

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS

2623/1

Numerical Methods

Wednesday

21 JANUARY 2004

Afternoon

1 hour 20 minutes

Additional materials:
Answer booklet
Graph paper
MEI Examination Formulae and Tables (MF12)

TIME 1 hour 20 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer all questions.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The allocation of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The total number of marks for this paper is 60.

1 The expression $(1+p)^n$ is sometimes approximated by e^{np} when n is large and p is close to zero.

(i) Copy and complete the following table.

n	p	$\frac{\mathrm{e}^{np}}{(1+p)^n}$	relative error
10	0.05	1.012172	
50	0.05		
10	0.02		
50	0.02		

State how the accuracy of the approximation appears to change as

(A) n increases but p is held constant,

(B) p gets closer to zero but n is held constant.

[7]

(ii) Now suppose that n and p are both varied but the product, np, is kept equal to 0.1. Starting with n = 10 and p = 0.01, determine how the accuracy changes as n increases. [4]

(iii) It is known that $(1+p)^n \approx 1 + np + \frac{1}{2}n(n-1)p^2$ and $e^{np} \approx 1 + np + \frac{1}{2}n^2p^2$. Obtain an approximate expression for the absolute error in the approximation and show that it will tend to zero if np is kept constant and n increases. [4]

2 (i) Show that the equation

$$\frac{x(x^{10}-1)}{x-1}=14$$

has a root in the interval (1.01, 1.09).

[2]

(ii) Use the bisection method to find an interval (a, b) that contains the root and for which b - a = 0.01.

Give the best possible estimate of the root at this stage, and state the maximum possible error in that estimate. [7]

(iii) Use a single application of linear interpolation on the interval (a,b) to obtain a further estimate of the root.

Determine whether or not this estimate is accurate to 5 decimal places.

[6]

3 A function f(x) has values correct to 3 decimal places as shown in the table.

x	0	2	4
f(x)	7.389	11.023	16.445

The value of $\int_0^4 f(x) dx$ is denoted by *I*.

- (i) Obtain estimates of I using
 - (A) the trapezium rule and the ordinates f(0) and f(4) only,
 - (B) the mid-point rule,
 - (C) Simpson's rule.

[6]

(ii) You are now given further values of the function, also correct to 3 decimal places, as shown.

х	0.5	1	1.5	2.5	3	3.5
f(x)	8.166	9.025	9.974	12.182	13.464	14.880

Find two further Simpson's rule estimates of I.

[6]

[5]

- (iii) Hence give the best estimate of I you can. Justify the number of significant figures to which you give your answer. [3]
- 4 In this question, $f(x) = x^x$.

(i) Use your calculator to evaluate
$$f(x)$$
 at $x = 10^{-3}$, 10^{-5} , 10^{-7} , 10^{-9} . [3]

You are now given that f(0) = 1.

(ii) Use the forward difference method with $h = 10^{-3}$ to estimate f'(0).

Obtain further estimates of f'(0) by taking $h = 10^{-5}$, 10^{-7} , 10^{-9} .

Comment on the sequence of estimates in relation to the likely value of f'(0). [7]

(iii) A cheap calculator gives powers (such as x^x) rounded to 5 significant figures. What conclusions might be drawn by someone using such a calculator to carry out the processes in part (i) and part (ii)?

What is the relevance of this result for more accurate calculators and computers?

Mark Scheme

1 (i)	n	р		rel error			
	10	0.05		0.012172			[M1A1]
	50	0.05		0.062359		sc: [2] for 3rd	[A1
	10	0.02		0.001976		column only	[A1
	50	0.02		0.009917			[A1
	· ·		eases or ac	-			[E1]
	(B) relativ	e error dec	reases or a	ccuracy inc	reases	_	[E1]
						[s	subtotal 7]
(ii)	EG:	: n	р	e ^{np} /(1+p) ⁿ	rel error		
		10	0.01		0.000497		
		20	0.005		0.000249	1st comparison	
		40	0.0025		0.000125	confirmation	[A1]
	relative er	ror decreas	ses (accura	cy increase	s) with increasing	gn .	[E1]
						[s	subtotal 4]
(iii)		roximately					[M1A1]
			p tends to				[M1]
			•		ero as p tends to a		[A1]
	Allow a se	equence of	evaluations	(with expla	anation/comment,) for last [2] [s	subtotal 4]
							TOTAL 15
2 (i)	X	f(x)					
2 (i)	1.01	10.56683					
2 (i)							-
2 (i)	1.01	10.56683				[s	-
2 (i) (ii)	1.01 1.09 a	10.56683 16.56029 b	> 14 x	f(x)		[s	subtotal 2)
	1.01 1.09 a 1.01	10.56683 16.56029 b 1.09	> 14 x 1.05	13.20679		[s	subtotal 2] [M1A1]
	1.01 1.09 a 1.01 1.05	10.56683 16.56029 b 1.09 1.09	> 14 x 1.05 1.07	13.20679 14.7836		[s	subtotal 2] [M1A1]
	1.01 1.09 a 1.01 1.05 1.05	10.56683 16.56029 b 1.09 1.09 1.07	> 14 x 1.05 1.07 1.06	13.20679 14.7836 13.97164		[s	[M1A1] [M1A1]
.,	1.01 1.09 a 1.01 1.05 1.05 1.06	10.56683 16.56029 b 1.09 1.09 1.07 1.07	> 14 x 1.05 1.07 1.06 which is	13.20679 14.7836 13.97164 the require	d interval	[s	[M1A1] [M1A1] [M1A1]
.,	1.01 1.09 a 1.01 1.05 1.05 1.06	10.56683 16.56029 b 1.09 1.09 1.07 1.07	> 14 x 1.05 1.07 1.06	13.20679 14.7836 13.97164 the require	d interval		[M1A1] [M1A1] [M1A1] [A1]
	1.01 1.09 a 1.01 1.05 1.05 1.06	10.56683 16.56029 b 1.09 1.09 1.07 1.07	> 14 x 1.05 1.07 1.06 which is	13.20679 14.7836 13.97164 the require	d interval		[M1A1] [M1A1] [M1A1] [A1]
.,	1.01 1.09 a 1.01 1.05 1.05 1.06 Best estim	10.56683 16.56029 b 1.09 1.09 1.07 1.07 nate 1.065 v	x 1.05 1.07 1.06 which is with mpe 0.	13.20679 14.7836 13.97164 the require 005 f(b) - 14	d interval		[M1A1] subtotal 2] [M1A1] [M1A1] [A1] subtotal 7]
(ii)	1.01 1.09 a 1.01 1.05 1.05 1.06 Best estim	10.56683 16.56029 b 1.09 1.09 1.07 1.07 nate 1.065 v	x 1.05 1.07 1.06 which is with mpe 0.	13.20679 14.7836 13.97164 the require 005 f(b) - 14	d interval		[M1A1] [M1A1] [M1A1] [A1] [A1A1]
(ii)	1.01 1.09 a 1.01 1.05 1.05 1.06 Best estim	10.56683 16.56029 b 1.09 1.07 1.07 nate 1.065 v	x 1.05 1.07 1.06 which is with mpe 0. f(a) - 14 -0.02836	13.20679 14.7836 13.97164 the require 005 f(b) - 14 0.783599	d interval 1.060349 l.e. 1	[s	[M1A1] [M1A1] [M1A1] [A1A1] subtotal 7]
(ii)	1.01 1.09 a 1.01 1.05 1.05 1.06 Best estim a 1.06 linear inter	10.56683 16.56029 b 1.09 1.07 1.07 nate 1.065 v b 1.07	x 1.05 1.07 1.06 which is with mpe 0. f(a) - 14 -0.02836 af(b)-b(f(a))/	13.20679 14.7836 13.97164 the require 005 f(b) - 14 0.783599		[s	[M1A1] [M1A1] [M1A1] [A1] [A1A1] subtotal 7]
(ii)	1.01 1.09 a 1.01 1.05 1.05 1.06 Best estim a 1.06 linear inter	10.56683 16.56029 b 1.09 1.07 1.07 nate 1.065 v b 1.07 rpolation: (a	x 1.05 1.07 1.06 which is with mpe 0. f(a) - 14 -0.02836 af(b)-b(f(a))/ < 14	13.20679 14.7836 13.97164 the require 005 f(b) - 14 0.783599 f(f(b)-f(a))=	1.060349 I.e. 1	[s	[M1A1] [M1A1] [M1A1] [A1] [A1A1] subtotal 7] [A1]
(ii)	1.01 1.09 a 1.01 1.05 1.05 1.06 Best estim a 1.06 linear inter	10.56683 16.56029 b 1.09 1.07 1.07 nate 1.065 v b 1.07	x 1.05 1.07 1.06 which is with mpe 0. f(a) - 14 -0.02836 af(b)-b(f(a))/ < 14	13.20679 14.7836 13.97164 the require 005 f(b) - 14 0.783599	1.060349 I.e. 1	[s	[M1A1 [M1A1] [A1] [A1A1] subtotal 7] [A1]
(ii)	1.01 1.09 a 1.01 1.05 1.05 1.06 Best estim a 1.06 linear inter	10.56683 16.56029 b 1.09 1.07 1.07 nate 1.065 v b 1.07 rpolation: (a	x 1.05 1.07 1.06 which is with mpe 0. f(a) - 14 -0.02836 af(b)-b(f(a))/ < 14	13.20679 14.7836 13.97164 the require 005 f(b) - 14 0.783599 f(f(b)-f(a))=	1.060349 I.e. 1	[s	[M1A1] [M1A1] [M1A1] [A1]

[M1A1] [M1A1] [M1A1] [subtotal 6]				F4 16.445 47.668 44.092 45.284		F0 7.389 T1 = (4/2) M1 = 4F2 S1 = (2M	(i)	3
[M1] [M1] [A1] [M1] [A1] [A1]	F3.5 14.88 (or [M1M1A1] for direct Simpson's rule) (or [M1A1A1] for direct Simpson's rule)	F3 13.464	F2.5 12.182	F1.5 9.974 45.88 44.978 45.27867 45.429 45.202 45.27767	1+F3) = 2+T2)/3 = +T2)/2 = 5F3.5) =	T4 = (M2-	(ii)	
[M1M1] [B1] [subtotal 3] [TOTAL 15]	BUT the data are to 3 dp	2 dp: 45.28	so only 2	-0.001	45.284 45.27867 45.27767 rmal compa	S1 S2 S4 Allow info	(iii)	
[B1B1B1] [subtotal 3]		1E-09 0.999999979	1E-07 0.999998	1.E-05 0.999885	1.E-03 0.993116	x x^x	(i)	4
[M1A1A1A1] [E1] [E1E1] [subtotal 7]	ge increases). us infinity).	de (with lar	in magnitu	tting larger	-6.88395 ates are ge erging. Can'	The estim	(ii)	
[M1A1] [A1] [E1] [E1] [subtotal 5]	to 5 sf beyond x=10^-7 (x^x-1)/x when x is small. one vaklue of x. he limits of their accuracy.	x^x AND more than	happens to ist conside	lering what red, but mu	lator would is for consid is not requi	The [M1] i The table	(iii)	
[TOTAL 15]								

Examiner's Report

Numerical Methods (2623)

Generally, the work seen was of a high standard with candidates attempting suitable tasks. A few candidates, however, did work which gave them little scope for appropriate development in the error analysis section (usually on polynomial interpolation) and in some cases a small downward adjustment of marks reflecting this was necessary. Most candidates chose numerical integration as the most fertile area for project work, and many were able to demonstrate a clear understanding of when to use certain algorithms and how to implement them on a spreadsheet.

There are a number of minor points to make about the assessment of these tasks.

- A substantial application of the selected algorithm is expected usually a systematic reduction in strip width, as far as say 128 strips may be sufficient, depending on the integral selected
- An annotated print-out of the formulae used in the spreadsheet is sufficient to explain the use of technology

- Error analysis should not consist of comparing calculated values with the "real" value
- A number of candidates spoilt their work by finding relative errors from either known values (such as p) or more accurate values found from a graphical calculator
- It is expected that candidates will use iteration or extrapolation to achieve a particular level of accuracy which they can justify solely from their own results
- A brief explanation of how the mark for oral communication is arrived at is expected.