GCE Examinations Advanced / Advanced Subsidiary

Core Mathematics C1

Sample Paper from Solomon Press Time: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Answer **all** the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are not permitted to use a calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- You are reminded of the need for clear presentation in your answers.

Written by Shaun Armstrong © Solomon Press

- 1. (i) Calculate the discriminant of $2x^2 + 3x 1$. [2]
 - (ii) State, with a reason, the number of real roots of the equation

$$2x^2 + 3x - 1 = 0.$$
 [2]

2. Find the set of values of *x* for which

$$2x^2 - 11x + 12 < 0.$$
^[4]

- 3. (i) Express $(6\frac{1}{4})^{-\frac{1}{2}}$ as an exact fraction in its simplest form. [2]
 - (*ii*) Find the value of x such that

$$2^{x+1} = 4\sqrt{2} . [3]$$

4. Solve the simultaneous equations

$$2x - y + 9 = 0$$

$$x^{2} + 2xy + y^{2} = 9$$
 [7]

The diagram shows the curve with equation y = f(x) which has a turning point at (1, 5).

(a) Showing the coordinates of the turning point in each case, sketch the curve with equation

(i)
$$y = f(x + 3),$$

(ii) $y = f(2x).$ [4]

(b) Given also that

5.

$$\mathbf{f}(x) = ax^2 + bx + 3,$$

find the values of the constants *a* and *b*.

6. The curve with equation

$$y = x + \frac{8}{x} + 3, x > 0,$$

has a stationary point at *A*.

- (*i*) Find the *x*-coordinate of *A*, giving your answer in the form $k\sqrt{2}$. [5]
- (*ii*) Find the exact y-coordinate of A in its simplest form. [2]
- (iii) Determine whether the stationary point is a maximum point or a minimum point. [3]

Turn over

[4]

7. The straight line l_1 passes through the points A(-2, 2) and B(1, 3).

(i)	Find an equation for l_1 , giving your answer in the form $ax + by + c = 0$, where a, b and c are integers.	[4]
The straight line l_2 is perpendicular to l_1 and passes through the point $C(9, -1)$.		
(ii)	Find an equation for l_2 .	[2]
Give	en that l_1 and l_2 intersect at the point D ,	
(iii)	show that the ratio of the length of AB to the length of AD is $1:3$	[5]
The	curve C has the equation $y = x^3 - 4x^2 + x + 6$.	
(i)	Show that $(x+1)(x-2)(x-3) \equiv x^3 - 4x^2 + x + 6$.	[2]
(ii)	Sketch the curve <i>C</i> , showing the coordinates of any points of intersection with the coordinate axes.	[3]
The point <i>P</i> on <i>C</i> has <i>x</i> -coordinate 1.		
(iii)	Find an equation of the tangent to C at P.	[6]
The points <i>P</i> (-8, 3), <i>Q</i> (4, 7) and <i>R</i> (6, 1) all lie on circle <i>C</i> .		
(i)	Show that $\angle PQR = 90^{\circ}$.	[3]
(ii)	Hence, find the coordinates of the centre of <i>C</i> .	[2]
(iii)	Show that <i>C</i> has the equation	
	$x^2 + y^2 + 2x - 4y - 45 = 0.$	[3]

(*iv*) Find, in the form y = mx + c, the equation of the tangent to C at Q. [4]

8.

9.