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Option 1: Vectors and Matrices

1 You are given the matrix M = ( k 2
0 3

), where k ≠ 3.

(i) Find the eigenvalues of M, and the corresponding eigenvectors. [7]

(ii) Write down a matrix P for which P−1MP is a diagonal matrix. [2]

(iii) Hence find the matrix Mn. [7]

(iv) For the case k = 1, use the Cayley-Hamilton theorem to find integers p and q such that

M9 = pM8 + qM7. [4]

Option 2: Limiting Processes

2 (i) State the behaviour of xn ln x, as x tends to zero through positive values, in each of the cases

(A) n > 0,

(B) n = 0,

(C) n < 0. [3]

(ii) For the curve y = −x ln x, find the coordinates of the stationary point, and determine the gradient
close to x = 0. Hence sketch the curve. [5]

(iii) Find � 1

a
(−x ln x)dx in terms of a (where 0 < a < 1), and hence find � 1

0
(−x ln x) dx. [4]

(iv) Explain in detail how
n

∑
r=1

r

n2
ln(n

r
) is related to the area under the curve y = −x ln x, and hence

find the limit of
n

∑
r=1

r

n2
ln(n

r
) as n → ∞. [4]

(v) Use the result in part (iv) to show that
200

∑
r=1

r ln r ≈ 96 500. [4]
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Option 3: Multi-Variable Calculus

3 A surface has equation � = ex(8 + 2xy + y2).
(i) Find

∂�
∂x

and
∂�
∂y

. [3]

(ii) Show that (2, −2, 4e2) is a stationary point on the surface, and find the coordinates of the other
stationary point. [6]

(iii) Sketch the section of the surface given by x = 2, and, on a separate diagram, sketch the section
of the surface given by y = −2.

What can you deduce about the nature of the stationary point (2, −2, 4e2)? [6]

(iv) Find, in the form ax + by + c� + d = 0, the equation of the tangent plane to the surface at the point
P (0, 2, 12). [3]

(v) The point (h, 2 − h, 12 + k), where h and k are small, is a point on the surface close to P. Find
an approximate expression for k in terms of h. [2]

Option 4: Differential Geometry

4 (a) Find the arc length of the polar curve r = ekθ for 0 ≤ θ ≤ π, where k is a positive constant. [5]

(b) A curve C has parametric equations

x = 3at, y = 2at3,

where a is a positive constant.

(i) Find the equation of the normal to C at the general point (3at, 2at3). [3]

(ii) Hence or otherwise find parametric equations for the evolute of C. [6]

(iii) Find the curved surface area formed when the arc of C for which 0 ≤ t ≤ 1 is rotated through
2π radians about the x-axis. [6]
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Option 5: Abstract Algebra

5 The real vector spaceV consists of all vectors
a
b
c

, wherea, b andc are real numbers.

Three particular vectors aree1 =
0
1

−1
, e2 =

1
3

−3
ande3 =

3
1

−2
.

(i) Express
a
b
c

as a linear combination ofe1, e2 ande3.

Deduce that{ e1, e2, e3} is a basis for the vector spaceV ]6[.

A linear mapping T : V � V is de�ned by T
a
b
c

=
2b+ c

−2a − 3c
a − 3b

.

(ii) Find the matrix of T with respect to the basis{ e1, e2, e3} ]5[.

The subspaceK of V consists of all vectorsx for which Tx = 0.

(iii) Prove that{ e3} is a basis forK ]3[.

(iv) Simplify T (e1 + λ e3) , whereλ ]2[.rebmunlaerasi

(v) Hence �nd the vectorv such that Tv = e2 andv is perpendicular toe2. [4]
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