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1 (a) The equation x3 + 5x2 − 8 = 0 has roots α, β and γ . Find a cubic equation with integer

coefficients which has roots
1
α

,
1
β

and
1
γ

. [4]

(b) You are given the polynomial f(x) = kx7 + mx4 + 18x2 − 125x + 380, where k and m are constants.
When f(x) is divided by (x − 2), the remainder is 26.
When f(x) is divided by (x + 2), the remainder is 14.

(i) Find k and m, and show that f ′(2) = −21. [7]

(ii) When f(x) is divided by (x2 − 4), the quotient is g(x) and the remainder is ax + b, so that

f(x) = (x2 − 4)g(x) + ax + b.

Find a and b. [4]

(iii) Find the remainder when f(x) is divided by (x − 2)2. [5]

2 (i) Prove that arsinh x = ln(x + √
x2 + 1). [5]

(ii) Find � 4

0

1√
3x2 + 16

dx, giving your answer in logarithmic form. [5]

(iii) Find the exact value of � 4

0

1

3x2 + 16
dx. [4]

(iv) Use the substitution x
√

3 = 4 tan θ to show that � 4

0

1

(3x2 + 16)3
2

dx = 1
32

. [6]

3 (i) Express e
−1

2
jθ + e

1
2
jθ

in trigonometric form, and show that (1 + ejθ)2 = 4ejθ cos2 1
2
θ . [6]

(ii) For a positive integer n, series C and S are given by

C = 1 + ( 2n
1

) cos θ + ( 2n
2

) cos 2θ + ( 2n
3

) cos 3θ + . . . + cos 2nθ,

S = ( 2n
1

) sin θ + ( 2n
2

) sin 2θ + ( 2n
3

) sin 3θ + . . . + sin 2nθ .

Show that C = 4n cos nθ cos2n 1
2
θ, and find a similar expression for S. [9]

(iii) Given that w = ejφ is a cube root of 1, state the three possible values of φ with −π < φ < π, and
find the possible values of (1 + w)6. [5]
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4 (a) A parabola has parametric equations x = at2, y = 2at.

(i) Show that the chord joining the points P
1
(at2

1
, 2at

1
) and P

2
(at2

2
, 2at

2
) on the parabola has

equation

(t1 + t2)y = 2x + 2at1t2. [4]
(ii) Hence or otherwise find the equation of the tangent to the parabola at a general point(at2, 2at). [3]

The tangents to the parabola at P1 and P2 meet at the point (p, q).
(iii) Show that t1t2 = p

a
, and find an expression for t1 + t2. [4]

(iv) Show that P1P2 crosses the x-axis at the point (−p, 0). [3]

(b) A conic has polar equation
7
r
= 3 + 4 cos θ .

(i) Find the eccentricity, and state which type of conic the equation represents. [2]

(ii) Sketch the conic, using a continuous line for sections where r > 0 and a broken line for
sections where r < 0. [4]
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