(-4 \sin \theta)+m g a \cos \theta(4 \cos \theta-2)$	A1		
		M1	Consider sign of $V^{\prime \prime}$ in one case	
	$\theta=0 \Rightarrow \frac{r}{\mathrm{~d} \theta^{2}}=2 m g a>0 \Rightarrow \text { stable }$	F1	Correct deduction for one value of θ	
		F1	Correct deduction for another value of θ	
	$\theta= \pm \frac{1}{3} \pi \Rightarrow \frac{{ }^{2} \theta^{2}}{}=-3 m g a<0 \Rightarrow$ unstable		N.B. Each F mark is dependent on both M marks. To get both F marks, the two values of θ must be physically possible (i.e. in the first or fourth quadrant) and not be equivalent or symmetrical positions.	
				8

3(i)	$P=F v=m v \frac{\mathrm{~d} v}{\mathrm{~d} x} v$	M1	Use of $P=F v$	
	$v^{2} \frac{\mathrm{~d} v}{\mathrm{~d} x}=0.0004\left(10000 v+v^{3}\right)$	A1	Or equivalent	
	$\int \frac{v}{10000+v^{2}} \mathrm{~d} v=\int 0.0004 \mathrm{~d} x$	M1	Separate variables	
	$\frac{1}{2} \ln \left\|10000+v^{2}\right\|=0.0004 x+c$	M1	Integrate	
	$v^{2}=A \mathrm{e}^{0.0008 x}-10000$	M1	Rearrange	
	$x=0, v=0 \Rightarrow A=10000$	M1	Use condition	
	$v=100 \sqrt{\mathrm{e}^{0.0008 x}-1}$	A1		
	$x=900 \Rightarrow v=102.7>80$ so successful			
	or $v=80 \Rightarrow x=618.37<900$ so successful	E1	Show that their v implies successful take off	
				8
(ii)	$v \frac{\mathrm{~d} v}{\mathrm{~d} t}=0.0004\left(10000 v+v^{3}\right)$	F1	Follow previous DE	
	$\int \frac{1}{10000+v^{2}} \mathrm{~d} v=\int 0.0004 \mathrm{~d} t$	M1	Separate variables	
	$\frac{1}{100} \tan ^{-1}\left(\frac{1}{100} v\right)=0.0004 t+k$	M1	Integrate	
		A1		
	$t=0, v=0 \Rightarrow k=0$	M1	Use condition	
	$\Rightarrow v=100 \tan (0.04 t)$	E1	Clearly shown	
	$v \rightarrow \infty$ at finite time suggests model invalid	B1		
				7
(iii)	$t=11 \Rightarrow v=47.0781$	B1	At least 3sf	
	Hence maximum $P=230.049 \mathrm{~m}$	M1	Attempt to calculate maximum P	
	$v=47.0781 \Rightarrow x=250.237$	M1	Use solution in (i) to calculate x	
	$v^{2} \frac{\mathrm{~d} v}{\mathrm{~d} x}=230.049$	M1	Set up DE for $t \ldots 11$. Constant acceleration formulae $\Rightarrow \mathrm{MO}$.	
	$\frac{1}{3} \nu^{3}=230.049 x+B$	M1	Separate variables and integrate	
		F1	Follow their maximum P (condone no constant)	
	$v=47.0781, x=250.237 \Rightarrow B=-22786.3$	M1	Use condition on $x, v($ not $v=0$, not $x=0$ unless clearly compensated for when making conclusion). Constant acceleration formulae $\Rightarrow \mathrm{MO}$.	
	$v=80 \Rightarrow x=840.922$ or $x=900 \Rightarrow v=82.0696$	M1	Relevant calculation. Must follow solving a DE.	
	so successful	A1	All correct (accept 2sf or more)	
				9

Mark Scheme 4766 June 2006

Q1			
(i)		G1 Labelled linear	
scales			

Q3 (i)	$\begin{aligned} & \mathrm{P}(X=1)=7 k, \mathrm{P}(X=2)=12 k, \mathrm{P}(X=3)=15 k, \mathrm{P}(X=4)=16 k \\ & 50 k=1 \text { so } k=1 / 50 \end{aligned}$	M1 for addition of four multiples of k A1 ANSWER GIVEN	2
(ii)	$\begin{aligned} & \mathrm{E}(X)=1 \times 7 k+2 \times 12 k+3 \times 15 k+4 \times 16 k=140 k=2.8 \\ & \text { OR } \mathrm{E}(X)=1 \times{ }^{7} / 50+2 \times{ }^{12} / 50+3 \times 15 / 50+4 \times{ }^{16 / 50}=140 / 50= \\ & 2.8 \mathrm{oe} \end{aligned} \begin{aligned} & \operatorname{Var}(X)=1 \times 7 k+4 \times 12 k+9 \times 15 k+16 \times 16 k-7.84=1.08 \\ & \text { OR } \operatorname{Var}(X)=1 \times 7 / 50+4 \times 12 / 50+9 \times{ }^{15} / 50+16 \times 16 / 50-7.84 \\ & \quad=8.92-7.84=1.08 \end{aligned}$	M1 for $\Sigma x p$ (at least 3 terms correct) A1 CAO M1 $\Sigma x^{2} p$ (at least 3 terms correct) M1dep for - their $\mathrm{E}(X$ $)^{2}$ NB provided $\operatorname{Var}(X)$ >0 A1 FT their $\mathrm{E}(X)$	5
		TOTAL	7
Q4 (i)	$4 \times 5 \times 3=60$	$\begin{aligned} & \text { M1 for } 4 \times 5 \times 3 \\ & \text { A1 CAO } \end{aligned}$	2
(ii)	(A) $\binom{4}{2}=6$ (B) $\binom{4}{2}\binom{5}{2}\binom{3}{2}=180$	B1 ANSWER GIVEN B1 CAO	2
(iii)	(A) $1 / 5$ (B) $\frac{3}{4} \times \frac{4}{5} \times \frac{2}{3}=\frac{2}{5}$	B1 CAO M1 for $\frac{3}{4} \times \frac{4}{5} \times \frac{2}{3}$ A1	3
		TOTAL	7
Q5 (i)	$\mathrm{P}(X=2)=\binom{3}{2} \times 0.87^{2} \times 0.13=0.2952$	M1 $0.87^{2} \times 0.13$ M1 $\binom{3}{2} \times p^{2} q$ with $p+q=1$ A1 CAO	3
(ii)	In 50 throws expect $50(0.2952)=14.76$ times	B1 FT	1
(iii)	P (two 20's twice) $=\binom{4}{2} \times 0.2952^{2} \times 0.7048^{2}=0.2597$	M1 $0.2952^{2} \times 0.7048^{2}$ A1 FT their 0.2952	2
		TOTAL	6

Q6 (i)		G1 for left hand set of branches fully correct including labels and probabilities G1 for right hand set of branches fully correct	2
(ii)	$\mathrm{P}($ test is positive $)=(0.9)(0.95)+(0.1)(0.2)=0.875$	M1 Two correct pairs added A1 CAO	2
(iii)	$\mathrm{P}($ test is correct $)=(0.9)(0.95)+(0.1)(0.8)=0.935$	M1 Two correct pairs added A1 CAO	2
(iv)	$\begin{aligned} & P \text { (Genuine\|Positive) } \\ & =0.855 / 0.875 \\ & =0.977 \end{aligned}$	M1 Numerator M1 Denominator A1 CAO	3
(v)	$\mathrm{P}($ Fake \mid Negative $)=0.08 / 0.125=0.64$	M1 Numerator M1 Denominator A1 CAO	3
(vi)	EITHER: A positive test means that the painting is almost certain to be genuine so no need for a further test. However, more than a third of those paintings with a negative result are genuine so a further test is needed. NOTE: Allow sensible alternative answers	E1FT E1FT	2
(vii)	$\begin{aligned} \mathrm{P} \text { (all 3 genuine) }) & =(0.9 \times 0.05 \times 0.96)^{3} \\ & =(0.045 \times 0.96)^{3} \\ & =(0.0432)^{3} \\ & =0.0000806 \end{aligned}$	M1 for 0.9×0.05 ($=0.045$) M1 for complete correct triple product M1indep for cubing A1 CAO	4
		TOTAL	18

Q7 (i)	$X \sim \mathrm{~B}(20,0.1)$ (A) $\quad \mathrm{P}(\boldsymbol{X}=1)=\binom{20}{1} \times 0.1 \times 0.9^{19}=0.2702$ OR from tables $0.3917-0.1216=0.2701$ (B) $\mathrm{P}(\boldsymbol{X} \geq 1)=1-0.1216=0.8784$	M1 0.1×0.9^{19} M1 $\binom{20}{1} \times p q^{19}$ A1 CAO OR: M2 for 0.3917 - 0.1216 A1 CAO M1 $\mathrm{P}(X=0)$ provided that $P(X \geq 1)=1-P(X \leq 1)$ not seen M1 1-P(X=0) A1 CAO	3 3
(ii)	EITHER: $1-0.9^{n} \geq 0.8$ $0.9^{n} \leq 0.2$ Minimum $n=16$ OR (using trial and improvement): Trial with 0.9^{15} or 0.9^{16} or 0.9^{17} $1-0.9^{15}=0.7941<0.8$ and $1-0.9^{16}=0.8147>0.8$ Minimum $n=16$ NOTE: $n=16$ unsupported scores SC1 only	M1 for 0.9^{n} M1 for inequality A1 CAO M1 M1 A1 CAO	3
(iii)	(A) Let $p=$ probability of a randomly selected rock containing a fossil (for population) $\begin{aligned} & H_{0}: p=0.1 \\ & H_{1}: p<0.1 \end{aligned}$ $\begin{aligned} & (\boldsymbol{B}) \quad \text { Let } X \sim \mathrm{~B}(30,0.1) \\ & \mathrm{P}(X \leq 0)=0.0424<5 \% \\ & \mathrm{P}(X \leq 1)=0.0424+0.1413=0.1837>5 \% \end{aligned}$ So critical region consists only of 0 . (C) 2 does not lie in the critical region. So there is insufficient evidence to reject the null hypothesis and we conclude that it seems that 10% of rocks in this area contain fossils.	B1 for definition of p B1 for H_{0} B1 for H_{1} M1 for attempt to find $\mathrm{P}(X \leq 0)$ or $\mathrm{P}(X \leq 1)$ using binomial M1 for both attempted M1 for comparison of either of the above with 5\% A1 for critical region dep on both comparisons (NB Answer given) M1 for comparison A1 for conclusion in context	 4 2
		TOTAL	18

Mark Scheme 4767
June 2006

(i)	$\begin{aligned} \mathrm{P}(X=1) & =8 \times 0.1^{1} \times 0.9^{7} \\ & =0.383 \end{aligned}$	M1 for binomial probability $\mathrm{P}(X=1)$ A1 (at least 2sf) CAO	2
(ii)	$\lambda=30 \times 0.1=3$ (A) $\mathrm{P}(X=6)=\mathrm{e}^{-3} \frac{3^{6}}{6!}=0.0504$ (3 s.f.) or from tables $=0.9665-0.9161=0.0504$ (B) Using tables: $\mathrm{P}(X \geq 8)=1-\mathrm{P}(X \leq 7)$ $=1-0.9881=0.0119$	B1 for mean SOI M1 for calculation or use of tables to obtain $\mathrm{P}(X=6)$ A1 (at least 2sf) CAO M1 for correct probability calc' A1 (at least 2sf) CAO	1 2 2
(iii)	n is large and p is small	B1, B1 Allow appropriate numerical ranges	2
(iv)	$\begin{aligned} & \mu=n p=120 \times 0.1=12 \\ & \sigma^{2}=n p q=120 \times 0.1 \times 0.9=10.8 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2
(v)	$\begin{aligned} & \mathrm{P}(X>15.5)=\mathrm{P}\left(Z>\frac{15.5-12}{\sqrt{10.8}}\right) \\ & =\mathrm{P}(Z>1.065)=1-\Phi(1.065)=1-0.8566 \\ & =0.1434 \end{aligned}$ NB Allow full marks for use of $\mathrm{N}(12,12)$ as an approximation to Poisson(12) leading to $1-\Phi(1.010)=1$ $-0.8438=0.1562$	B1 for correct continuity correction. M1 for probability using correct tail A1 cao, (but FT wrong or omitted CC)	3
(vi)	From tables $\Phi^{-1}(0.99)=2.326$ $\begin{aligned} & \frac{x+0.5-12}{\sqrt{10.8}} \geq 2.326 \\ & x=11.5+2.326 \times \sqrt{10.8} \geq 19.14 \end{aligned}$ So 20 breakfasts should be carried NB Allow full marks for use of $\mathrm{N}(12,12)$ leading to $x \geq 11.5+2.326 \times \sqrt{12}=19.56$	B1 for 2.326 seen M1 for equation in x and positive z-value A1 CAO (condone 19.64) A1FT for rounding appropriately (i.e. round up if c.c. used o/w rounding should be to nearest integer)	4
			18

Question 2

(i)	$X \sim \mathrm{~N}\left(49.7,1.6^{2}\right)$ $\text { (A) } \quad \begin{aligned} \mathrm{P} & (X>51.5)=\mathrm{P}\left(Z>\frac{51.5-49.7}{1.6}\right) \\ & =\mathrm{P}(Z>1.125) \\ & =1-\Phi(1.125)=1-0.8696=0.1304 \end{aligned}$ $\begin{aligned} & \text { (B) } \quad \begin{aligned} \mathrm{P}(& X<48.0)=\mathrm{P}\left(Z<\frac{48.0-49.7}{1.6}\right) \\ \quad & =\mathrm{P}(Z<-1.0625)=1-\Phi(1.0625) \\ & =1-0.8560=0.1440 \\ \mathrm{P}(48.0 & <X<51.5)=1-0.1304-0.1440=0.7256 \end{aligned} \end{aligned}$	M1 for standardizing M1 for prob. calc. A1 (at least 2 s.f.) M1 for appropriate prob' calc. A1 (0.725-0.726)	5
(ii)	P (one over 51.5, three between 48.0 and 51.5) $=\binom{4}{1} \times 0.7256 \times 0.2744^{3}=0.0600$	M1 for coefficient M1 for $0.7256 \times$ 0.2744^{3} A1 FT (at least 2 sf)	3
(iii)	From tables, $\begin{aligned} & \Phi^{-1}(0.60)=0.2533, \Phi^{-1}(0.30)=-0.5244 \\ & 49.0=\mu+0.2533 \sigma \\ & 47.5=\mu-0.5244 \sigma \\ & 1.5=0.7777 \sigma \\ & \sigma=1.929, \mu=48.51 \end{aligned}$	B1 for 0.2533 or 0.5244 seen M1 for at least one correct equation $\mu \& \sigma$ M1 for attempt to solve two correct equations A1 CAO for both	4
(iv)	Where μ denotes the mean circumference of the entire population of organically fed 3 -year-old boys. $n=10,$ Test statistic $Z=\frac{50.45-49.7}{1.6 / \sqrt{10}}=\frac{0.75}{0.5060}=1.482$ 10% level 1 tailed critical value of z is 1.282 $1.482>1.282$ so significant. There is sufficient evidence to reject H_{0} and conclude that organically fed 3 -year-old boys have a higher mean head circumference.	E1 M1 A1(at least 3sf) B1 for 1.282 M1 for comparison leading to a conclusion A1 for conclusion in context	6
			18

Question 3

(i)	EITHER: $\left.\begin{array}{rl} \mathrm{S}_{x y} & =\Sigma x y-\frac{1}{n} \Sigma x \Sigma y=6235575-\frac{1}{10} \times 4715 \times 13175 \\ & =23562.5 \end{array} \quad \begin{array}{rl} \mathrm{S}_{x x} & =\Sigma x^{2}-\frac{1}{n}(\Sigma x)^{2}=2237725-\frac{1}{10} \times 4715^{2}= \\ & 14602.5 \end{array}\right\} \begin{aligned} & \mathrm{S}_{y y}= \Sigma y^{2}-\frac{1}{n}(\Sigma y)^{2}=17455825-\frac{1}{10} \times 13175^{2}= \\ & r= 97762.5 \\ & \sqrt{\mathrm{~S}_{x y} \mathrm{~S}_{y y}}=\frac{23562.5}{\sqrt{14602.5 \times 97762.5}}=0.624 \end{aligned}$ OR:	M1 for method for $S_{x y}$ M1 for method for at least one of $S_{x x}$ or $S_{y y}$ A1 for at least one of $\mathrm{S}_{x y}, \mathrm{~S}_{x x}$ or $\mathrm{S}_{y y}$ correct M1 for structure of r A1 (0.62 to 0.63) M1 for method for cov (x, y) M1 for method for at least one msd A1 for at least one of $\mathrm{S}_{x y}, \mathrm{~S}_{x x}$ or $\mathrm{S}_{y y}$ correct M1 for structure of r A1 (0.62 to 0.63)	5
(ii)	$\mathrm{H}_{0}: \rho=0$ $\mathrm{H}_{1}: \rho \neq 0$ (two-tailed test) where ρ is the population correlation coefficient For $n=10,5 \%$ critical value $=0.6319$ Since $0.624<0.6319$ we cannot reject H_{0} : There is not sufficient evidence at the 5% level to suggest that there is any correlation between length and circumference.	B1 for $\mathrm{H}_{0}, \mathrm{H}_{1}$ in symbols B1 for defining ρ B1FT for critical value M1 for sensible comparison leading to a conclusion A1 FT for result B1 FT for conclusion in context	6
(iii)	(A) This is the probability of rejecting H_{0} when it is in fact true. (B) Advantage of 1% level - less likely to reject H_{0} when it is true. Disadvantage of 1% level - less likely to accept H_{1} when H_{0} is false.	B1 for 'P(reject H_{0})' B1 for 'when true' B1, B1 Accept answers in context	2

Question 4

(i)	H_{0} : no association between musical preference age; H_{1} : some association between musical preferen and age;					
	Observed		Musical preference			Row totals
			Pop	Classical	Jazz	
		$\begin{aligned} & \text { Under } \\ & 25 \end{aligned}$	57	15	12	84
	group	25-50	43	21	21	85
		Over 50	22	32	27	81
	Colu	mn totals	122	68	60	250

Expected		Musical preference			Row totals
		Pop	Classical	Jazz	
Age group	Under 25	40.992	22.848	20.160	84
	25-50	41.480	23.120	20.400	85
	Over 50	39.528	22.032	19.440	81
Column totals		122	68	60	250

Contributions		Musical preference			
		Pop	Classical	Jazz	
Age group	Under 25	6.25	2.70	3.30	
	25-50	0.06	0.19	0.02	
	Over 50	7.77	4.51	2.94	

$$
X^{2}=27.74
$$

Refer to $X_{4}{ }^{2}$
Critical value at 5% level $=9.488$
Result is significant
There is some association between age group and musical preference.
NB if $\mathrm{H}_{0} \mathrm{H}_{1}$ reversed, or 'correlation' mentioned, do not award first B1or final E1

(ii)	The values of 6.25 and 7.77 show that under 25's have a strong positive association with pop whereas over 50's have a strong negative association with pop.	B1, B1 for specific reference to a value from the table of contributions The values of 4.51 and 2.94 show that over 50's haved by an appropriate comment a reasonably strong positive association with both classical and jazz. The values of 2.70 and 3.30 show that under 25's have a reasonably strong negative associations with second value for both classical and jazz. The $25-50$ group's preferences differ very little from the overall preferences.	B1, B1 (as above for third value)

Mark Scheme 4768 June 2006

Q1	$\mathrm{f}(x)=12 x^{3}-24 x^{2}+12 x, \quad 0 \leq x \leq 1$			
(i)	$\begin{aligned} \mathrm{E}(X) & =\int_{0}^{1} x \mathrm{f}(x) \mathrm{d} x \\ & =12\left[\frac{x^{5}}{5}-2 \frac{x^{4}}{4}+\frac{x^{3}}{3}\right]_{0}^{1} \\ & =12\left[\frac{1}{5}-\frac{2}{4}+\frac{1}{3}\right]=12 \times \frac{1}{30}=\frac{2}{5} \end{aligned}$ For mode, $\mathrm{f}^{\prime}(x)=0$ $\begin{aligned} & \mathrm{f}^{\prime}(x)=12\left(3 x^{2}-4 x+1\right)=12(3 x-1)(x-1) \\ & \therefore \mathrm{f}^{\prime}(x)=0 \text { for } x=1 \text { and } x=\frac{1}{3} \end{aligned}$ Any convincing argument (e.g. $\left.\mathrm{f}^{\prime \prime}(x)\right)$ that $\frac{1}{3}$ (and not 1) is the mode.	M1 A1 A1 M1 A1 A1	Integral for $\mathrm{E}(X)$ including limits (which may appear later). Successfully integrated. Correct use of limits leading to final answer. C.a.o.	6
(ii)	$\begin{aligned} \operatorname{Cdf} \mathrm{F}(x) & =\int_{0}^{x} \mathrm{f}(t) \mathrm{d} t \\ & =12\left(\frac{x^{4}}{4}-2 \frac{x^{3}}{3}+\frac{x^{2}}{2}\right) \\ & =3 x^{4}-8 x^{3}+6 x^{2} \end{aligned}$ $\begin{aligned} & \mathrm{F}\left(\frac{1}{4}\right)=\frac{3}{256}-\frac{8}{64}+\frac{6}{16}=\frac{3-32+96}{256}=\frac{67}{256} \\ & \mathrm{~F}\left(\frac{1}{2}\right)=\frac{3}{16}-\frac{8}{8}+\frac{6}{4}=\frac{3-16+24}{16}=\frac{11}{16} \end{aligned}$ $F\left(\frac{3}{4}\right)=\frac{3 \times 81}{256}-\frac{8 \times 27}{64}+\frac{6 \times 9}{16}=\frac{243}{256}$	M1 A1 B1	Definition of cdf, including limits (or use of " +c " and attempt to evaluate it), possibly implied later. Some valid method must be seen. Or equivalent expression; condone absence of domain [0,1$]$. For all three; answers given; must show convincing working (such as common denominator)! Use of decimals is not acceptable.	3
(iii)	o_{i} 12 209 131 46 6 e_{i} 13 $352-134$ $486-352=$ 26 4 $=218$ 134 $\begin{aligned} & X^{2}=0.4776+0.3716+0.0672+15 \cdot 3846= \\ & \quad 16 \cdot 30(1) \\ & \text { Refer to } \chi_{3}^{2} . \end{aligned}$ Very highly significant. Very strong evidence that the model does not fit. The main feature is that we observe many	B2 M1 A1 M1 A1 A1	For e_{i}. B1 if any 2 correct, provided $\Sigma=$ 512. Must be some clear evidence of reference to χ_{3}^{2}, probably implicit by reference to a critical point (5\% : 7.815; 1\% : 11.34). No ft (to the A marks) if incorrect χ^{2} used, but E marks are still available. There must be at least one reference to "very ...", i.e. the extremeness of the test statistic. Or e.g. "big/small" contributions	

more loads at the "top end" than expected. The other observations are below expectation, but discrepancies are comparatively small.	E1	to X^{2} gets E1,.		
\ldots and directions of				
discrepancies gets E1.			$\quad 9$	9
:---				

Q2	A to $\mathrm{B}: X \sim \mathrm{~N}(26, \quad \sigma=3)$ B to $\mathrm{C}: Y \sim \mathrm{~N}(15, \sigma=2)$ B to $C: Y \sim N(15, \sigma=2)$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.	
(i)	$\begin{aligned} \mathrm{P}(X<24) & =\mathrm{P}\left(Z<\frac{24-26}{3}=-0.6667\right) \\ & =1-0.7476=0.2524 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	For standardising. Award once, here or elsewhere. c.a.o.	3
(ii)	$\begin{aligned} & X+Y \sim \mathrm{~N}(41, \\ & \left.\mathrm{P}(\text { this }<42)=\quad \sigma^{2}=9+4=13[\sigma=3.6056]\right) \\ & \quad \mathrm{P}\left(Z<\frac{42-41}{3.6056}=0.2774\right)=0.6093 \end{aligned}$	B1 B1 A1	Mean. Variance. Accept sd. c.a.o.	3
(iii)	$\begin{aligned} & 0.85 X \sim \mathrm{~N}(22 \cdot 1, \\ & \sigma^{2}\left.=(0.85)^{2} \times 9=6.5025[\sigma=2.55]\right) \\ & \mathrm{P}(\text { this }<24)=\mathrm{P}\left(Z<\frac{24-22.1}{2.55}=0.7451\right) \\ &=0.7719 \end{aligned}$	B1 B1 A1	Mean. Variance. Accept sd. c.a.o.	3
(iv)	$\begin{aligned} & 0.9 X+0.8 Y \sim N(23.4+12=35 \cdot 4, \\ & \sigma^{2}=(0.9)^{2} \times 9+(0.8)^{2} \times 4=9.85[\sigma=3.138 \mathrm{~J}) \\ & \text { Require } t \text { such that } 0.75=\mathrm{P}(\text { this }<t) \\ & =\mathrm{P}\left(Z<\frac{t-35.4}{3.1385}\right)=\mathrm{P}(Z<0.6745) \\ & \begin{aligned} \therefore t-35 \cdot 4 & =3 \cdot 1385 \times 0.6745=2.1169 \\ \Rightarrow t & =37.52 \end{aligned} \end{aligned}$ Must therefore take scheduled time as 38	B1 B1 M1 B1 A1 M1	Mean. Variance. Accept sd. Formulation of requirement (using c's parameters). Any use of a continuity correction scores M0 (and hence A0). 0.6745 c.a.o. Round to next integer above c's value for t.	6
(v)	Cl is given by $13 \cdot 4 \pm 1 \cdot 96 \frac{2}{\sqrt{15}}$ $\begin{aligned} & =13 \cdot 4 \pm 1 \cdot 0121=(12 \cdot 38(79) \\ & 14 \cdot 41(21)) \end{aligned}$	M1	If both 13.4 and $2 / \sqrt{15}$ are correct. (N.B. $13 \cdot 4$ is given as \bar{x} in the question.) (If $3 / \sqrt{15}$ used, treat as mis-read and award this M1, but not the final A1.) For 1.96 c.a.o. Must be expressed as an interval.	3
				18

Q3				
(i)	Simple random sample might not be representative - e.g. it might contain only managers.	$\begin{aligned} & \mathrm{E} 1 \\ & \mathrm{E} 1 \end{aligned}$	Or other sensible comment.	2
(ii)	Presumably there is a list of staff, so systematic sampling would be possible. List is likely to be alphabetical, in which case systematic sampling might not be representative. But if the list is in categories, systematic sampling could work well.	E1 E1 E1	Or other sensible comments.	3
(iii)	Would cover the entire population. Can get information for each category.	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$		2
(iv)	5, 11, 24	B1	(4.8, 11-2, 24)	1
(v)	$\bar{x}=345818, \quad s_{n-1}=69241$ Underlying Normality $\mathrm{H}_{0}: \mu=300000, \quad \mathrm{H}_{1}: \mu>300000$ Test statistic is $\frac{345818-300000}{\frac{69241}{\sqrt{11}}}$ $=2 \cdot 19(47) .$ Refer to t_{10}. Upper 5\% point is 1.812 . Significant. Evidence that mean wealth is greater than 300000. Cl is given by $\begin{aligned} & 345818 \pm \\ & 2 \cdot 228 \\ & \\ & \\ & \times \frac{69241}{\sqrt{ } 11} \end{aligned}$ $=345818 \pm 46513 \cdot 84=(299304(\cdot 2),$	M1 A1 M1 A1 A1 A1 M1 B1 M1 A1	All given in the question. Allow alternatives: 300000 + (c's $1 \cdot 812) \times \frac{69241}{\sqrt{11}}(=337829) \text { for }$ subsequent comparison with 345818. or 345818 - (c's 1.812) $\times \frac{69241}{\sqrt{ } 11}$ (= 307988) for comparison with 300000. c.a.o. but ft from here in any case if wrong. Use of $\mu-\bar{d}$ scores M1A0, but ft . No ft from here if wrong. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic. Special case: (t_{11} and 1 -796) can score 1 of these last 2 marks if either form of conclusion is given. c.a.o. Must be expressed as an	10

$392331(\cdot 8))$	interval. ZERO/4 if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0. Recovery to t_{10} is OK.		

Q4					
(i)	Difference s Rank of \|diff	 -2 2 -1 1 -6 5 -3 3 4 4 -12 9 7 6 -8 7 -10 8$T=4+6=10 \quad(\text { or } 1+2+3+5+7+8+9=35)$ Refer to tables of Wilcoxon paired (/single sample) statistic. Lower (or upper if 35 used) 5% tail is needed. Value for $n=9$ is 8 (or 37 if 35 used). Result is not significant. No evidence to suggest a real change.	M1 M1 A1 B1 M1 M1 A1 A1 A1	For differences. ZERO in this section if differences not used. For ranks. FT from here if ranks wrong No ft from here if wrong. i.e. a 1-tail test. No ft from here if wrong. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic.	9
(ii)	Normality of differences is required. CI MUST be based on DIFFERENCES. $\begin{array}{\|ll} \begin{array}{l} \text { Differences are } \\ 82,70 \end{array} & 53,15,32,13,61, \\ \bar{d}=46 \cdot 5714 & s_{n-1}=27 \cdot 0485 \end{array}$ Cl is given by $\begin{aligned} & 46 \cdot 5714 \pm \\ & 3.707 \end{aligned}$ $\times \frac{27 \cdot 0485}{\sqrt{7}}$ $=46 \cdot 5714 \pm 37 \cdot 8980=(8 \cdot 67(34), 84 \cdot 47)$ Cannot base Cl on Normal distribution because sample is small population s.d. is not known	B1 B1 M1 B1 B1 M1 A1 E1 E1	ZERO/6 for the Cl if differences not used. Accept negatives throughout. Accept $s_{n-1}{ }^{2}=731 \cdot 62 \ldots$ [$s_{n}=25 \cdot 0420$, but do NOT allow this here or in construction of Cl.$]$ Allow c's $\bar{d} \pm \ldots$ If \boldsymbol{t}_{6} used. 99\% 2-tail point for c's t distribution. (Independent of previous mark.) Allow c's s_{n-1}. c.a.o. Must be expressed as an interval. [Upper boundary is 84-4694] Insist on "population", but allow " σ ".	9	
				18	

Mark Scheme 4769
 June 2006

Q1				
(i)	$\begin{aligned} & \mathrm{L}=\frac{1}{\sigma_{1} \sqrt{2 \pi}} \mathrm{e}^{-\frac{\left(W_{1}-\mu\right)^{2}}{2 \sigma_{1}^{2}}} \cdot \frac{1}{\sigma_{2} \sqrt{2 \pi}} \mathrm{e}^{-\frac{\left(W_{2}-\mu\right)^{2}}{2 \sigma_{2}^{2}}} \\ & \begin{array}{l} \ln \mathrm{L}=\text { const }-\frac{1}{2 \sigma_{1}^{2}}\left(W_{1}-\mu\right)^{2}-\frac{1}{2 \sigma_{2}^{2}}\left(W_{2}-\mu\right)^{2} \\ \begin{aligned} & \mathrm{d} \ln \mathrm{~L} \\ & \mathrm{~d} \mu=\frac{2}{2 \sigma_{1}^{2}}\left(W_{1}-\mu\right)+\frac{2}{2 \sigma_{2}^{2}}\left(W_{2}-\mu\right) \\ & \quad=0 \Rightarrow \sigma_{2}^{2} W_{1}-\sigma_{2}^{2} \mu+\sigma_{1}^{2} W_{2}-\sigma_{1}^{2} \mu=0 \\ & \quad \Rightarrow \hat{\mu}=\frac{\sigma_{2}^{2} W_{1}+\sigma_{1}^{2} W_{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} \end{aligned} \end{array} . \end{aligned}$ Check this is a maximum. E.g. $\frac{\mathrm{d}^{2} \ln \mathrm{~L}}{\mathrm{~d} \mu^{2}}=-\frac{1}{\sigma_{1}^{2}}-\frac{1}{\sigma_{2}^{2}}<0$	M1 M1 A1 M1 A1 M1 A1 A1 A1 M1 A1	Product form. Two Normal terms. Fully correct. Differentiate w.r.t. μ. BEWARE PRINTED ANSWER.	11
(ii)	$\mathrm{E}(\hat{\mu})=\frac{\sigma_{2}^{2} \mu+\sigma_{1}^{2} \mu}{\sigma_{1}^{2}+\sigma_{2}^{2}}=\mu$ \therefore unbiased.	M1 A1		2
(iii)	$\begin{aligned} \operatorname{Var}(\hat{\mu}) & =\left(\frac{1}{\sigma_{1}^{2}+\sigma_{1}^{2}}\right)^{2} \cdot\left(\sigma_{2}^{4} \sigma_{1}^{2}+\sigma_{1}^{4} \sigma_{2}^{2}\right) \\ & =\frac{\sigma_{1}^{2} \sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	First factor. Second factor. Simplification not required at this point.	2
(iv)	$\begin{aligned} & T=\frac{1}{2}\left(W_{1}+W_{2}\right) \\ & \operatorname{Var}(T)=\frac{1}{4}\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right) \end{aligned}$ Relative efficiency $(y)=\frac{\operatorname{Var}(\hat{\mu})}{\operatorname{Var}(T)}$ $\begin{aligned} & =\frac{\sigma_{2}^{4} \sigma_{1}^{2}+\sigma_{1}^{4} \sigma_{2}^{2}}{\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)^{2}} \cdot \frac{4}{\sigma_{1}^{2}+\sigma_{2}^{2}} \\ & =\frac{4 \sigma_{1}^{2} \sigma_{2}^{2}}{\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)^{2}} \end{aligned}$	B1 M1 M1 A1 A1	Any attempt to compare variances. If correct. BEWARE PRINTED ANSWER.	5
(v)	E.g. consider $\sigma_{1}^{2}+\sigma_{2}^{2}-2 \sigma_{1} \sigma_{2}=\left(\sigma_{1}-\sigma_{2}\right)^{2} \geq 0$ \therefore Denominator \geq numerator, $\quad \therefore$ fraction \leq 1 [Both $\hat{\mu}$ and T are unbiased,] $\hat{\mu}$ has smaller variance than T and is therefore better.	M1 E1 E1 E1		4
				24

Q2	$\mathrm{f}(x)=\frac{\lambda^{k+1} x^{k} \mathrm{e}^{-\lambda x}}{k!}, \quad[x>0 \quad(\lambda>0, k \text { integer } \geq 0)]$ Given: $\int_{0}^{\infty} u^{m} \mathrm{e}^{-\mathrm{u}} \mathrm{d} u=m!$			
(i)	$\begin{aligned} \mathrm{M}_{X}(\theta) & =\mathrm{E}\left[\mathrm{e}^{e x}\right] \\ & =\int_{0}^{\infty} \frac{\lambda^{k+1}}{k!} x^{k} \mathrm{e}^{-(\lambda-\theta) x} \mathrm{~d} x \\ & \quad \operatorname{Put}(\lambda-\theta) x=u \\ & =\frac{\lambda^{k+1}}{k!(\lambda-\theta)^{k+1}} \int_{0}^{\infty} u^{k} \mathrm{e}^{-u} \mathrm{~d} u \\ & =\left(\frac{\lambda}{\lambda-\theta}\right)^{k+1} \end{aligned}$	M1 M1 M1 A1 A1 A1 A1	For obtaining this expression after substitution. Take out constants. (Dep on subst.) Apply "given": integral $=k$! (Dep on subst.) BEWARE PRINTED ANSWER.	7
(ii)	$Y=X_{1}+X_{2}+\ldots+X_{n}$ By convolution theorem:- mgf of Y is $\left\{\mathrm{M}_{x}(\theta)\right\}^{n}$ i.e. $\left(\frac{\lambda}{\lambda-\theta}\right)^{n k+n}$ $\mu=\mathrm{M}^{\prime}(0)$ $\mathrm{M}^{\prime}(\theta)=\lambda^{n k+n}(-n k-n)(\lambda-\theta)^{-n k-n-1}(-1)$ $\therefore \mu=\frac{n k+n}{\lambda}$ $\sigma^{2}=\mathrm{M}^{\prime \prime}(0)-\mu^{2}$ $\mathrm{M}^{\prime \prime}(\theta)=(n k+n) \lambda^{n_{k+n}}(-n k-n-1)(\lambda-\theta)^{-n k-n-2}(-1)$ $\therefore \mathrm{M}^{\prime \prime}(0)=(n k+n)(n k+n+1) / \lambda^{2}$ $\therefore \sigma^{2}=\frac{(n k+n)(n k+n+1)}{\lambda^{2}}-\frac{(n k+n)^{2}}{\lambda^{2}}$ $=\frac{n k+n}{\lambda^{2}}$	B1 M1 A1 A1 M1 A1 M1 A1		8
(iii)	[Note that $\mathrm{M}_{\curlyvee}(t)$ is of the same functional form as $M_{x}(t)$ with $k+1$ replaced by $n k+n$, i.e. k replaced by $n k+n-1$. This must also be true of the pdf.] Pdf of Y is $\frac{\lambda^{n k+n}}{(n k+n-1)!} \times y^{n k+n-1} \times \mathrm{e}^{-\lambda y}$ [for $y>0$]	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	One mark for each factor of the expression. Mark for third factor shown here depends on at least one of the other two earned.	3
(iv)	$\lambda=1, k=2, n=5, \quad \text { Exact } P(Y>10)=$ Use of $\mathrm{N}(15,15)$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$	Mean. ft (ii). Variance. ft (ii).	

	$\mathrm{P}($ this $>10)=\mathrm{P}\left(\mathrm{N}(0,1)>\frac{10-15}{\sqrt{15}}=-1 \cdot 291\right)$ $=0.9017$	A 1	c.a.o.
Reasonably good agreement - CLT working for only small n.	A1 E 2	c.a.o. (E1, E1) [Or other sensible comments.]	6

Q3				
(i)	$\begin{array}{lll} \bar{x}=36.48 & s=9.6307 & s^{2}=92.7507 \\ \bar{y}=45.5 & s=14.8129 & s^{2}=219.4218 \end{array}$ Assumptions: Normality of both populations equal variances $\mathrm{H}_{0}: \mu_{A}=\mu_{B} \quad \mathrm{H}_{1}: \mu_{A} \neq \mu_{B}$ Where μ_{A}, μ_{B} are the population means. Pooled $s^{2}=\frac{9 \times 92.7507+11 \times 219.4218}{20}$ $=\frac{834.756+24136.64}{20}=162.4198$ Test statistic is $\frac{36.48-45.5}{\sqrt{162.4198} \sqrt{\frac{1}{10}+\frac{1}{12}}}$ $=\frac{-9.02}{5.4568}=-1.653$ Refer to t_{20}. Double tailed 5\% point is $2 \cdot 086$. Not significant. No evidence that population mean times differ.	B1 B1 B1 B1 B1 B1 M1 A1 M1 A1 A1 A1	If all correct. [No marks for use of s_{n} which are 9.1365 and 14.1823 respectively.] Do NOT accept $\bar{X}=\bar{Y}$ or similar. $=(12.7444)^{2}$ No ft from here if wrong. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic.	12
(ii)	Assumption: Normality of underlying population of differences. $\mathrm{H}_{0}: \mu_{D}=0 \quad \mathrm{H}_{1}: \mu_{D}>0$ Where μ_{D} is the population mean of "before - after" differences. Differences are $\begin{array}{lllll} \begin{array}{l} 6.4, \\ 12.1 \\ (\bar{x}=4.4, \end{array} & 3.9, \quad-1.0, \quad 5.6, \quad 8.8, \quad-1.8 \\ & s=4.6393) \end{array}$ Test statistic is $\frac{4.8-0}{4.6393 / \sqrt{8}}$ $=2.92(64)$ Refer to t_{7}. Single tailed 5\% point is 1.895 . Significant. Seems mean is lowered.	B1 B1 B1 M1 M1 A1 M1 A1 A1 A1	Do NOT accept $\bar{D}=0$ or similar. The "direction" of D must be CLEAR. Allow $\mu_{A}=\mu_{B}$ etc. [A1 can be awarded here if NOT awarded in part (i)]. Use of s_{n} ($=4.3396$) is NOT acceptable, even in a denominator of $\frac{s_{n}}{\sqrt{n-1}}$ No ft from here if wrong. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic.	10
(iii)	The paired comparison in part (ii) eliminates the variability between workers.	E2	(E1, E1)	2
				24

Q4				
(i)	Latin square. Layout such as:	B1	(letters = paints) Correct rows and columns. A correct arrangement of letters. SC. For a description instead of an example allow max 1 out of 2 .	3
(ii)	```\[x_{i j}=\mu+\alpha_{i}+e_{i j} \] \[\mu=\text { population } \] grand mean for whole experiment. \[a_{i}=\text { population } \] \[\text { mean amount by which the } i^{\text {th }} \] \[\text { treatment differs from } \mu \text {. } \] \\ \(e_{i j}\) are experimental errors \[\sim \text { ind } \] \[N\left(0, \sigma^{2}\right) \]```	B1 B1	Allow "uncorrelated". Mean. Variance.	9
(iii)	Totals are: 322, 351, 307, 355, 291 (each from sample of size 5) Grand total: 1626 "Correction factor" CF $=\frac{1626^{2}}{25}=105755.04$ Total SS $=106838-\mathrm{CF}=1082.96$ Between paints SS $=\frac{322^{2}}{5}+\ldots+\frac{291^{2}}{5}-$ CF $=106368-\text { CF }=612.96$ Residual SS (by subtraction) $=1082.96-$ 612.96 $=470.00$ MS ratio $=\frac{153.24}{23.5}=6.52$	M1 M1 A1 B1 B1 M1 M1 A1	For correct methods for any two SS. If each calculated SS is correct. Degrees of freedom "between paints". Degrees of freedom "residual". MS column. Independent of previous M1. Dep only on this M1.	

Mark Scheme 4771 June 2006

2.

3.

(i)	$\mathrm{M}=1$	
	$\mathrm{f}(\mathrm{M})=-1$	B1
	$\mathrm{L}=1$	B1
	$\mathrm{M}=1.5$	B1
	$\mathrm{f}(\mathrm{M})=0.25$	B1
	$\mathrm{R}=1.5$	
(ii)	Solves equations (Allow "Finds root 2".)	B1
(iii)	A termination condition	B1
		B1

4.

M1 sca activity-on-arc
A1 A, B, C
A1 D
A1 E
B1 forward pass
(1.25 at end of B/dummy)

B1 backward pass
(1.25 at start of dummy/D)

B1

M1
A1

M1
A1
(iv) 2 hours (resource smoothing on A / B, but extra time needed for D/E).
(v) P

Q	-
R	-
S	Q, R
T	Q, R
U	R
V	S, T, U
W	U

5.

(i) Let x be the number of hours spent at badminton Let y be the number of hours spent at squash
$3 x+4 y \leq 11$
$1.5 \mathrm{x}+1.75 \mathrm{y} \leq 5$
(ii)

(iii) $x+2 y$
(iv) $22 / 4>5>10 / 3$, so 5.5 at $(0,11 / 4)$
(v) Squash courts sold in whole hours

1 hour badminton and 2 hours squash per week
(vi) 3 hours of badminton and no squash

B1

B1
B1

B1 axes labelled and scaled
B1 line
B1 line
B1 shading
B1 intercepts
B1 $(1,2)$

B1
M1 A1
B1
B1
B1 B1
6.

Mark Scheme 4772 June 2006
1.
(i)

$\sim($	\sim	T	\Rightarrow	\sim	$\mathrm{S})$	\Leftrightarrow	\sim	T	\wedge	S
0	1	0	1	1	0	1	1	0	0	0
1	1	0	0	0	1	1	1	0	1	1
0	0	1	1	1	0	1	0	1	0	0
0	0	1	1	0	1	1	0	1	0	1

(ii)

A	\Rightarrow	B	\Leftrightarrow	\sim	A	\vee	B
0	1	0	1	1	0	1	0
0	1	1	1	1	0	1	1
1	0	0	1	0	1	0	0
or a correct verbal							
1	1	1	1	0	1	1	1

$\sim(\sim T \Rightarrow \sim S) \Leftrightarrow \sim(T \vee \sim S) \Leftrightarrow \sim T \wedge S$
(iii) Joanna will not try and will succeed

M1 4 lines
A1 T and S
A1 $\sim T$ (twice) and $\sim S$
A1 \Rightarrow
A1 \wedge
A1 ~on LHS
M1
A1 result

M1
A1

M1 Boolean
A1 applying result
A1 correct negating
B1 not try
B1 and
B1 succeed
2.

(i)										
	1	2	3	4		1	2	3	4	M1 sca Floyd A1 distance A1 route
1	∞	2	6	4	1	1	2	3	4	
2	2	∞	3	1	2	1	2	3	4	
3	6	3	∞	1	3	1	2	3	4	
4	4	1	1	∞	4	1	2	3	4	
	1	2	3	4		1	2	3	4	A1
1	∞	2	6	4	1	1	2	3	4	
2	2	4	3	1	2	1	1	3	4	
3	6	3	12	1	3	1	2	1	4	
4	4	1	1	8	4	1	2	3	1	
	1	2	3	4		1	2	3	4	A1
1	4	2	5	3	1	2	2	2	2	
2	2	4	3	1	2	1	1	3	4	
3	5	3	6	1	3	2	2	2	4	
4	3	1	1	2	4	2	2	3	2	
	1	2	3	4		1	2	3	4	A1 no change
1	4	2	5	3	1	2	2	2	2	
2	2	4	3	1	2	1	1	3	4	
3	5	3	6	1	3	2	2	2	4	
4	3	1	1	2	4	2	2	3	2	
										A1 circled element A1 rest
	1	2	3	4		1	2	3	4	
1	4	2	4	3	1	2	2	(2)	2	
2	2	2	2	1	2	1	4	4	4	
3	4	2	2	1	3	4	4	4	4	
4	3	1	1	2	4	2	2	3	2	
(ii) distance $=4$ (row 1 , col 3 of dist matrix) route $=1,2,4,3(1-\mathrm{r} 1 \mathrm{c} 3-\mathrm{r} 2 \mathrm{c} 3-\mathrm{r} 4 \mathrm{c} 3$ of route matrix $)$										B1 M1 A1 B1

3.

4. (i) a is the number of aardvarks, etc.

First inequality models the furry material constraint
Second inequality models the woolly material constraint
Third inequality models the glass eyes constraint
That would model a "pairs of glass eyes" constraint.
(ii) The problem is an IP, so the number of eyes used will be integer anyway.
(iii) e.g.

P	a	b	c	s 1	s2	s3	RHS
1	-3	-5	-2	0	0	0	0
0	0.5	1	1	1	0	0	11
0	2	1.5	1	0	1	0	24
0	2	2	2	0	0	1	30
1	-0.5	0	3	5	0	0	55
0	0.5	1	1	1	0	0	11
0	1.25	0	-0.5	-1.5	1	0	7.5
0	1	0	0	-2	0	1	8
1	0	0	2.8	4.4	0.4	0	58
0	0	1	1.2	1.6	-0.4	0	8
0	1	0	-0.4	-1.2	0.8	0	6

Make 6 aardvarks and 8 bears giving $£ 58$ profit. 2 eyes are left over.
(iv)

P	a	b	c	$\begin{aligned} & \mathrm{s} \\ & 1 \end{aligned}$	S	s 3	su 4	a	RHS
1	-3	-5	$(2+M)$	0	0	0	M	0	-2M
0	0.5	1	1	1	0	0	0	0	11
0	2	1.5	1	0	1	0	0	0	24
0	2	2	2	0	0	1	0	0	30
0	0	0	1	0	0	0	-1	1	2

or

C	P	a	b	c	$\begin{aligned} & \hline \mathrm{s} \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{s} \\ & 2 \end{aligned}$	s 3	su 4	a	RHS
1	0	0	0	1	0	0	0	-1	0	2
0	1	-3	-5	-2	0	0	0	0	0	0
0	0	0.5	1	1	1	0	0	0	0	11
0	0	2	1.5	1	0	1	0	0	0	24
0	0	2	2	2	0	0	1	0	0	30
0	0	0	0	1	0	0	0	-1	1	2

(v) $8 \times 0.5+2 \times 1+5 \times 1=11$
$8 \times 2+2 \times 1.5+5 \times 1=24$
$8 \times 2+2 \times 2+5 \times 2=30$
$3 \times 8+5 \times 2+2 \times 5=44$ but $3 \times 6+5 \times 6+2 \times 2=52$
$1 \mathrm{~m}^{2}$ of woolly material and 2 eyes left.

M1 pivot choice
A1 pivot

M1 pivot choice
A1 pivot
B1 B1
B1

B1 new constraint
M1 objective
A1

B1

B1
B1

Mark Scheme 4773 June 2006

Qu. 1
(i) Variables
ai $=$ amount invested in A in year $i, i=1,2,3,4,5$
bi $=$ amount invested in B in year $\mathrm{i}, \mathrm{i}=1,2,3$
$\mathrm{ci}=$ amount invested in C in year $\mathrm{i}, \mathrm{i}=3,4,5$
Maximise 1.15a5+1.55b3+1.20c5 B1
st $\quad a 1+b 1=50000$
B1
$a 2+b 2=1.15 a 1 \quad B 1$
$a 3+b 3+c 3=1.15 a 2 \quad B 1$
$a 4+c 4=1.15 a 3+1.55 b 1+1.20 c 3 \quad B 1$
$a 5+c 5=1.15 a 4+1.55 b 2+1.20 c 4 \quad$ B1
(ii) OBJECTIVE FUNCTION VALUE

1) 114264.0

VARIABLE	VALUE	REDUCED COST
A5	0.000000	0.050000
B3	0.000000	0.178000
C5	95220.000000	0.000000
A1	50000.000000	0.000000
B1	0.000000	0.053280
A2	57500.000000	0.000000
B2	0.000000	0.127200
A3	0.000000	0.072000
C3	66125.000000	0.000000
A4	0.000000	0.060000
C4	79350.000000	0.000000

C5 95220.000000
0.000000

A1

Invest all in A in year 1. Put all into A in year 2
B1
Thence all into C in years 3,4 and 5 .
Gives $£ 114264$ at the end of 5 years.
B1
(iii) $£ 1.59$

M1 A1 (£1.57 to £1.61)

Qu. 2

	See below - first two columns of s/sheet	M1 A1 A1
(ii)	$\mathrm{x}^{2}-\mathrm{x}-1=0$	M1
	$x=\frac{1 \pm \sqrt{5}}{2}$	A1
	$\mathrm{x}=\mathrm{A}\left(\frac{1+\sqrt{5}}{2}\right)^{\mathrm{n}}+\mathrm{B}\left(\frac{1-\sqrt{5}}{2}\right)^{\mathrm{n}}$	B1
	$\begin{aligned} & A+B=1 \text { and } A\left(\frac{1+\sqrt{5}}{2}\right)+B\left(\frac{1-\sqrt{5}}{2}\right)=1 \\ & \text { giving } u_{n}=\frac{1}{\sqrt{5}} \frac{\sqrt{5}+1}{2}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\frac{1}{\sqrt{5}} \frac{\sqrt{5}-1}{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n} \end{aligned}$	B1 B1 M1 solving A1 A1
	$=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{\mathrm{n}+1}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{\mathrm{n}+1}$	B1
(iii)	$\begin{aligned} & =(1 / \mathrm{SQRT}(5))^{\star}\left(((1+\mathrm{SQRT}(5)) / 2)^{\wedge}(\mathrm{A} 2+1)-((1-\right. \\ & \left.\mathrm{SQRT}(5)) / 2)^{\wedge}(\mathrm{A} 2+1)\right) \\ & \text { plus printout } \end{aligned}$	M1 A1
(iv)	See s/sheet below.	M1 A1
	Converges to 1.61803...	B1
	$\left(\frac{1+\sqrt{5}}{2}\right)$	M1 A1

n	$F(n)$	Formula	Ratios				
0	1	1		10	89	89	1.61818
1	1	1	1	11	144	144	1.61798
2	2	2	2	12	233	233	1.61806
3	3	3	1.5	13	377	377	1.61803
4	5	5	1.66667	14	610	610	1.61804
5	8	8	1.6	15	987	987	1.61803
6	13	13	1.625	161597	1597	1.61803	
7	21	21	1.61538	17	2584	2584	1.61803
8	34	34	1.61905	184181	4181	1.61803	
9	55	55	1.61765	196765	6765	1.61803	

Qu. 3
(i) Min 2W1S1+2W1S2+W1S3+5W1S4+3W2S1+2W2S2
$+2 \mathrm{~W} 2 \mathrm{~S} 3+4 \mathrm{~W} 2 \mathrm{~S} 4+5 \mathrm{~W} 3 \mathrm{~S} 1+5 \mathrm{~W} 3 \mathrm{~S} 2+\mathrm{W} 3 \mathrm{~S} 3+2 \mathrm{~W} 3 \mathrm{~S}$
4
st W1S1+W1S2+W1S3+W1S4<20
W2S1+W2S2+W2S3+W2S4<20
W3S1+W3S2+W3S3+W3S4<20
W1S1+W2S1+W3S1>10
W1S2+W2S2+W3S2>15
W1S3+W2S3+W3S3>12
W1S4+W2S4+W3S4>20
(ii)

OBJECTIVE FUNCTION VALUE

1) 104.0000

VARIABLE VALUE
REDUCED COST
W1S1 8.000000
0.000000

W1S2 0.000000
1.000000

W1S3 $12.000000 \quad 0.000000$
W1S4 $0.000000 \quad 3.000000$
W2S1 $2.000000 \quad 0.000000$
W2S2 $15.000000 \quad 0.000000$
W2S3 $0.000000 \quad 0.000000$
W2S4 $0.000000 \quad 1.000000$
W3S1 $0.000000 \quad 3.000000$
W3S2 $0.000000 \quad 4.000000$
W3S3 $0.000000 \quad 0.000000$
W3S4 $20.000000 \quad 0.000000$
B1 variables
M1 objective
A1
M1 w/house
A1 availabilities
M1 shop
A1 requirements

B1

M1
A1
Supply shop 1 with 8 from warehouse 1 and 2 from 2
Supply shop 2 from warehouse 2
Supply shop 3 from warehouse 1
B1
Supply shop 4 from warehouse 3
Cost $=£ 104$

Qu. 3 (cont)

Qu. 4

Mark Scheme 4776 June 2006
$f^{\prime}(x)=1 /(2 \sqrt{ } x)$
[M1A1]
[M1A1]
hence mpe is approx $0.05 /(2 \sqrt{ } 2.5)=$
$=\begin{array}{cc}0.01581 \\ 1 & (0.016)\end{array}$
(or $0.05 / 2 \sqrt{ } 2.45=2 \quad$ or $0.05 / 2 \sqrt{ } 2.55=\quad 6 \quad$)
[TOTAL 7]
2

x	0	1	
$f(x)$	1	-3	change of sign so root

[M1A1]

[TOTAL 8]

3

h	M	T	S
	3.46410	3.65028	3.52616
2	2	2	2
	3.51041	3.55719	3.52600
1	1	2	4

values
[A1A1A1A1A1] evidence of efficient formulae for T and S
[M1M1]
3.526(0) appears to be justified
[A1]
[TOTAL 8]
$4 \quad h$

h	0	0.1	0.01	0.001
$\mathrm{f}(2+h)$	1.4427	1.3478	1.4324	1.4416
est f		-0.949	-1.03	-1.1
'(2)				

[M1A1A1A1]
Clear loss of significant figures as h is reduced
Impossible to know which estimate is most accurate
$\left.\begin{array}{rrrrrr}x & g(x) & \Delta g & \Delta^{2} g & & \text { table } \\ 1 & 3.2 & 9.6 & 6 & & \text { second differences nearly } \\ 2 & & & & & \\ & & 12.8 & 15.6 & 6.2 & \text { constant }\end{array}\right]$

$$
g(1.5)=3.2+0.5^{*} 9.6+0.5^{*}(-0.5)^{*} 6 / 2=7.25
$$

6 (i) x
$x^{2}-\tan (x)$
4.7 12.2998 3 -58.6228 change of sign, so root

NB: 3 pi $/ 2=4.71$ (not
reqd)
[M1A1]
[M1A1]
[M1A1]
[M1A1]
[A1]
[subtotal 9]
(ii) x
7.7
7.9
$52.8471 \quad 84.1251$
$x^{2}-\tan (x)$
Sketch showing asymptote for $\tan (x)$ at 5 pi/2 $=7.854$
[G2]
So x^{2} curve is above $\tan (x)$ at both end points
[E1]
[subtotal 5]
(iii) best possible estimate is 7.8

x	7.75	7.85	
$\mathrm{x}^{2}-\tan (\mathrm{x})$	50.4801	-189.529	change of sign so 7.8 is correct to 1 dp

(i) $\mathrm{D}=(36-8) /(4-2)=14$
(ii) $\quad q(x)=-3(x-2)(x-4) /(1-2)(1-4)+8(x-1)(x-4) /(2-1)(2-4)+36(x-1)(x-2) /(4-1)(4-2)$
[M1A1A1A1]
$=-\left(x^{2}-6 x+8\right)-4\left(x^{2}-5 x+4\right)+6\left(x^{2}-3 x+2\right)$

$$
=x^{2}+8 x-12
$$

$q^{\prime}(x)=2 x+8$ so $D=12$
[M1A1]
[M1A1A1] [subtotal 11]
(iii) Large relative difference between estimates of D

Small relative difference in estimates of I
[E1]
To be expected as integration is a more stable process than differentiation

Mark Scheme 4777 June 2006

1
(i) $\quad\left(x_{2}-\alpha\right) /\left(x_{1}-\alpha\right)=\left(x_{1}-\alpha\right) /\left(x_{0}-\alpha\right)$ convincing algebra to required result.
(ii) $x \quad 1 \quad 1.5$ $\exp (x)-\tan (x) \quad 1.160874 \quad-9.61973$

Examples of divergence:

r	0	1	2
x_{r}	1	0.443023	-0.74554
			0.67982
x_{r}	1.25	1.101797	1
x_{r}	1.5	2.646275	\#NUM!

			0.67982
x_{r}	1.25	1.101797	1
			1.78895
x_{r}	1.330227	1.405193	9
x_{r}	1.312029	1.329149	1.40054
			1.31106
x_{r}	1.306628	1.307521	9
x_{r}	1.306328	1.30633	1.30634
			1.30632
x_{r}	1.306327	1.306327	7

[M1A1A1]
[A1A1]
[subtotal 5]
[M1A1]
[M1A1A1]
[M1A1]
[M1A1]
[M1]
[A1]
[subtotal 11]
[M1A1]
[M1A1]

Eg:

x_{r}	3.18	3.259015

2.13737
\#NUM!
\#NUM!
\#NUM!
$\alpha: \quad 3.1852$
$x_{r} \quad 3.1852$
3.131898
\#NUM!
α : \#NUM!
α : \#NUM!
α : \#NUM!
[M1A1]
but:
X_{r}
3.184
3.159834
4.00395
x_{r}
$3.183327 \quad 3.17584$
3.37375

3
3.19812
x_{r}
3.1830543 .182409

2
3.18313

7
$\alpha: \quad 3.183327$
$\alpha: \quad 3.183054$
$\alpha: \quad 3.183029$
$\alpha: \quad 3.183029$
3.18303 to 5 dp

2
(i) Divided differences do not require data to be equally spaced (as ordinary differences do). Divided differences allow additional data to be added (unlike Lagrange).

\mathbf{x}	\mathbf{f}
1	-3
2	-6.5
2.5	-8.03
3.5	-6.66
4	-2.25
4.5	5.65

(ii) $\left.\begin{array}{rrrrrr} & & & 0.29333 \\ & -3 & -3.5 & 3 & 1.064 & -0.01911 \\ & & -6.5 & -3.06 & 2.95333 & 1.00666\end{array}\right)$
table
[M1A1A1]
estimates
[E1E1]
[subtotal 10]
2nd dp unreliable (from data), 1st dp uncertain: could be -4.5 or -4.6
rearrange
data and
re-run
[M1A1]

2nd dp unreliable (from data), 1st dp seems reliable: -8.3
$\left.\left.\begin{array}{rrrrrrr} \\ 4.5 & 5.65 & 15.8 & 6.98 & 1.00666 & 7 & -6.2 \mathrm{E}-16 \\ 4 & -2.25 & 8.82 & 4.96666 & 1.00666 & 7 & 7\end{array}\right) \begin{array}{r}\text { rearrange } \\ \text { data and } \\ \text { re-run }\end{array}\right]$

2nd dp unreliable (from data), 1 st dp seems reliable: 17.8
[E1]

rearrange

data and re-run
[M1A1]
[M1A1]
[A1]
[A1]
[TOTAL 24]

3
(i) Substitute central difference formulae for y^{\prime} and y " to obtain given result (*)

Central difference formula for y^{\prime} at $x=0$ to show $y_{1}=y_{-1}$
Use of * $\left.^{*}\right)$ to show $y_{1}=\left(2 h^{2}-(1+2 h) y_{-1}\right) /(1-2 h)$
Hence $y_{1}=h^{2}$ as given

\mathbf{h}	\mathbf{x}	\mathbf{y}	\mathbf{k}
0.1	0	0	1
	0.1	0.01	
	0.2	0.047618	
	0.3	0.124458	
	0.4	0.25785	
	0.5	0.473034	
	0.6	0.805379	
	0.7	1.301401	
0.8	2.015508		
	0.9	2.996344	
	1	4.253311	as required

h	β	diffs	ratio of	extrapolated	
0.1	4.253311		diffs	value	
0.05	4.190790	-0.06252			re-runs
0.24040					
0.025	4.175759	-0.01503	60.24760		[A1A1A1]
0.012				4.17079 [
5	4.172037	-0.00372	4	7	
ratio of differences approximately 0.25 so second order					[M1A1E1]
4.17 to 2 dp is secure					
					ubtotal 17]

(ii)

\mathbf{k}	$\boldsymbol{\beta}$
-5	18.4
-4	13.1
-3	9.7

mods
[M1A1]

-2	7.4
-1	6
0	4.9
1	4.2
2	3.6
3	3.2
4	2.9
5	2.6

values
[A1A1A1]
graph
[G2]
[subtotal 7]
[TOTAL 24]

4
(i) Diagonal dominance: modulus of diagonal element is greater than or equal to sum of moduli of other elements on the same row.
If diagonal dominance exists (with at least one inequality strict) convergence of Gauss-Seidel is assured.

G-S using the given non-dominant diagonal:

x	y	z	
0	0	0	
	0.02857		
0.2	1	-0.01587	
	0.04199		
0.192381	5	-0.0191	
	0.04733		
0.186262	5	-0.01866	
\ldots	\ldots	\ldots	
0.180325	0.04918	-0.01639	
0.180327	0.04918	-0.01639	
0.180328	0.04918	-0.01639	
0.180328	0.04918	-0.01639	[M1A1]
			[subtotal 7]

	$\begin{aligned} & 5.86 \mathrm{E}+1 \\ & 8 \end{aligned}$	$-5.9 \mathrm{E}+18$	0	
G-S scheme converges for $\mathrm{a}=3.3$				[M1A1]
diverges for $\mathrm{a}=3.4$				[M1A1]
(diverges for $a=3.35)$				
So $\mathrm{a}=3.3$ (to 1dp) is required value				[A1]
				[subtotal 11]

(iii) Gauss-Jacobi | a=0 | \mathbf{x} | \mathbf{y} | \mathbf{z} |
| :---: | ---: | ---: | ---: |
| | 0 | 0 | 0 |
| | 0.166667 | 0.125 | 0.1 |
| | 0.054167 | -0.00833 | -0.04583 |
| | | 0.12083 | 0.07708 |
| | 0.19375 | 3 | 3 |
| | 0.067708 | -0.01042 | -0.05729 |
| | | 0.11979 | 0.07135 |
| | 0.200521 | 2 | 4 |
| | \ldots | \ldots | \ldots |
| | | 0.202778 | |
| | 0.072222 | -0.01111 | -0.06111 |
| | | 0.11944 | 0.06944 |
| | 0.202778 | 4 | 4 |
| | 0.072222 | -0.01111 | -0.06111 |
| | | 0.11944 | 0.06944 |
| | | 4 | 4 |
| | 0.202778 | | 4 |
| | 0.072222 | -0.01111 | -0.06111 |

Diverges: diagonal dominance not strict.

7895-8,3895-3898 AS and A2 MEI Mathematics June 2006 Assessment Series

Unit Threshold Marks

Unit	Maximum Mark	A	B	C	\mathbf{D}	\mathbf{E}	\mathbf{U}	
All units	UMS	100	80	70	60	50	40	0
$\mathbf{4 7 5 1}$	Raw	72	53	45	37	30	23	0
$\mathbf{4 7 5 2}$	Raw	72	55	48	41	34	27	0
$\mathbf{4 7 5 3}$	Raw	72	51	44	38	31	24	0
$\mathbf{4 7 5 3 / 0 2}$	Raw	18	14	12	10	9	8	0
$\mathbf{4 7 5 4}$	Raw	90	57	49	41	33	26	0
$\mathbf{4 7 5 5}$	Raw	72	58	50	43	36	29	0
$\mathbf{4 7 5 6}$	Raw	72	52	45	38	31	25	0
$\mathbf{4 7 5 7}$	Raw	72	51	44	38	32	26	0
$\mathbf{4 7 5 8}$	Raw	72	62	54	46	37	28	0
$\mathbf{4 7 5 8 / 0 2}$	Raw	18	14	12	10	9	8	0
$\mathbf{4 7 6 1}$	Raw	72	55	47	40	33	26	0
$\mathbf{4 7 6 2}$	Raw	72	43	37	31	25	20	0
$\mathbf{4 7 6 3}$	Raw	72	60	52	44	36	29	0
$\mathbf{4 7 6 4}$	Raw	72	46	40	35	30	25	0
$\mathbf{4 7 6 6}$	Raw	72	54	47	40	33	27	0
$\mathbf{4 7 6 7}$	Raw	72	58	51	44	37	30	0
$\mathbf{4 7 6 8}$	Raw	72	59	51	43	36	29	0
$\mathbf{4 7 6 9}$	Raw	72	52	45	38	32	26	0
$\mathbf{4 7 7 1}$	Raw	72	53	46	39	33	27	0
$\mathbf{4 7 7 2}$	Raw	72	57	49	41	34	27	0
$\mathbf{4 7 7 3}$	Raw	72	48	42	36	30	25	0
$\mathbf{4 7 7 6}$	Raw	72	51	44	37	30	23	0
$\mathbf{4 7 7 6 / 0 2}$	Raw	18	13	11	9	8	7	0
$\mathbf{4 7 7 7}$	Raw	72	55	47	39	32	25	0

Specification Aggregation Results

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	U
$\mathbf{7 8 9 5 - 7 8 9 8}$	600	480	420	360	300	240	0
$\mathbf{3 8 9 5 - 3 8 9 8}$	300	240	210	180	150	120	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	\mathbf{D}	\mathbf{E}	\mathbf{U}	Total Number of Candidates
$\mathbf{7 8 9 5}$	40.4	61.2	77.2	89.2	96.9	100	9024
$\mathbf{7 8 9 6}$	60.2	77.5	88.7	95.6	99.0	100	1237
$\mathbf{7 8 9 7}$	70.5	90.9	90.9	93.2	95.5	100	44
$\mathbf{7 8 9 8}$	100	100	100	100	100	100	5
$\mathbf{3 8 9 5}$	27.7	43.6	57.9	71.2	82.0	100	11502
$\mathbf{3 8 9 6}$	50.9	68.6	82.4	90.0	95.6	100	1247
$\mathbf{3 8 9 7}$	80.7	86.8	94.0	98.8	98.8	100	83
$\mathbf{3 8 9 8}$	58.8	64.7	76.5	88.2	94.1	100	17

OCR (Oxford Cambridge and RSA Examinations)

1 Hills Road
Cambridge
CB1 2EU

OCR Information Bureau

(General Qualifications)
Telephone: 01223553998
Facsimile: 01223552627
Email: helpdesk@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

