GCE Examinations

Advanced / Advanced Subsidiary

Core Mathematics C1

Sample Paper from Solomon Press

Time: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are not permitted to use a calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- You are reminded of the need for clear presentation in your answers.

1. (i) Calculate the discriminant of $2 x^{2}+3 x-1$.
(ii) State, with a reason, the number of real roots of the equation

$$
\begin{equation*}
2 x^{2}+3 x-1=0 \tag{2}
\end{equation*}
$$

2. Find the set of values of x for which

$$
\begin{equation*}
2 x^{2}-11 x+12<0 . \tag{4}
\end{equation*}
$$

3. (i) Express $\left(6 \frac{1}{4}\right)^{-\frac{1}{2}}$ as an exact fraction in its simplest form.
(ii) Find the value of x such that

$$
\begin{equation*}
2^{x+1}=4 \sqrt{2} . \tag{3}
\end{equation*}
$$

4. Solve the simultaneous equations

$$
\begin{align*}
& 2 x-y+9=0 \\
& x^{2}+2 x y+y^{2}=9 \tag{7}
\end{align*}
$$

5.

The diagram shows the curve with equation $y=\mathrm{f}(x)$ which has a turning point at $(1,5)$.
(a) Showing the coordinates of the turning point in each case, sketch the curve with equation

$$
\begin{aligned}
& \text { (i) } y=\mathrm{f}(x+3), \\
& \text { (ii) } y=\mathrm{f}(2 x) .
\end{aligned}
$$

(b) Given also that

$$
\mathrm{f}(x)=a x^{2}+b x+3,
$$

find the values of the constants a and b.
6. The curve with equation

$$
y=x+\frac{8}{x}+3, \quad x>0,
$$

has a stationary point at A.
(i) Find the x-coordinate of A, giving your answer in the form $k \sqrt{2}$.
(ii) Find the exact y-coordinate of A in its simplest form.
(iii) Determine whether the stationary point is a maximum point or a minimum point.
7. \quad The straight line l_{1} passes through the points $A(-2,2)$ and $B(1,3)$.
(i) Find an equation for l_{1}, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

The straight line l_{2} is perpendicular to l_{1} and passes through the point $C(9,-1)$.
(ii) Find an equation for l_{2}.

Given that l_{1} and l_{2} intersect at the point D,
(iii) show that the ratio of the length of $A B$ to the length of $A D$ is $1: 3$
8. The curve C has the equation $y=x^{3}-4 x^{2}+x+6$.
(i) Show that $(x+1)(x-2)(x-3) \equiv x^{3}-4 x^{2}+x+6$.
(ii) Sketch the curve C, showing the coordinates of any points of intersection with the coordinate axes.

The point P on C has x-coordinate 1 .
(iii) Find an equation of the tangent to C at P.
9. The points $P(-8,3), Q(4,7)$ and $R(6,1)$ all lie on circle C.
(i) Show that $\angle P Q R=90^{\circ}$.
(ii) Hence, find the coordinates of the centre of C.
(iii) Show that C has the equation

$$
\begin{equation*}
x^{2}+y^{2}+2 x-4 y-45=0 \tag{3}
\end{equation*}
$$

(iv) Find, in the form $y=m x+c$, the equation of the tangent to C at Q.

