For OCR

GCE Examinations

Advanced / Advanced Subsidiary

Core Mathematics C1

Sample Paper from Solomon Press

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks could be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for using a valid method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong
© Solomon Press

C1 Sample Paper - Marking Guide

1. (i) $=3^{2}-[4 \times 2 \times(-1)]=9+8=17$

M1 A1
(ii) discriminant $>0 \therefore 2$ real roots

B2
(4)
2. $(2 x-3)(x-4)<0$
$\frac{3}{2}<x<4$

M1 A1
M1
A1
(4)
3. (i) $=\left(\frac{25}{4}\right)^{-\frac{1}{2}}=\sqrt{\frac{4}{25}}=\frac{2}{5}$

M1 A1
(ii) $2^{x+1}=2^{2} \times 2^{\frac{1}{2}}=2^{\frac{5}{2}}$

B1
$x+1=\frac{5}{2}$
M1
$x=\frac{3}{2}$
A1
4. $2 x-y+9=0 \Rightarrow \quad y=2 x+9$
sub. into $x^{2}+2 x y+y^{2}=9$

$$
x^{2}+2 x(2 x+9)+(2 x+9)^{2}=9
$$

M1
$x^{2}+6 x+8=0$
$(x+2)(x+4)=0$
A1
M1

$$
x=-2,-4
$$

A1
$\therefore x=-2, y=5$ or $x=-4, y=1$
5. (a)

(ii)

B2
B2
(b) quadratic, turning point $(1,5)$
$\therefore \mathrm{f}(x)=k(x-1)^{2}+5=k x^{2}-2 k x+k+5$
M1 A1
$\therefore k+5=3, k=-2$
M1
$\therefore a=-2, b=4$
A1
(8)
6. (i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=1-8 x^{-2}$

M1 A1
$\begin{array}{ll}\text { at } A, & 1-8 x^{-2}=0 \\ & x^{2}=8\end{array}$
M1
$x>0 \quad \therefore x=\sqrt{8}=\sqrt{4 \times 2}=2 \sqrt{2}$
A1
$x>1 \therefore x=\sqrt{8}=\sqrt{4 \times 2}=2 \sqrt{2}$
A1
(ii) $y=2 \sqrt{2}+\frac{8}{2 \sqrt{2}}+3$

M1

$$
=2 \sqrt{2}+2 \sqrt{2}+3=4 \sqrt{2}+3
$$

A1
(iii) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=16 x^{-3}$
at $A, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\frac{16}{(2 \sqrt{2})^{3}}$ M1
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}>0 \therefore$ minimum point
A1
7. (i) $\operatorname{grad}=\frac{3-2}{1-(-2)}=\frac{1}{3}$

M1 A1

$$
\begin{aligned}
\therefore & y-2=\frac{1}{3}(x+2) \\
& 3 y-6=x+2 \\
& x-3 y+8=0
\end{aligned}
$$

M1
(ii) $\operatorname{grad} l_{2}=\frac{-1}{\frac{1}{3}}=-3$
$\therefore y+1=-3(x-9) \quad[y=26-3 x]$
M1
(iii) at $D, x-3(26-3 x)+8=0$

A1
M1
A1
$A B=\sqrt{(1+2)^{2}+(3-2)^{2}}=\sqrt{9+1}=\sqrt{10}$
M1
$A D=\sqrt{(7+2)^{2}+(5-2)^{2}}=\sqrt{81+9}=\sqrt{90}=3 \sqrt{10}$
$\therefore A B: A D=\sqrt{10}: 3 \sqrt{10}=1: 3$
8. (i) LHS $=(x+1)\left(x^{2}-5 x+6\right)=x\left(x^{2}-5 x+6\right)+\left(x^{2}-5 x+6\right)$

M1

$$
=x^{3}-5 x^{2}+6 x+x^{2}-5 x+6=x^{3}-4 x^{2}+x+6=\text { RHS }
$$

(ii)

(iii) when $x=1, y=1-4+1+6=4$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-8 x+1$
when $x=1$, grad $=3-8+1=-4$
$\therefore y-4=-4(x-1) \quad[y=8-4 x]$
A1
M1 A1 (11)
9. (i) $\operatorname{grad} P Q=\frac{7-3}{4-(-8)}=\frac{1}{3}, \operatorname{grad} Q R=\frac{1-7}{6-4}=-3$ M1
$\operatorname{grad} P Q \times \operatorname{grad} Q R=\frac{1}{3} \times(-3)=-1$ M1
$\therefore P Q$ perp. to $Q R, \therefore \angle P Q R=90^{\circ}$ A1
(ii) $\angle P Q R=90^{\circ} \therefore P R$ is a diameter
\therefore centre $=$ mid-point of $P R=\left(\frac{-8+6}{2}, \frac{3+1}{2}\right)=(-1,2)$
M1 A1
(iii) radius $=$ dist. $(-8,3)$ to $(-1,2)=\sqrt{49+1}=\sqrt{50}$

B1
$(x+1)^{2}+(y-2)^{2}=(\sqrt{50})^{2}$ M1
$x^{2}+2 x+1+y^{2}-4 y+4=50$
$x^{2}+y^{2}+2 x-4 y-45=0$
A1
(iv) grad of radius $=\frac{7-2}{4-(-1)}=1$
$\therefore \operatorname{grad}$ of tangent $=\frac{-1}{1}=-1$
M1
$\therefore y-7=-1(x-4)$ $y=11-x$

Performance Record - C1 Sample Paper

Question no.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	Total
Topic(s)	discrim.	inequal.	indices							

