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1 (a) (i) Show carefully that the equation

x3 + x − 1 = 0

has only one root, and that this root lies between 0 and 1. [3]

(ii) Carry out three steps of the bisection method to obtain an estimate of the root. State the
maximum possible error in this estimate.

Determine how many further steps of the bisection method would be needed to reduce the
maximum possible error to less than 0.005. [8]

(b) (i) The number A is an approximation to the number a. It is known that A is correct to 2 decimal
places. State the maximum possible error in A. [1]

(ii) The number B is an approximation to the number b. The maximum possible error in B is
known to be 0.005. Give an example of possible values for B and b such that B is not correct
to 2 decimal places.

Give a further example to show that B may not be correct to the nearest integer. [3]

2 In certain computer applications, a rough approximation is required to
√

x where 0.25 ≤ x ≤ 1. A
formula sometimes used is √

x ≈ 2
3
x + 0.36. (*)

(i) Find the two values of x for which there is zero error in this approximation.

[Hint: form a quadratic equation in t where t = √
x.] [4]

(ii) Find the absolute and relative errors when the approximation is used for x = 0.25 and x = 0.64.
[4]

If s is the approximation to
√

x given by (*), then an improved approximation is given by

s2 + x
2s

.

(iii) Find the relative error in the improved approximation when x = 0.25. [3]

(iv) Suppose that s overestimates
√

x with a relative error of 1%. Write down an equation for s in

terms of
√

x. Hence show that
s2 + x

2s
is very nearly 1.000 05

√
x. State the relative error in the

improved approximation. [4]

2623/1/Jan06



3

3 A function f(x) has values as shown in the table.

x 0 1 2 3 4 5

f(x) 0.2 1.8 6.1 14.2 27.3 46.6

(i) Show, by means of a difference table, that f(x) appears to be approximated well by a cubic
polynomial. [4]

(ii) Extend the difference table to give an estimate of f(6). Discuss briefly the reliability of this
estimate. [4]

(iii) Use Newton’s interpolation formula to estimate f(2.5). Comment on the reliability of this
estimate. [5]

(iv) Explain, without doing any further calculations, what you would regard as the best method for
estimating the gradient of f(x) at x = 2.5. [2]

4 (i) Find, in terms of a, the value of the integral I = � a

0
x2 dx.

Hence find the error in each of the following approximations to I:

(A) T1, the value given by the trapezium rule with one strip,

(B) M1, the value given by the mid-point rule with one strip.

Find the value of S, where S = 1
3
(T1 + 2M1), and comment. [7]

(ii) For the integral J = � 1

0.2

1√
1 + x3

dx, find the values of T1 and M1; hence find an improved

estimate, S.

Find also the values of the estimates T2 and M2, given by the trapezium and mid-point rules with

two strips, and S*, where S* = 1
3
(T2 + 2M2). Hence give the value of J to the accuracy that is

justified by your working. [8]
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