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Calculation of determinant 
Finding at least 3 cofactors 
6 signed cofactors correct 
Fully correct method for inverse 
Inverse correct 
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Substituting  1in1 −= Pk
 
3 numerical matrices in correct order 
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Give B1 if both given as  ∞
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Use of produce rule 
 
 
 
 
 
 
Infinite gradient at  )0,0(
 
Correct shape; crossing x-axis at 1 
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Integration by parts 
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Give B1 for two terms correct 
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Solving quadratic equation 
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Any correct form 
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 5 (i) G is closed if 2≠∗ yx  
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M0 if only particular example(s) given 

    (ii) 3643 2 =+−⇔=∗ xxxx  
         3,1=⇔ x
The only element with order 2 is  1 
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  3 5 9 11   

 3 3 5 9 11   

 5 5 11 3 9   

 9 9 3 11 5   
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 11 11 9 5 3   
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Give B1 for one bold value correct 

 Table shows H is closed 
 is associative since ∗  is associative 

The identity element is 3 
 
3, 5, 9, 11  have inverses  3, 9, 5, 11 
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For any two of these statements 
 
Give B1 for two correct 

    (iv) H is cyclic since it has an element of order 4 
The element 5 (or 9) has order 4 
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    (v) H is not a subgroup of G since the binary operation is 
different; 
e.g. in G, ; but in H,  2395 =∗ 395 =
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Report on the Units taken in June 2004 

2606 Pure Mathematics 6 
 
General Comments 
 
Most candidates presented their work clearly, and produced a good solution to at least one 
question.  There was a wide range of performance, with 20% of candidates scoring more 
than 50 marks (out of 60) and about a quarter scoring 30 marks or less.  The most popular 
choice of questions was 1, 3, 4 followed by 1, 2, 3 and 1, 3, 5.  These three combinations 
accounted for over 90% of the candidates. 
 
 
Comments on Individual Questions 
 
Q.1 This question was attempted by most candidates, and the average mark was about 

14 (out of 20). 
 
 In part (a) the inverse matrix was very often found correctly, and the method for 

finding A was quite well understood.  Sometimes the three matrices were multiplied 
in the opposite order, and several candidates left the answer in terms of k, without 
substituting k = 1 into the inverse matrix. 

 

 Part (b)(i) was found to be the hardest part of the question.  The formula ( )− ×p a d
d  for 

the perpendicular distance from a point to a line was often used successfully, 
although it was frequently mis-remembered (or misapplied) with a scalar product 
instead of the vector product.  Quite a few attempted to use the formula for the 
distance of a point from a plane.  An alternative approach, finding the foot of the 
perpendicular, was used successfully by some candidates. 

 
 Finding the shortest distance between two skew lines in part (b)(ii) was understood 

much better. 
 
Q.2 This question was attempted by 40% of the candidates, and the average mark was 

about 12. 
 
 In part (i) the limiting values of xnlnx were not universally known, and most 

candidates got one or more of these wrong.  This had consequences for the curve in 
part (ii) which often had x = 0 as an asymptote, and for the limiting value of the 
integral in part (iii). 

 
 There were many good explanations in part (iv), although several candidates 

considered strips of width 1 instead of 1
n . 

 
 Few candidates could use their result from part (iv) to make progress in part (v).  A 

fair number used an alternative method, approximating the sum of the series by 

∫
100

1
ln dx x x , which gives a much less accurate value. 

 
Q.3 This question was attempted by almost every candidate, and the average mark was 

about 14. 
 
 Parts (i), (ii) and (iii) were very often answered correctly. 
 
 In part (iv), most candidates knew that the condition for the normal line to be parallel 

to the x-axis was ∂ ∂
∂ ∂= =0g g
y z  (although some thought it was ∂∂ =0g

x ).  However, very 

1 
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many candidates combined these equations with ∂∂ =1g
x , instead of using the equation 

of the surface, to find the coordinates of the points. 
 
Q.4 This question was attempted by half the candidates, and the average was about 12. 
 
 The principles involved in all parts of the question were well understood, but many 

candidates were prevented from obtaining the given results because of their lack of 
competence with the half-angle formulae.  For example, a surprising number of 
candidates were unable to do part (i). 

 
Q.5 This question was attempted by less than 20% of candidates, and the average mark 

was about 12. 
 
 Few candidates earned full marks in part (i).  Very many did not treat the condition 

x ≠ 2 sufficiently rigorously when considering closure or inverses, and some confused 
associativity with commutativity.  Others ‘proved’ associativity by giving one or two 
particular examples. 

 
 The remaining parts (ii) to (v) were generally well answered. 
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