OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS
Mechanics 6
Friday 25 JUNE $2004 \quad$ Morning 1 hour 20 minutes
Additional materials:
Answer booklet
Graph paper
MEI Examination Formulae and Tables (MF12)

TIME 1 hour 20 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer any three questions.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The allocation of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given to a degree of accuracy appropriate to the context.
- Take $\mathrm{g}=9.8 \mathrm{~m} \mathrm{~s}^{-2}$ unless otherwise instructed.
- The total number of marks for this paper is 60 .

1 Option 1: Rotation of a rigid body
A trap-door at the entrance to a loft is modelled as a uniform rectangular lamina of mass M and length $2 a$, smoothly hinged to a wall about a horizontal axis A. The trap-door is held in a horizontal position by a catch and is then released from rest. Fig. 1 shows a cross-section through the trapdoor and the wall when the trap-door has turned through an angle θ.

Fig. 1
(i) Find expressions for $\dot{\theta}^{2}$ and $\ddot{\theta}$ in terms of a, g and θ.
(ii) Hence find the radial and transverse components of the reaction on the trap-door at the hinge.

The trap-door is brought instantaneously to rest in a vertical position by a small doorstop which is on the wall at a distance $2 a$ below A.
(iii) Show that the impulse on the hinge is $\frac{1}{6} M \sqrt{6 a g}$.
(iv) Show that the doorstop can be moved to a position so that the impulse on the hinge becomes zero.

2 Option 2: Vectors
Forces $\mathbf{F}_{\mathbf{1}}=\left(\begin{array}{r}2 \\ -1 \\ 1\end{array}\right), \mathbf{F}_{\mathbf{2}}=\left(\begin{array}{r}3 \\ 2 \\ -1\end{array}\right)$ and $\mathbf{F}_{\mathbf{3}}=\left(\begin{array}{r}1 \\ 0 \\ -3\end{array}\right)$ act through points with position vectors $r_{1}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right), r_{2}=\left(\begin{array}{r}1 \\ -1 \\ 2\end{array}\right)$ and $\mathbf{r}_{3}=\left(\begin{array}{r}a \\ 2 \\ -1\end{array}\right)$ respectively, where a is a constant.
(i) Find the resultant force \mathbf{F}. Find also the resultant torque, \mathbf{C}, about the origin in terms of a.

A fourth force F_{4} is added, acting through a point with position vector \mathbf{r}_{4}. The system of forces is now in equilibrium.
(ii) Write down the values of \mathbf{F}_{4} and $\mathbf{r}_{\mathbf{4}} \times \mathbf{F}_{\mathbf{4}}$.
(iii) Explain why C. $\mathrm{F}_{4}=0$ and hence show that $a=\frac{43}{3}$.
(iv) Given that the x-component of \mathbf{r}_{4} is zero, calculate $\mathbf{r}_{\mathbf{4}}$.
(v) The force \mathbf{F} is equivalent to the system of forces $\mathbf{F}_{1}, \mathbf{F}_{2}$ and \mathbf{F}_{3}. What is the equation of the line of action of \mathbf{F} ?

Option 3: Stability and Oscillations

A uniform rod AB of mass m and length $2 a$ is smoothly hinged to the fixed point A and is free to rotate in a vertical plane. A light elastic string of natural length a and modulus 2 mg is attached at one end to B and at the other end to a fixed point C where $\mathrm{AC}=2 a$. The point C is on the same horizontal level as A and in the same vertical plane as the rod. The rod is at an angle θ below the horizontal as shown in Fig. 3.1.

Fig. 3.1
(i) Find, in terms of θ, an expression for the potential energy of the system when the string is not slack. Hence show that the equilibrium positions occur when $f(\theta)=0$ where

$$
\begin{equation*}
f(\theta)=8 \sin \theta-\cos \theta-4 \cos \frac{1}{2} \theta \tag{8}
\end{equation*}
$$

Fig. 3.2
Fig. 3.2 shows the graph of $\mathrm{f}(\theta)$ against θ for $|\theta| \leqslant \pi$. The system has a stable equilibrium position where $\theta=\alpha$ and an unstable equilibrium position where $\theta=\beta$.
(ii) Estimate the values of α and β, explaining your reasoning with reference to the graph. Sketch the unstable position of equilibrium of the system.

The rod is held slightly displaced from the position where $\theta=\alpha$ and released from rest. You are given that $\mathrm{f}^{\prime}(\alpha) \approx 7.7$, so that, for θ close to $\alpha, \mathrm{f}(\theta) \approx \mathrm{f}(\alpha)+7.7(\theta-\alpha)$.
(iii) Write down the energy equation for the system. In the case where the rod is 1 metre long, show that the period of small oscillations about the equilibrium position is approximately 0.6 seconds.

4 Option 4: Variable mass

A small raindrop of initial mass m_{0} falls from rest through a light stationary cloud. Water condenses on the raindrop so that its mass increases at a constant rate k with respect to time.
(i) Show that, if all resistance forces are neglected, the velocity of the raindrop at time t is given by

$$
\begin{equation*}
v=\frac{g t}{2}\left(\frac{2 m_{0}+k t}{m_{0}+k t}\right) . \tag{6}
\end{equation*}
$$

(ii) Hence find the distance fallen at time t.

The model is refined to include air resistance modelled as being proportional to the speed of the raindrop.
(iii) Show that the velocity, v, of the raindrop now satisfies the differential equation

$$
\frac{\mathrm{d} v}{\mathrm{~d} t}+\frac{k+\lambda}{m_{0}+k t} v=g
$$

where λ is a constant.
Hence find an expression for the velocity of the raindrop at time t.

Mark Scheme

1(i)$I=\frac{4}{3} M a^{2}$ B1 $\frac{1}{2} I \dot{\theta}^{2}-M g a \sin \theta=0$ M1 using energy $\dot{\theta}^{2}=\frac{3 g}{2 a} \sin \theta$ F1 follow their I		
$I \ddot{\theta}=M g a \cos \theta$	M1	equation of motion or differentiate energy
$\ddot{\theta}=\frac{3 g}{4 a} \cos \theta$	F1	follow their I

(ii) $\quad \prod^{Y} \quad Y-M g \sin \theta=M a \dot{\theta}^{2} \quad$ M1 radial N2L equation

$$
=\frac{3}{2} M g \sin \theta \quad \text { M1 } \quad \text { substitute for } \dot{\theta}^{2}
$$

$\Rightarrow Y=\frac{5}{2} M g \sin \theta$
$X+M g \cos \theta=M a \ddot{\theta}$
$=\frac{3}{4} M g \cos \theta$
$\Rightarrow X=-\frac{1}{4} M g \cos \theta$
A1
M1 transverse N2L equation
M1 substitute for $\ddot{\theta}$
A1

(iv) If possible at distance x below A
$J x=\frac{4}{3} M a^{2} \dot{\theta}$
B1 follow their I
$J=M a \dot{\theta}$
B1
$\Rightarrow x=\frac{4}{3} a$
$\frac{4}{3} a<2 a$ so possible if doorstop is $\frac{4}{3} a$ below A
M1 eliminate J
A1 for $\frac{4}{3} a$

2(i) | | $\mathbf{F}=\sum \mathbf{F}_{i}$ | M1 | |
| ---: | :--- | ---: | :--- |
| | $=6 \mathbf{i}+\mathbf{j}-3 \mathbf{k}$ | | A1 |
| | $\mathbf{C}=\sum \mathbf{r}_{i} \times \mathbf{F}_{i}$ | M1 | use of $\mathbf{r} \times \mathbf{F}$ (or $\mathbf{F} \times \mathbf{r}$) |
| | $=\left\|\begin{array}{lcc}\mathbf{i} & 1 & 2 \\ \mathbf{j} & 1 & -1 \\ \mathbf{k} & 0 & 1\end{array}\right\|+\left\|\begin{array}{ccc}\mathbf{i} & 1 & 3 \\ \mathbf{j} & -1 & 2 \\ \mathbf{k} & 2 & -1\end{array}\right\|+\left\|\begin{array}{ccc}\mathbf{i} & a & 1 \\ \mathbf{j} & 2 & 0 \\ \mathbf{k} & -1 & -3\end{array}\right\|$ | | |
| | $=(\mathbf{i}-\mathbf{j}-3 \mathbf{k})+(-3 \mathbf{i}+7 \mathbf{j}+5 \mathbf{k})+(-6 \mathbf{i}+(3 a-1) \mathbf{j}-2 \mathbf{k})$ | M1 attempt all vector products | |
| | $=-8 \mathbf{i}+(3 a+5) \mathbf{j}$ | A1 one correct product (accept $\mathbf{F} \times \mathbf{r})$ | |

(ii) $\mathbf{F}+\mathbf{F}_{4}=\mathbf{0} \Rightarrow \mathbf{F}_{4}=-6 \mathbf{i}-\mathbf{j}+3 \mathbf{k}$

B1 - (their F)
$\mathbf{C}+\mathbf{r}_{4} \times \mathbf{F}_{4}=\mathbf{0} \Rightarrow \mathbf{r}_{4} \times \mathbf{F}_{4}=8 \mathbf{i}-(3 a+5) \mathbf{j}$
B1 - (their \mathbf{C})

(ii)	$\mathbf{F}+\mathbf{F}_{4}=\mathbf{0} \Rightarrow \mathbf{F}_{4}=-6 \mathbf{i}-\mathbf{j}+3 \mathbf{k}$	B1 - (their \mathbf{F})
	$\mathbf{C}+\mathbf{r}_{4} \times \mathbf{F}_{4}=\mathbf{0} \Rightarrow \mathbf{r}_{4} \times \mathbf{F}_{4}=8 \mathbf{i}-(3 a+5) \mathbf{j}$	B1 - (their \mathbf{C})

(iii) $\quad \mathbf{r}_{4} \times \mathbf{F}_{4} \perp \mathbf{F}_{4} \Rightarrow \mathbf{C} \perp \mathbf{F}_{4} \quad$ M1
$\Rightarrow \mathbf{C} . \mathbf{F}_{4}=0 \quad$ E1
$48-(3 a+5)=0 \quad$ M1
$a=\frac{43}{3}$
E1
(iv) $\quad \mathbf{r}_{4} \times \mathbf{F}_{4}=-\mathbf{C}$
$\left(\begin{array}{c}0 \\ y \\ z\end{array}\right) \times\left(\begin{array}{c}-6 \\ -1 \\ 3\end{array}\right)=\left(\begin{array}{c}8 \\ -48 \\ 0\end{array}\right)$
$\left(\begin{array}{c}3 y+z \\ -6 z \\ 6 y\end{array}\right)=\left(\begin{array}{c}8 \\ -48 \\ 0\end{array}\right)$
$\Rightarrow y=0, z=8$
$\mathbf{r}_{4}=8 \mathbf{k}$$\quad \begin{array}{ll} \\ \end{array}$
(v) line of action of \mathbf{F}_{4} is $\mathbf{r}=\mathbf{r}_{4}+\lambda \mathbf{F}_{4}$
i.e. $\mathbf{r}=8 \mathbf{k}+\lambda(-6 \mathbf{i}-\mathbf{j}+3 \mathbf{k})$
$\mathbf{F}=-\mathbf{F}_{4}$ along same line of action
so line of action of \mathbf{F} is $\mathbf{r}=8 \mathbf{k}+\lambda(-6 \mathbf{i}-\mathbf{j}+3 \mathbf{k})$
Alternatively, $\mathbf{r}=\mathbf{b}+\lambda \mathbf{F}$
$\mathbf{b} \times \mathbf{F}=\mathbf{C}$
so line of action of \mathbf{F} is $\mathbf{r}=\mathbf{b}+\lambda(6 \mathbf{i}+\mathbf{j}-3 \mathbf{k})$

B1 direction vector a multiple of \mathbf{F}_{4}
M1 reasonable attempt at line of action
M1
A1 or any equivalent form

B1 direction vector a multiple of their \mathbf{F}
M1 set up equation
M1 solve for \mathbf{b}
A1 with a correct explicit vector \mathbf{b}

3(i) $V(\theta)=-m g a \sin \theta+\frac{\lambda x^{2}}{2 l_{0}}$
$=-m g a \sin \theta+\frac{2 m g}{2 a}(B C-a)^{2}$
$=-m g a \sin \theta+\frac{2 m g}{2 a}\left(4 a \sin \frac{1}{2} \theta-a\right)^{2}$
$=m g a\left(-\sin \theta+\left(4 \sin \frac{1}{2} \theta-1\right)^{2}\right)$
$V^{\prime}(\theta)=m g a\left(-\cos \theta+2\left(4 \sin \frac{1}{2} \theta-1\right) \cdot 2 \cos \frac{1}{2} \theta\right)$
$=m g a\left(-\cos \theta+16 \sin \frac{1}{2} \theta \cos \frac{1}{2} \theta-4 \cos \frac{1}{2} \theta\right)$
$=m g a\left(8 \sin \theta-\cos \theta-4 \cos \frac{1}{2} \theta\right)$
$=m g a \mathrm{f}(\theta)$
equilibrium $\Leftrightarrow V^{\prime}(\theta)=0$
$\Leftrightarrow \mathrm{f}(\theta)=0$

Equilibrium at $\theta \approx 0.6,-3$
for stable equilibrium, $\mathrm{f}(\alpha)=0, \mathrm{f}^{\prime}(\alpha)>0$
for unstable equilibrium, $\mathrm{f}(\beta)=0, \mathrm{f}^{\prime}(\beta)<0$
so from graph, $\alpha \approx 0.6, \beta \approx-3$

M1 attempt at potential energy (two terms required)

A1 EPE term correct
M1 BC in terms of θ
A1
M1 differentiate

M1 use trig. identity

M1
E1 condition for equilibrium must be referred to

B1 identify one correct value
B1 reason for choosing α
B1 reason for choosing β
B1 both correctly identified
B2 diagram of system
Special case if $\mathrm{f}(\theta)$ interpreted as $V(\theta)$:
SC 1 for equilibrium at θ at max and min of f SC1 for justifying stability for both SC1 for diagram for their β
(iii) $\frac{1}{2} I \dot{\theta}^{2}+V(\theta)=$ constant
$\frac{1}{2}\left(\frac{4}{3} m a^{2}\right) \dot{\theta}^{2}+V(\theta)=$ constant
$\frac{4}{3} m a^{2} \ddot{\theta} \dot{\theta}+V^{\prime}(\theta) \dot{\theta}=0$
$\ddot{\theta}+\frac{3 g}{4 a} \mathrm{f}(\theta)=0$
A1
$\mathrm{f}(\theta) \approx \mathrm{f}(\alpha)+7.7(\theta-\alpha)=7.7(\theta-\alpha)$
$\ddot{\theta}+7.7\left(\frac{3 g}{4 a}\right)(\theta-\alpha) \approx 0$
$a=0.5 \Rightarrow T \approx 2 \pi \sqrt{\frac{4 \times 0.5}{7.7 \times 3 g}} \approx 0.6$
M1 use approximation to get equation of motion

$4(\mathrm{i})$	B1
$\frac{\mathrm{d} m}{\mathrm{~d} t}=k \Rightarrow m=m_{0}+k t$ $\mathrm{~d} t$ d $m v)=m g$ $m v g \mathrm{~d} t=\int\left(m_{0}+k t\right) g \mathrm{~d} t$	M1 using N2L in variable mass form
$=m_{0} g t+\frac{1}{2} g k t^{2}+A$	M1 integrating
$t=0, v=0 \Rightarrow A=0$	A1 including constant
$v=\frac{g t\left(2 m_{0}+k t\right)}{2\left(m_{0}+k t\right)}$	M1 use condition on v

M1
M1 rearranging into suitable form for integration

M1 integrating
A1

M1 use condition on x

A1
(iii) $\frac{\mathrm{d}}{\mathrm{d} t}(m v)=m g-\lambda v$

M1 using N2L in variable mass form
$\Rightarrow m \frac{\mathrm{~d} v}{\mathrm{~d} t}+v k=m g-\lambda v$
M1 using product rule and rearranging
$\frac{\mathrm{d} v}{\mathrm{~d} t}+\frac{k+\lambda}{m_{0}+k t} v=g$
E1
$I=\exp \left(\int \frac{k+\lambda}{m_{0}+k t} \mathrm{~d} t\right)=\exp \left(\left(1+\frac{\lambda}{k}\right) \ln \left(m_{0}+k t\right)\right)$
M1
$=\left(m_{0}+k t\right)^{1+\lambda / k}$
$\frac{\mathrm{d}}{\mathrm{d} t}\left(\left(m_{0}+k t\right)^{1+2 / k} v\right)=\left(m_{0}+k t\right)^{1+\lambda / k} g$
$\left(m_{0}+k t\right)^{1+\lambda / k} v=\frac{1}{2 k+\lambda}\left(m_{0}+k t\right)^{2+\lambda / k} g+C \quad$ M1 integrating
$t=0, v=0 \Rightarrow C=-\frac{m_{0} 2+\lambda / k}{2 k+\lambda} g$
M1 use condition on v
$v=\frac{g}{2 k+\lambda}\left(m_{0}+k t-\frac{m_{0}^{2+\lambda / k}}{\left(m_{0}+k t\right)^{1+\lambda / k}}\right)$

Examiner's Report

2612 Mechanics 6

General Comments

There were some good scripts, although virtually all candidates ran into difficulties at some point. Question 3 was the most popular with all but 2 candidates attempting it. Questions 2 and 4 were also very popular, but only 15 of the 40 candidates attempted question 1. Question 2 attracted the most successful responses.

Comments on Individual Questions

Q. 1 The early parts of the question were well done, but candidates often found the use of momentum and angular momentum difficult in the last two parts of the question. Most responses omitted the impulse at the hinge in part (iii) where it was necessary, and then included it in part (iv) when it was zero! Most responses did not appreciate the need for two separate impulse-momentum equations, i.e. linear and angular.
Q. 2 This question was usually done very well. Most candidates were very confident in their use of vector product. The main difficulty was found in justifying C. $\mathbf{F}_{4}=0$. Many candidates thought that stating that they were perpendicular was sufficient, but showing that they were perpendicular was the key step! The last part of the question was often done well, with some candidates using the line of action of \mathbf{F}_{4}, as led by the question, and others calculating it from scratch.
Q. 3 Candidates understood the general principles of this topic, but many had difficulties with the technicalities. A particular problem arose with many candidates confusing $f(\theta)$ with the potential energy and therefore misreading the graph. Some allowance for this was made in the mark scheme. In the final part of the question, some candidates did not realise that they needed to differentiate the energy equation to obtain the equation of motion.
Q. 4 The first part of the question was often well done, but many candidates unnecessarily expanded $\frac{\mathrm{d}}{\mathrm{d} t}(m v)$ and then used an integrating factor, rather than the simpler approach of integrating it directly. Many attempts in part (ii) were hampered by difficulties with the integration, with candidates not realising that they needed to divide (as polynomials) to find a suitable expression for the integrand. Part (iii) was usually more successful, although algebraic slips were common.

