OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS
4752
Concepts for Advanced Mathematics (C2)
Monday 23 MAY $2005 \quad$ Morning 1 hour 30 minutes
Additional materials:
Answer booklet
Graph paper
MEI Examination Formulae and Tables (MF2)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The total number of marks for this paper is 72 .

Section A (36 marks)

1 Differentiate $x+\sqrt{x^{3}}$.

2 The nth term of an arithmetic progression is $6+5 n$. Find the sum of the first 20 terms.

3 Given that $\sin \theta=\frac{\sqrt{3}}{4}$, find in surd form the possible values of $\cos \theta$.

4 A curve has equation $y=x+\frac{1}{x}$.
Use calculus to show that the curve has a turning point at $x=1$.
Show also that this point is a minimum.

5 (i) Write down the value of $\log _{5} 5$.
(ii) Find $\log _{3}\left(\frac{1}{9}\right)$.
(iii) Express $\log _{a} x+\log _{a}\left(x^{5}\right)$ as a multiple of $\log _{a} x$.

6 Sketch the graph of $y=2^{x}$.
Solve the equation $2^{x}=50$, giving your answer correct to 2 decimal places.

7 The gradient of a curve is given by $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{6}{x^{3}}$. The curve passes through $(1,4)$. Find the equation of the curve.

8 (i) Solve the equation $\cos x=0.4$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.
(ii) Describe the transformation which maps the graph of $y=\cos x$ onto the graph of $y=\cos 2 x$.

Section B (36 marks)

9

Fig. 9
Fig. 9 shows a sketch of the graph of $y=x^{3}-10 x^{2}+12 x+72$.
(i) Write down $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(ii) Find the equation of the tangent to the curve at the point on the curve where $x=2$.
(iii) Show that the curve crosses the x-axis at $x=-2$. Show also that the curve touches the x-axis at $x=6$.
(iv) Find the area of the finite region bounded by the curve and the x-axis, shown shaded in Fig. 9 .

10 Arrowline Enterprises is considering two possible logos:

Fig. 10.1
(i) Fig. 10.1 shows the first logo ABCD . It is symmetrical about AC .

Find the length of AB and hence find the area of this logo.
(ii) Fig. 10.2 shows a circle with centre O and radius 12.6 cm . ST and RT are tangents to the circle and angle SOR is 1.82 radians. The shaded region shows the second logo.

Show that $\mathrm{ST}=16.2 \mathrm{~cm}$ to 3 significant figures.
Find the area and perimeter of this logo.

11 There is a flowerhead at the end of each stem of an oleander plant. The next year, each flowerhead is replaced by three stems and flowerheads, as shown in Fig. 11.

Year 1

Year 2

Year 3

Fig. 11
(i) How many flowerheads are there in year 5?
(ii) How many flowerheads are there in year n ?
(iii) As shown in Fig. 11, the total number of stems in year 2 is 4 , (that is, 1 old one and 3 new ones). Similarly, the total number of stems in year 3 is 13 , (that is, $1+3+9$).

Show that the total number of stems in year n is given by $\frac{3^{n}-1}{2}$.
(iv) Kitty's oleander has a total of 364 stems. Find
(A) its age,
(B) how many flowerheads it has.
(v) Abdul's oleander has over 900 flowerheads.

Show that its age, y years, satisfies the inequality $y>\frac{\log _{10} 900}{\log _{10} 3}+1$.
Find the smallest integer value of y for which this is true.

6
BLANK PAGE

7
BLANK PAGE

BLANK PAGE

