OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS
4754(A)
Applications of Advanced Mathematics (C4)
Paper A
Monday 12 JUNE 2006 Afternoon 1 hour 30 minutes

Additional materials:
8 page answer booklet
Graph paper
MEI Examination Formulae and Tables (MF2)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 72.

NOTE

- This paper will be followed by Paper B: Comprehension.

Section A (36 marks)

1 Fig. 1 shows part of the graph of $y=\sin x-\sqrt{3} \cos x$.

Fig. 1
Express $\sin x-\sqrt{3} \cos x$ in the form $R \sin (x-\alpha)$, where $R>0$ and $0 \leqslant \alpha \leqslant \frac{1}{2} \pi$.
Hence write down the exact coordinates of the turning point P .

2 (i) Given that

$$
\frac{3+2 x^{2}}{(1+x)^{2}(1-4 x)}=\frac{A}{1+x}+\frac{B}{(1+x)^{2}}+\frac{C}{1-4 x},
$$

where A, B and C are constants, find B and C, and show that $A=0$.
(ii) Given that x is sufficiently small, find the first three terms of the binomial expansions of $(1+x)^{-2}$ and $(1-4 x)^{-1}$.

Hence find the first three terms of the expansion of $\frac{3+2 x^{2}}{(1+x)^{2}(1-4 x)}$.

3 Given that $\sin (\theta+\alpha)=2 \sin \theta$, show that $\tan \theta=\frac{\sin \alpha}{2-\cos \alpha}$.

Hence solve the equation $\sin \left(\theta+40^{\circ}\right)=2 \sin \theta$, for $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$.

4 (a) The number of bacteria in a colony is increasing at a rate that is proportional to the square root of the number of bacteria present. Form a differential equation relating x, the number of bacteria, to the time t.
(b) In another colony, the number of bacteria, y, after time t minutes is modelled by the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{10000}{\sqrt{y}} .
$$

Find y in terms of t, given that $y=900$ when $t=0$. Hence find the number of bacteria after 10 minutes.
(i) Show that $\int x \mathrm{e}^{-2 x} \mathrm{~d} x=-\frac{1}{4} \mathrm{e}^{-2 x}(1+2 x)+c$.

A vase is made in the shape of the volume of revolution of the curve $y=x^{1 / 2} \mathrm{e}^{-x}$ about the x-axis between $x=0$ and $x=2$ (see Fig. 5).

Fig. 5
(ii) Show that this volume of revolution is $\frac{1}{4} \pi\left(1-\frac{5}{\mathrm{e}^{4}}\right)$.

4
Section B (36 marks)
6 Fig. 6 shows the arch ABCD of a bridge.

Fig. 6
The section from B to C is part of the curve $O B C E$ with parametric equations

$$
x=a(\theta-\sin \theta), y=a(1-\cos \theta) \text { for } 0 \leqslant \theta \leqslant 2 \pi,
$$

where a is a constant.
(i) Find, in terms of a,
(A) the length of the straight line OE ,
(B) the maximum height of the arch.
(ii) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of θ.

The straight line sections AB and CD are inclined at 30° to the horizontal, and are tangents to the curve at B and C respectively. BC is parallel to the x-axis. BF is parallel to the y-axis.
(iii) Show that at the point B the parameter θ satisfies the equation

$$
\sin \theta=\frac{1}{\sqrt{3}}(1-\cos \theta)
$$

Verify that $\theta=\frac{2}{3} \pi$ is a solution of this equation.
Hence show that $\mathrm{BF}=\frac{3}{2} a$, and find OF in terms of a, giving your answer exactly.
(iv) Find BC and AF in terms of a.

Given that the straight line distance AD is 20 metres, calculate the value of a.

5

7

Fig. 7
Fig. 7 illustrates a house. All units are in metres. The coordinates of A, B, C and E are as shown. BD is horizontal and parallel to AE .
(i) Find the length AE .
(ii) Find a vector equation of the line BD . Given that the length of BD is 15 metres, find the coordinates of D .
(iii) Verify that the equation of the plane ABC is

$$
-3 x+4 y+5 z=30
$$

Write down a vector normal to this plane.
(iv) Show that the vector $\left(\begin{array}{l}4 \\ 3 \\ 5\end{array}\right)$ is normal to the plane ABDE. Hence find the equation of the plane ABDE .
(v) Find the angle between the planes ABC and ABDE .

6
BLANK PAGE

7
BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher ($O C R$) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

