\square

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS

2603(B)

Pure Mathematics 3
Section B: Comprehension

Monday
23 JANUARY 2006

Additional materials:
Rough paper
MEI Examination Formulae and Tables (MF12)

TIME Up to 1 hour

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces at the top of this page.
- Answer all the questions.
- Write your answers in the spaces provided on the question paper.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The insert contains the text for use with the questions.
- You may find it helpful to make notes and do some calculations as you read the passage.
- You are not required to hand in these notes with your question paper.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this section is 15 .

For Exaniner's Use	
Qu.	Mark
1	
2	
3	
4	
Total	

This question paper consists of 4 printed pages and an insert.

1 Line 59 says "Again Party G just misses out; if there had been 7 seats G would have got the last one."

Where is the evidence for this in the article?
\qquad

26 parties, P, Q, R, S, T and U take part in an election for 7 seats. Their results are shown in the table below.

Party	Votes (\%)
P	30.2
Q	11.4
R	22.4
S	14.8
T	10.9
U	10.3

(i) Use the Trial-and-Improvement method, starting with values of 10% and 14%, to find an acceptance percentage for 7 seats, and state the allocation of the seats.

Acceptance percentage, $\mathbf{a \%}$		$\mathbf{1 0 \%}$	$\mathbf{1 4 \%}$			
Party	Votes (\%)	Seats	Seats	Seats	Seats	Seats
P	30.2					
Q	11.4					
R	22.4					
S	14.8					
T	10.9					
U	10.3					
Total seats						

Seat Allocation
P....
Q
R....
S ..
T ...
U
(ii) Now apply the d'Hondt Formula to the same figures to find the allocation of the seats.

	Round							
Party	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	Residual
P	30.2							
Q	11.4							
R	22.4							
S	14.8							
T	10.9							
U	10.3							
Seat allocated to								

Seat Allocation P $\quad \mathrm{Q} \ldots . \quad \mathrm{R} \ldots$.
S. T U

3 In this question, use the figures for the example used in Table 5 in the article, the notation described in the section "Equivalence of the two methods" and the value of 11 found for a in Table 4.

Treating Party E as Party 5, verify that $\frac{V_{5}}{N_{5}+1}<a \leqslant \frac{V_{5}}{N_{5}}$.
\qquad
\qquad
\qquad
\qquad
\qquad

4 Some of the intervals illustrated by the lines in the graph in Fig. 8 are given in this table.

Seats	Interval	Seats	Interval
1	$22.2<\mathrm{a} \leqslant 27.0$	5	
2	$16.6<\mathrm{a} \leqslant 22.2$	6	$10.6<\mathrm{a} \leqslant 11.1$
3		7	
4			

(i) Describe briefly, giving an example, the relationship between the end-points of these intervals and the values in Table 5, which is reproduced below.
\qquad
\qquad
\qquad
(ii) Complete the tableabove

	Round						
Party	1	2	3	4	5	6	Residual
A	22.2	22.2	11.1	11.1	11.1	11.1	7.4
B	6.1	6.1	6.1	6.1	6.1	6.1	6.1
C	27.0	13.5	13.5	13.5	9.0	9.0	9.0
D	16.6	16.6	16.6	8.3	8.3	8.3	8.3
E	11.2	11.2	11.2	11.2	11.2	5.6	5.6
F	3.7	3.7	3.7	3.7	3.7	3.7	3.7
G	10.6	10.6	10.6	10.6	10.6	10.6	10.6
H	2.6	2.6	2.6	2.6	2.6	2.6	2.6
Seat allocated to	C	A	D	C	E	A	

Table 5

[^0]RECOGNISING ACHIEVEMENT
OXFORD CAMBRIDGE AND RSA EXAMINATIONS
Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education
MEI STRUCTURED MATHEMATICS
2603(B)
Pure Mathematics 3
Section B: Comprehension
INSERT
Monday
23 JANUARY 2006
Afternoon
Up to 1 hour

INSTRUCTIONS TO CANDIDATES

- This insert contains the text for use with the questions.

Electing Members of the European Parliament

The Regional List System

The British members of the European Parliament are elected using a form of proportional representation called the Regional List System. This article compares two different ways of working out who should be elected.

Great Britain is divided into 11 regions and each of these is assigned a number of seats in the European Parliament. So, for example, the South West region has 7 seats, meaning that it elects 7 members to the parliament.

Each political party in a region presents a list of candidates in order of preference. For example, in a region with 5 seats, Party A could present a list like that in Table 1.

	Party A
1	Comfort Owosu
2	Graham Reid
3	Simon White
4	Malini Ghosh
5	Sam Roy

Table 1
According to the proportion of the votes that Party A receives, $0,1,2,3,4$ or all 5 of the people
on the list may be elected.
Imagine an election for 6 seats in one region. It is contested by 8 political parties, A, B, C, D, $\mathrm{E}, \mathrm{F}, \mathrm{G}$ and H and the percentages of votes they receive are given in Table 2.

Party	Votes (\%)
A	22.2
B	6.1
C	27.0
D	16.6
E	11.2
F	3.7
G	10.6
H	2.6

Table 2
How do you decide which parties get the 6 seats?

The Regional List System is based on the idea that, in any particular regional election, a certain percentage of votes will win one seat. In this article, this is called the acceptance percentage and is denoted by $a \%$. A party which receives less than $a \%$ of the votes is given no seats; one that receives at least $a \%$ and less than $2 a \%$ of the votes gets 1 seat; at least $2 a \%$ and less than $3 a \%$ of the votes translates into 2 seats and so on.

At first sight it might seem that, in the example in Table 2, since $100 \% \div 6=16 \frac{2}{3} \%$, the acceptance percentage should be about 16.7% of the votes. Clearly that will not work since it would give Parties A and C one seat each and none of the others would get any. Only 2 members would be elected rather than the required 6 .

So what percentage of the votes is needed for exactly 6 people to be elected? One method of deciding is to try out different possible acceptance percentages and find one which results in 6 seats. In Table 3, values of a of 8,10, 12 and 14 are tried out.

Acceptance percentage, $\boldsymbol{a} \%$		$\mathbf{8 \%}$	$\mathbf{1 0 \%}$	$\mathbf{1 2 \%}$	$\mathbf{1 4 \%}$					
Party	Votes (\%)	Seats	Seats	Seats	Seats					
A	22.2	2	2	1	1					
B	6.1	0	0	0	0					
C	27.0	3	2	2	1					
D	16.6	2	1	1	1					
E	11.2	1	1	0	0					
F	3.7	0	0	0	0					
G	10.6	1	1	0	0					
H	2.6	0	0	0	0					
Total seats							$\mathbf{9}$	$\mathbf{7}$	$\mathbf{4}$	$\mathbf{3}$

Table 3
Table 3 shows that an acceptance percentage of 10% is too low for 6 seats and one of 12% is too high. So it is natural to try 11%. This is shown in Table 4.

4

		$\mathbf{a \% = 1 1 \%}$	Used Votes (\%)	Unused Votes (\%)
A	Votes (\%)	Seats		
B	22.2	2	22	0.2
C	27.0	0	0	6.1
D	16.6	1	11	5.6
E	11.2	1	11	0.2
F	3.7	0	0	3.7
G	10.6	0	0	10.6
H	2.6	0	0	2.6
Total				
$\mathbf{6}$	$\mathbf{6 6 . 0 \%}$	$\mathbf{3 4 . 0 \%}$		

Table 4
Table 4 shows that an acceptance percentage of 11% gives 2 seats each to Parties A and C and one each to D and E , making a total of 6 in all. Party G just misses out. Thus with these voting figures, and with 6 seats to be allocated, 11% is a suitable acceptance percentage.

This Trial-and-Improvement method involves finding an interval within which the acceptance percentage must lie, in this example between 10% and 12%, and then closing in on a suitable value. It is like solving an equation by a change of sign method, but with the difference that in this case there is a range of possible answers: in the example above any value greater than 10.6% up to and including 11.1% will give a satisfactory acceptance percentage.

The range of values that an acceptance percentage can take depends on the number of seats.

The d'Hondt Formula

A different method of allocation is provided by the d'Hondt Formula. This is illustrated in
Table 5, using the same data as before.

	Round						
Party	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	Residual
A	22.2	22.2	11.1	11.1	11.1	11.1	7.4
B	6.1	6.1	6.1	6.1	6.1	6.1	6.1
C	27.0	13.5	13.5	13.5	9.0	9.0	9.0
D	16.6	16.6	16.6	8.3	8.3	8.3	8.3
E	11.2	11.2	11.2	11.2	11.2	5.6	5.6
F	3.7	3.7	3.7	3.7	3.7	3.7	3.7
G	10.6	10.6	10.6	10.6	10.6	10.6	10.6
H	2.6	2.6	2.6	2.6	2.6	2.6	2.6
Seat allocated to	\mathbf{C}	\mathbf{A}	\mathbf{D}	\mathbf{C}	\mathbf{E}	\mathbf{A}	

Table 5

The d'Hondt Formula provides an algorithm in which seats are allocated from the top down. Each time a party is allocated a seat its vote is replaced by $\frac{V}{n+1}$, where V is the percentage of votes it received originally and n is the number of seats it has now been allocated.

- In Round 1, Party C has the highest percentage, 27.0, so C gets the first seat.
- For Round 2, the vote for Party C is divided by $(n+1)$, with n taking the value 1 since the party has now been allocated 1 seat. So the figure 27.0 for C is replaced by $27.0 \div 2=13.5$.
- The highest figure in Round 2 is 22.2 for Party A and so the next seat goes to A. The figure 22.2 for A is replaced by $22.2 \div 2=11.1$ in Round 3. The seat for Round 3 is allocated to Party D.
- In Round 4, Party C gets a second seat so that the value of n for this party is now 2. So the original figure for C is now divided by $(2+1)=3$ for Round $5 ; 27.0 \div 3=9.0$.
- The figures in the final column, headed "Residual", are those that would be used if an extra seat were to be allocated. They do not have the same meaning as "Unused Votes" in Table 4.

In this example, the outcome obtained using the d'Hondt Formula is the same as that from the Trial-and-Improvement method, namely 2 seats each for A and C , and one each for D and E . Again Party G just misses out; if there had been 7 seats G would have got the last one.

Equivalence of the two methods

Since the two methods are completely different, it comes as something of a surprise that in this example they produce the same outcome. The question then arises as to whether they will always produce the same outcome.

The results of the real elections are worked out using the d'Hondt Formula; if there were circumstances in which this produced different outcomes from the Trial-and-Improvement method, there might be doubt about the fairness of the election.

It is, however, possible to show that the outcomes from the two methods will always be the same.

Before seeing how to do this, it is important to understand that there are fundamental differences between the methods.

- The Trial-and-Improvement method is based on finding an acceptance percentage for the particular number of seats; for a different number of seats you have to find a different acceptance percentage.
- Using the d'Hondt Formula, an acceptance percentage is never known. The method gives the outcome round by round for as many seats as are to be allocated.

In the Trial-and-Improvement method, call the parties Party 1, Party $2, \ldots$, Party m.
Suppose that Party k receives $V_{k} \%$ of the votes and is allocated N_{k} seats.

One way of looking at this outcome is that each of the N_{k} elected members of parliament received an acceptance percentage of the votes, $a \%$, and then there were some "unused votes"
left over, as shown in Table 4.

The percentage of unused votes must be less than the acceptance percentage; otherwise the party would have been allocated another seat.

Therefore

$$
V_{k}-\left(N_{k} \times a\right)<a
$$

and so

$$
a>\frac{V_{k}}{N_{k}+1} .
$$

This is true for all the values of k from 1 to m.
A second condition arises for those parties that have been allocated seats. If such a party had been allocated one fewer seat, $N_{k}-1$ instead of N_{k}, the percentage of votes left over would have been at least the acceptance percentage.

Therefore

$$
\begin{gather*}
V_{k}-\left(N_{k}-1\right) a \geqslant a \\
a \leqslant \frac{V_{k}}{N_{k}} .
\end{gather*}
$$

(If, however, a party has not been allocated any seats anyway, then there is no equivalent second inequality.)

Thus

$$
\frac{V_{k}}{N_{k}+1}<a \leqslant \frac{V_{k}}{N_{k}} \quad \text { if } N_{k}>0
$$

and

$$
\frac{V_{k}}{N_{k}+1}<a \quad \text { if } N_{k}=0
$$

Now look at Table 6 below. This reproduces row C from Table 5 illustrating the d'Hondt Formula.
and so

	Round						
Party	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	Residual
C	27.0	13.5	13.5	13.5	9.0	9.0	9.0
Seat allocated to	\mathbf{C}			\mathbf{C}			

Table 6
Using the notation above, with C as Party 3, this becomes Table 7 .

	Round						
Party	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	Residual
C	V_{3}	$\frac{1}{2} V_{3}$	$\frac{1}{2} V_{3}$	$\frac{1}{2} V_{3}$	$\frac{1}{3} V_{3}$	$\frac{1}{3} V_{3}$	$\frac{1}{3} V_{3}$
Seat allocated to	\mathbf{C}			\mathbf{C}			

So in this case the acceptance percentage lies between $\frac{1}{2} V_{3}$, which gives another seat in Round 4 , and $\frac{1}{3} V_{3}$ which does not give another seat.

So

$$
\frac{1}{3} V_{3}<a \leqslant \frac{1}{2} V_{3} .
$$

This result can be generalised by replacing Party 3 by Party k, and the 2 seats by N_{k} seats, to obtain the result found above for the Trial-and-Improvement method,

$$
\frac{V_{k}}{N_{k}+1}<a \leqslant \frac{V_{k}}{N_{k}} .
$$

Thus the two methods are indeed equivalent.

Discovering the d'Hondt Formula

While the Trial-and-Improvement method is straightforward, the d'Hondt Formula is quite subtle, so much so that it is natural to ask "How did anyone think this up in the first place?"

The method owes its name to Victor d'Hondt, a Belgian lawyer and mathematician who first described it in 1878. It is used in many countries, including the United States where it is called the Jefferson Method.

The graph in Fig. 8 provides a clue as to how it might have been discovered. Fig. 8 shows the ranges of possible acceptance percentages for different numbers of seats, for the figures in Table 2. To draw such a graph, you need to work out the end-points of the various ranges. The range $10.6<a \leqslant 11.1$ for the case of electing 6 people was given on line 37. These endpoints turn out to be the largest numbers in successive Rounds in Table 5 which illustrates the d'Hondt Formula. Thus drawing this type of graph leads you into the d'Hondt Formula.

Fig. 8

Which is the better method?
Since the two methods are equivalent, there is no mathematical reason to declare either ts the better.

There are, however, two other considerations.

- Is one method easier than the other to apply?
- Is one method easier than the other for the public to understand, and so more likel. generate confidence in the outcome?

[^1]
[^0]: Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher ($O C R$) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

 OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

[^1]: Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

