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INSTRUCTIONS TO CANDIDATES

+  Write your name, centre number and candidate number in the spaces provided on the answer
booklet.

*  Answer any three questions.

+ There is an insert for use in Question 3.

*  You are permitted to use a graphical calculator in this paper.

+ Final answers should be given to a degree of accuracy appropriate to the context.

+  The acceleration due to gravity is denoted by g ms™2. Unless otherwise instructed, when a
numerical value is needed, use g = 9.8.

INFORMATION FOR CANDIDATES

+  The number of marks is given in brackets [ ] at the end of each question or part question.

*  You are advised that an answer may receive no marks unless you show sufficient detail of the
working to indicate that a correct method is being used.

+  The total number of marks for this paper is 72.

This question paper consists of 3 printed pages, 1 blank page and an insert.
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The displacement x at time ¢ of an oscillating system from a fixed point is given by
Xx+2lx+5x =0,
where 1 = 0.

(i) For what value of 1 is the motion simple harmonic? State the general solution in this case.

[3]

(ii) Find the range of values of A for which the system is under-damped. [3]

Consider the case 1 = 1.

(iii) Find the general solution of the differential equation. [3]

When 7 = 0, x = x, and x = 0, where x,, is a positive constant.

(iv) Find the particular solution. [4]
(v) Find the least positive value of ¢ for which x = 0. [3]
Now consider the case A = 3 with the same initial conditions.

(vi) Find the particular solution and show that it is never zero for r > 0. [8]

The positive quantities x, y and z are related and vary with time ¢, where ¢+ = 0. The value of x is
described by the differential equation

dx
—+2x=tr+1.
dr

Whentr=0,x=1.

(i) Solve the equation to find x in terms of ¢. [9]

d
The quantity y is related to x by the differential equation Zxdi} =y.Whentr =0,y =4.

(ii) Solve the equation to find y in terms of x. Hence express y in terms of . [5]

d
The quantity z is related to x by the differential equation xi +2z7=6x.Whent =0,z = 3.

(iii) Solve this equation for z in terms of x. Calculate the values of x, y and z when ¢ = 1, giving
your answers correct to 3 significant figures. [10]
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Answer parts (i) and (ii) on the insert provided.

Two spherical bodies, Alpha and Beta, each of radius 1000 km, are in deep space. The point A is
on the surface of Alpha, and the point B is on the surface of Beta. These points are the closest
points on the two bodies and the distance AB has the constant value of 8000 km.

A probe is fired from A at a speed of V, km s~! in an attempt to reach B, travelling in a straight line.

At time ¢ seconds after firing, the displacement of the probe from A is xkm, and the velocity of the
probe is vkms™,

The equation of motion for the probe is

dv 1 1

Ydx ~ (9000 — 0?2 (1000 +x)2°

This differential equation is to be investigated first by means of a tangent field, shown on the insert.

(i) Show that the direction indicators are parallel to the v-axis when v = 0 (x # 4000). Show
also that the direction indicators are parallel to the x-axis when x = 4000 (v # 0) . Hence
complete the tangent field on the insert, excluding the point (4000, 0). [6]

(ii) Sketch the solution curve through (0, 0.025) and the solution curve through (0, 0.05). Hence
state what happens to the probe when the speed of projection is

(A) 0.025kms™,
(B) 0.05kms™. [6]
(iii) Solve the differential equation to find v? in terms of x and Vi

[6]

(iv) Given that the probe reaches B, state the value of x at which v? is least. Hence find from your
solution in part (iii) the range of values of V, for which the probe reaches B. [6]

The simultaneous differential equations

dx
— =2x—vy+3
a Y
dy
— =5x—4y+18
a0
are to be solved for r = 0.
d2 dx
(i) Show that ~ +2° — 3x = —6. [6]
dr dr

(ii) Find the general solution for x in terms of 7. Hence obtain the corresponding general solution
for y. [9]

(iii) Given that x = 4,y = 17 when ¢ = 0, find the particular solutions for x and y and sketch a
graph of each solution. [9]
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