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A ball of mass m is projected from horizontal ground with initial velocity u = u,i + u,j where i
and j are horizontal and vertically upward unit vectors respectively. The ball is subject to a
resistance to motion of — mkv where k is a constant and v is the velocity of the ball at time ¢ after

projection.

(i) Write down the vector equation of motion. Hence write down the equations of motion in the
i and j directions. [4]

(ii) Solve the equations to show that the horizontal and vertical components of velocity of the ball

are
. —kt
X=ue™,

y =;lc—((g+ku2)e_k’—g). [6]

. u ku
(iii) Hence show that the maximum height reached by the ball is 72 ~ Egi In (1 + }Z)

Use the approximation In{1 + x) = x — %xz for small x to show that this is approximately the

same as the corresponding result for unresisted motion. [10]
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A section of a straight river of constant width 50 m flows at a constant speed of Vms™!. Unit
vectors i and j are parallel and perpendicular to the river as shown in Fig. 2. A small boat travels
at §ms~ ! relative to the water.

P| 50m > 50m .Q
J
! jL
: i
550m
: Vms"i
A

Fig. 2

(i) The boat sets off from a point A on one bank in order to reach a point P on the opposite bank,
50 m upstream from A. The boat sets a course at an angle of 30° to the bank and travels

directly to P.
Calculate V and the resultant speed of the boat. (6]

(ii) On another occasion, the boat travels from A directly to a point Q, on the opposite bank 50 m
downstream of A. Calculate the angle with the bank of the course that must be set. [3]

On a third occasion the boat travels directly from A to P. A barge is travelling downstream in the
middle of the river. At the moment when the boat starts from A the front of the barge is 100 m
upstream from A. The barge travels at a constant speed of U ms ™! relative to the water.

(iii) Show that the velocity of the boat relative to the front of the barge is — (U + 4 V3)i + 4j.
Find the value of U for which the boat collides with the front of the barge. [4]

(iv) Show that the distance, d m, between the boat and the front of the barge at time ¢ seconds after
the boat starts from A is given by

d? = (a®> + 16)1? — 200(a + 1)t + 10625,

where a = U + 43, Find the range of values of U for which d is alWays gfeater than 5. (You
should give your answers to 3 significant figures). [7]
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A particle is moving in a plane. Unit vectors in the radial and transverse directions are T and 0
respectively.

dé N A . . . .
— = —@rderive an expression for the velocity of the particle
: :

(i) Using the results :_r =600 and
t

A 1d A
and show that the acceleration is (7 — ré )t + - a(rze) 0.

. .. . . mkr . .
A satellite of mass m orbiting a planet at the origin is subject to a force — —— where k is a positive
r
[7]

constant.

(ii) Show that 26 is constant. (3]

(iii) Denoting the constant value of r2 by h, find 7 in terms of r, k and # and hence show that

.2 2kr - h2 . .
r° = ———— + A, where A is an arbitrary constant. [6]
r

(iv) Hence find the speed of the satellite in terms of r, k and A. Hence show that, if the orbit is not
circular, the maximum speed of the satellite occurs when it is closest to the planet. (4]

A circular disc of radius a has mass M. Its mass per unit area is proportional to the distance from
the circumference of the disc.

(i) Show that the moment of inertia of the disc about an axis through its centre and perpendicular

(8]

to the disc is %Ma2.

(ii) Find the moment of inertia of the disc about a diameter and hence show that the moment of

(4]

inertia about a tangent is 2 Ma®.

The disc is suspended so that it can swing freely about a horizontal tangent.

(iii) The disc is held horizontally and then released. Find its angular speed when it passes through
the vertical position. [4]

(iv) In a new situation, the disc performs small oscillations about its equilibrium position. Find the
period of these oscillations. (4]
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1(i) dv - M1 NZ2L (3 terms)
ma =-mgj—m Al
dx dy ) Bl
G ek B1
dt dt
4
(i) 5= ge™ M1
t=0,x=u = x=ue™" El
dy
-=|dt M1 separate variables
|
—%In|g+ka| =t+q M1 integrate
g+kp=Be™ M1 rearrange and use conditions
. .1 -
t=0,y=u, 3y:;((g+ku2)e kt—g) El
6
(i) - . .
y=0=e" = £ M1 solve for time at max. height
g +ku,
1 1 k .
t=—=In £ 2|1+ 22 Al any equivalent form
k \g+ku, k g
) 1 w1 . .
y= jydt = —k—z(g+ku2)e —;gt+cz M1 integrating
1 L "
t=0,y=0=¢, :k_z(g+ku2) M1 initial condition
1 g 11 ku, ) 1 . .
=——(g+ku ——g=In|l+—= |+ = (g+ku M1 substitute their ¢
Ymax 2 (g 2)g+ku2 kgk ( P J 2 (g 2)
=”—2—%|n(1+kﬁ] E1
k k g
u 2
for unresisted motion, max. height = ZL B1 from constant acceleration formulae
g
2
In( +kﬁj:kﬁ—%(kﬂj +... M1
g g g
2
u, g\|kuy, fku,
vt 2 L2 M1
Ymax =T kz{g Z(gJ J
u 2
= 2L+ terms of order & E1l needs Bl
g
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2(i) M1 diagram
_\' 5 Al completely correct including angles
v __ 8 M1
sin15° sin135°
V=293ms™* Al
v __ 8 M1
sin30° sin135°
v, =42 ~5.66 ms! Al
6
(ii)
7 B1 diagram
V 8 M1
sin(a —45)° sin45°
. o Vsindse - . _
= sin(a —45) _T(_S|n15):>a_60, Al
so angle of 60°
3
(i) v, =-8c0s30°i +8sin 30°j B1
Vw = Ui B1
D Ve=p Ve —c Vi = —(U+4J§)i+ 4 E1
collide if , v, //—100i + 25§ = U =16 — 4/3 B1
4
(iv) ,r. = (—ai+4j)r +100i — 25j M1
Al
=d? =(100-ar)’ + (4t - 25)* M1
= (a® +16)¢> —200(a +1)¢ +10625 El
d? >5% < (a® +16)t? —200(a +1)t +10600 > 0 M1
true for all t < [200(a +1)]* — 4(a® +16)-10600 < 0 M1
< —3a® +100a - 798 < 0
a< %(50 /106 )or a>% (50 - \/106)
U<6.3lorU>13.2 Al 7
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3W) r=rr M1
veit+rd @) M1
de
:ff'-%—réé El
d—v:r'i(f*)+'r'f~+r¢9'i(é)+;}96+ré(§ M1
dt de de
Al
=700 +iT—r0°t+700+r00
=(F—r0%)F+ (270 +r0)0 E1
d 5. o 1d, 5.
—(r°6) = 210+ r°6 = transverse cpt. = ——(r“60) El
dt r dt
7]
(if)  force // r = transverse cpt. = 0 M1
:11(r29)=0 M1
r dt
= 1?6 = constant Al
3
iii .
(i) 'r'_rgzz_iz M1 aIIowi3
7 r
2
r_r(ij __k M1 substitute 6=
2 2 2
r r r
2
_h_s_iz Al
r r
) )
oF_k~_k M1 writing i
dr 2 2 dr
h2
122 4 24¢ M1 integrating
2 2% r
2
2 _2kr—0* 1
r2
6
V) v = ()% + (+6)° M1
2 2
:2kr;h +A+r2(i2j M1
r r
:%+A
,
V| = /%JFA Al
r
so speed maximised when » minimised, i.e. at closest approach Al
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Ai) p=k(a-r) B1
M = j; k(a—r)2zrdr M1 integral for mass; allow kr for k(a — r)
~2ltar - 5r7) M
=1 7ka’® Al
(% 2 M1 integral for 7; allow kr for k(a - r)
I—Iok(a r)-2zr-redr Al
= 27zk[%ar4 - %rst M1 integrating
=L ka® = %Ma2 El
8
(i) perp.axes: 7, + 1, =2 Mad? M1
symmetry= [ =1, =1 =-2Mad’ Al
par.axes (G at origin) Zygen =1, + Ma® M1
= 2 Ma* E1
4
(iii) %Ia,Z ~Mga=0 M1 energy
Al correct equation
% -%Maza)2 = Mga M1 solve for @
oo |02 413 Al
23a  Ja
4
(iv) %Maz)ﬁ =—-Mgasin g M1 NZ2L
Al
.20 . .
Hz—z—gge M1 using sin@ =6
a
Al

T~2rx & ~ 2.15\/;
20g
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General Comments

The entry of 89 for this year was well up on recent years and was very welcome and
pleasing. There did however appear to be a significant number of candidates who
seemed ill at ease with the paper and as a consequence perhaps did not do
themselves justice. In contrast though there were many very good scripts and
candidates should be pleased with their efforts.

| have noted on numerous occasions before that there is a problem with algebraic
manipulation. Last year this did not do too much harm, but regrettably this time it did
to a few candidates.

Comments on Individual Questions

Q.1

Q.2

0.3

This question on the two dimensional motion through resisting air of a ball
was on the whole reasonably well done. However, very few candidates were
able to write down the vector equation of motion at the start in part (i). By
contrast the majority could and did write down the scalar equations of motion
and then for the most part were able to solve them! The responses from then
on were only marred by algebraic errors in manipulation.

There was a very sharp deterioration in the response this year to this relative
velocity question. Although there were some quite good answers, for the most
part the candidates seemed to have little idea how to proceed. It is true to say
that historically there has been a tendency for candidates to have trouble with
this topic, but in recent years this seemed to have improved somewhat. It is
not easy to analyse the problem as there was really insufficient material to
judge, but | would say that the absence or weakness of a diagram was at the
heart of most difficulties. It is absolutely crucial in my view to express the
information on a well-labelled diagram. From then on the problem often
solves itself.

In later parts of the question, some candidates resorted to an algebraic
approach with some success in a few cases. This alternative approach can
be used in any relative velocity situation and for some people is a preferred
approach. Consistency and accuracy are the keys though whatever method is
adopted.

| was very surprised with the response here. Apart from the final part perhaps,
| expected that candidates would be entirely familiar with this sort of problem.
The establishment of the equations of motion for a satellite motion moving
under the effect of an inverse square law of central attraction is the entire
basis of this topic. Candidates however gave the clear impression that they
were not at all familiar with the material. Very few candidates indeed were
able for instance to derive the vector velocity components from the position
vector, although a similar request for the acceleration vector was found easy.
In a way this is entirely in keeping with the failing noted above at the
beginning of question 1. A very common error in part (ii) was to use an
inverse cube law rather than the given inverse square. This is because
candidates forgot that the position vector r has a modulus of r and not 1. The
integration of the vector acceleration to find the velocity was either omitted or



Q.4

poorly done. Many though were able to have a stab at the final part using the
given expression for the speed.

Candidates were much happier with the first part of this question on moments
of inertia. There were many good answers establishing the moments of inertia
about various axes for a uniform circular disc. The final parts to use this
information in a moving situation were not so good though. Part (iii) required
the use of energy to find an angular speed whereas part (iv) needed an
equation of motion to find a period of small oscillations. Candidates often
interchanged the two applications for these two cases and ended up rather
confusing themselves. | think that most knew what the theory was but were
unable to apply it successfully.





