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1 This question concerns the sum of the infinite series
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You are given that, when the series is summed directly using a spreadsheet, the values in the following
table are obtained.

number of terms 10 100 1000 10000

sum 1.995 336 2.412 874 2.549 146 2.592 376

(i) Identify two disadvantages of summing the series directly. [3]

(ii) Show, by considering the integral of the function
1
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x
, that the sum
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can be approximated as
2√

a − 0.5
.

Using a diagram, explain carefully how the accuracy of this result depends upon the value of a.
[8]

(iii) Use the result in part (ii), together with the values given in the table, to find the sum S correct to
7 significant figures. [5]

(iv) Explain briefly, and without doing any calculations, how the method you have used could be
adapted to sum the series
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2 The focal length for a certain type of lens may be found by measuring two lengths, a and b, and using
the formula

f = ab
b − a

. (*)

(i) Find the partial derivatives
∂f
∂a

and
∂f
∂b

. Hence establish the result

∆f ≈ b2∆a − a2∆b(b − a)2

for small changes in a, b and f .

Write down an approximate equation linking the maximum possible errors in a, b and f . [8]

(ii) Given that a = 10 and b = 15, each with a maximum possible error of 0.1, calculate an estimate
of f . Use (*) to calculate the range in which f must lie.

Find an approximation to this interval using the result in part (i), and comment on its accuracy.
[6]

(iii) Now suppose that f = 30 with maximum possible error 0.1, and that a = 10 with negligible error.
Find the maximum possible error in b. [3]

(iv) Finally, suppose that a = 10 with maximum possible error ε, and that b = 15 with maximum
possible error 2ε. Find the greatest value of ε such that f is known to an accuracy of 0.05. [3]

3 The differential equation

y′ = ex + √
y,

where y = 1 when x = 0, is to be solved numerically by means of Taylor series.

(i) Show carefully that the second derivative of y is given by

y′′ = ex + y′
2
√

y
.

Find an expression for the third derivative of y. [6]

(ii) Obtain the Taylor series of order 3 centred on x = 0. Use this series to estimate the values of y at
x = 0.1 and 0.2. [6]

(iii) Obtain the Taylor series of order 3 centred on x = 0.1. Use this series to estimate the value of y
at x = 0.2. [5]

(iv) Which of the two estimates of y at x = 0.2 is likely to be more accurate and why? [3]
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4 The following values of the function f(x) are known correct to 1 decimal place.

x 1 2 4 5

f (x) −1.3 −0.9 2.3 3.0

The value of α such that f(α ) = 0 is required.

(i) Use linear interpolation fromx = 2 tox = 4 to �nd an initial estimate ofα . [3]

(ii) Use Newton’s divided di�erence interpolation method to obtain the quadratic that interpolates
the data forx = 1, 2, 4.

Hence obtain a second estimate ofα ]7[.

(iii) You are now given that the quadratic which interpolates the data forx = 2, 4, 5 gives an estimate
of α as 2.4 to 1 decimal place.

Explain, with the aid of a rough sketch of the data, why this estimate di�ers substantially from
that in part(ii) ]4[.

(iv) Starting from the quadratic found in part(ii) , add a cubic term by incorporating the data atx = 5.
(There is no need to simplify your answer at this stage.)

Verify that the estimate ofα obtained from the cubic polynomial is, to 1 decimal place, the same
as that obtained in part(i) ]6[.
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