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1 (i) Find the general solution of the differential equation

dy

dx
+ xy = xe

1
2
x2

,

giving your answer in the form y = f(x). [4]

(ii) Find the particular solution for which y = 1 when x = 0. [2]

2 Two intersecting lines, lying in a plane p, have equations

x − 1

2
= y − 3

1
= ß − 4

−3
and

x − 1

−1
= y − 3

2
= ß − 4

4
.

(i) Obtain the equation of p in the form 2x − y + ß = 3. [3]

(ii) Plane q has equation 2x − y + ß = 21. Find the distance between p and q. [3]

3 (i) Express sin θ in terms of eiθ and e−iθ and show that

sin4
θ ≡ 1

8
(cos 4θ − 4 cos 2θ + 3). [4]

(ii) Hence find the exact value of ã
1
6

π

0

sin4
θ dθ. [4]

4 The cube roots of 1 are denoted by 1, ω and ω
2, where the imaginary part of ω is positive.

(i) Show that 1 + ω + ω
2 = 0. [2]

Im

Re
O

A

B

C

In the diagram, ABC is an equilateral triangle, labelled anticlockwise. The points A, B and C represent

the complex numbers ß
1
, ß

2
and ß

3
respectively.

(ii) State the geometrical effect of multiplication by ω and hence explain why ß
1
− ß

3
= ω(ß

3
− ß

2
).
[4]

(iii) Hence show that ß
1
+ ωß

2
+ ω

2ß
3
= 0. [2]
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5 (i) Find the general solution of the differential equation

3
d2y

dx2
+ 5

dy

dx
− 2y = −2x + 13. [7]

(ii) Find the particular solution for which y = −7
2

and
dy

dx
= 0 when x = 0. [5]

(iii) Write down the function to which y approximates when x is large and positive. [1]

6 Q is a multiplicative group of order 12.

(i) Two elements of Q are a and r. It is given that r has order 6 and that a2 = r3. Find the orders of

the elements a, a2, a3 and r2. [4]

The table below shows the number of elements of Q with each possible order.

Order of element 1 2 3 4 6

Number of elements 1 1 2 6 2

G and H are the non-cyclic groups of order 4 and 6 respectively.

(ii) Construct two tables, similar to the one above, to show the number of elements with each possible

order for the groups G and H. Hence explain why there are no non-cyclic proper subgroups

of Q. [5]

7 Three planes Π
1
, Π

2
and Π

3
have equations

r.(i + j − 2k) = 5, r.(i − j + 3k) = 6, r.(i + 5j − 12k) = 12,

respectively. Planes Π
1

and Π
2

intersect in a line l; planes Π
2

and Π
3

intersect in a line m.

(i) Show that l and m are in the same direction. [5]

(ii) Write down what you can deduce about the line of intersection of planes Π
1

and Π
3
. [1]

(iii) By considering the cartesian equations of Π
1
, Π

2
and Π

3
, or otherwise, determine whether or not

the three planes have a common line of intersection. [4]

[Question 8 is printed overleaf.]

© OCR 2011 4727 Jan11 Turn over



4

8 The operation ∗ is defined on the elements (x, y), where x, y ∈ >, by

(a, b) ∗ (c, d) = (ac, ad + b).
It is given that the identity element is (1, 0).

(i) Prove that ∗ is associative. [3]

(ii) Find all the elements which commute with (1, 1). [3]

(iii) It is given that the particular element (m, n) has an inverse denoted by (p, q), where

(m, n) ∗ (p, q) = (p, q) ∗ (m, n) = (1, 0).
Find (p, q) in terms of m and n. [2]

(iv) Find all self-inverse elements. [3]

(v) Give a reason why the elements (x, y), under the operation ∗, do not form a group. [1]
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