OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS

4756

Further Methods for Advanced Mathematics (FP2)
Tuesday 6 JUNE 2006 Afternoon 1 hour 30 minutes
Additional materials:
8 page answer booklet
Graph paper
MEI Examination Formulae and Tables (MF2)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions in Section A and one question from section B.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 72 .

2

Section A (54 marks)

Answer all the questions

1 (a) A curve has polar equation $r=a(\sqrt{2}+2 \cos \theta)$ for $-\frac{3}{4} \pi \leqslant \theta \leqslant \frac{3}{4} \pi$, where a is a positive constant.
(i) Sketch the curve.
(ii) Find, in an exact form, the area of the region enclosed by the curve.
(b) (i) Find the Maclaurin series for the function $\mathrm{f}(x)=\tan \left(\frac{1}{4} \pi+x\right)$, up to the term in x^{2}.
(ii) Use the Maclaurin series to show that, when h is small,

$$
\begin{equation*}
\int_{-h}^{h} x^{2} \tan \left(\frac{1}{4} \pi+x\right) \mathrm{d} x \approx \frac{2}{3} h^{3}+\frac{4}{5} h^{5} . \tag{3}
\end{equation*}
$$

2 (a) (i) Given that $z=\cos \theta+\mathrm{j} \sin \theta$, express $z^{n}+\frac{1}{z^{n}}$ and $z^{n}-\frac{1}{z^{n}}$ in simplified trigonometric form.
(ii) By considering $\left(z-\frac{1}{z}\right)^{4}\left(z+\frac{1}{z}\right)^{2}$, find A, B, C and D such that

$$
\begin{equation*}
\sin ^{4} \theta \cos ^{2} \theta=A \cos 6 \theta+B \cos 4 \theta+C \cos 2 \theta+D \tag{6}
\end{equation*}
$$

(b) (i) Find the modulus and argument of $4+4 \mathrm{j}$.
(ii) Find the fifth roots of $4+4 \mathrm{j}$ in the form $r \mathrm{e}^{\mathrm{j} \theta}$, where $r>0$ and $-\pi<\theta \leqslant \pi$.

Illustrate these fifth roots on an Argand diagram.
(iii) Find integers p and q such that $(p+q \mathrm{j})^{5}=4+4 \mathrm{j}$.

3 (i) Find the inverse of the matrix $\left(\begin{array}{rrr}4 & 1 & k \\ 3 & 2 & 5 \\ 8 & 5 & 13\end{array}\right)$, where $k \neq 5$.
(ii) Solve the simultaneous equations

$$
\begin{align*}
& 4 x+y+7 z=12 \\
& 3 x+2 y+5 z=m \\
& 8 x+5 y+13 z=0 \tag{5}
\end{align*}
$$

giving x, y and z in terms of m.
(iii) Find the value of p for which the simultaneous equations

$$
\begin{aligned}
& 4 x+y+5 z=12 \\
& 3 x+2 y+5 z=p \\
& 8 x+5 y+13 z=0
\end{aligned}
$$

have solutions, and find the general solution in this case.

Section B (18 marks)

Answer one question

Option 1: Hyperbolic functions

4 (i) Starting from the definitions of $\sinh x$ and $\cosh x$ in terms of exponentials, prove that

$$
\begin{equation*}
1+2 \sinh ^{2} x=\cosh 2 x \tag{3}
\end{equation*}
$$

(ii) Solve the equation

$$
\begin{equation*}
2 \cosh 2 x+\sinh x=5, \tag{6}
\end{equation*}
$$

giving the answers in an exact logarithmic form.
(iii) Show that $\int_{0}^{\ln 3} \sinh ^{2} x \mathrm{~d} x=\frac{10}{9}-\frac{1}{2} \ln 3$.
(iv) Find the exact value of $\int_{3}^{5} \sqrt{x^{2}-9} \mathrm{~d} x$.

[Question 5 is printed overleaf.]

Option 2: Investigation of curves
This question requires the use of a graphical calculator.

5 A curve has parametric equations

$$
x=q-k \sin q, \quad y=1-\cos q
$$

wherek is a positive constant.
(i) For the case $\mathrm{k}=1$, use your graphical calculator to sketch the curve. Describe its main features.
(ii) Sketch the curve for a value ofk between 0 and 1. Describe briefly how the main features differ from those for the case $k=1$.
(iii) For the case $k=2$:
(A) sketch the curve;
(B) find $\frac{d y}{d x}$ in terms of q;
(C) show that the width of each loop, measured parallel to tlxeaxis, is

$$
\begin{equation*}
2 \sqrt{3}-\frac{2 p}{3} \tag{5}
\end{equation*}
$$

(iv) Use your calculator to find, correct to one decimal place, the value of for which successive loops just touch each other.

[^0]
[^0]: Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

