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INSTRUCTIONS TO CANDIDATES

• Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided
on the Answer Booklet.

• Use black ink. Pencil may be used for graphs and diagrams only.

• Read each question carefully and make sure that you know what you have to do before starting your answer.
• Answer all the questions.
• Do not write in the bar codes.
• Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is

specified in the question or is clearly appropriate.
• You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

• The number of marks is given in brackets [ ] at the end of each question or part question.
• You are reminded of the need for clear presentation in your answers.

• The total number of marks for this paper is 72.
• This document consists of 4 pages. Any blank pages are indicated.
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1 It is given that f(x) = tan−1 2x and g(x) = p tan−1 x, where p is a constant. Find the value of p for which

f ′(1
2
) = g′(1

2
). [4]

2 Given that the first three terms of the Maclaurin series for (1 + sin x)e2x are identical to the first three

terms of the binomial series for (1 + ax)n, find the values of the constants a and n. (You may use

appropriate results given in the List of Formulae (MF1).) [6]

3 Use the substitution t = tan 1
2
x to show that

ä
1
3
π

0

1

1 − sin x
dx = 1 + √

3. [6]

4

x

y

3–1

–2

O

The diagram shows the curve with equation

y = ax + b

x + c
,

where a, b and c are constants.

(i) Given that the asymptotes of the curve are x = −1 and y = −2 and that the curve passes through(3, 0), find the values of a, b and c. [3]

(ii) Sketch the curve with equation

y2 = ax + b

x + c
,

for the values of a, b and c found in part (i). State the coordinates of any points where the curve

crosses the axes, and give the equations of any asymptotes. [4]
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5 It is given that, for n ≥ 0,

I
n
= ã 1

2

0

(1 − 2x)nex dx.

(i) Prove that, for n ≥ 1,

I
n
= 2nI

n−1
− 1. [4]

(ii) Find the exact value of I
3
. [4]

6 (i) Show that
d

dx
(sinh−1 x) = 1√

x2 + 1
. [2]

(ii) Given that y = cosh(a sinh−1 x), where a is a constant, show that

(x2 + 1)d2y

dx2
+ x

dy

dx
− a2y = 0. [5]

7

O
x

y

a b

y x=

y x= 2 ln(3 – 2)

The line y = x and the curve y = 2 ln(3x − 2) meet where x = α and x = β , as shown in the diagram.

(i) Use the iteration x
n+1

= 2 ln(3x
n
− 2), with initial value x

1
= 5.25, to find the value of β correct

to 2 decimal places. Show all your working. [2]

(ii) With the help of a ‘staircase’ diagram, explain why this iteration will not converge to α, whatever

value of x
1

(other than α) is used. [3]

(iii) Show that the equation x = 2 ln(3x − 2) can be rewritten as x = 1
3
(e1

2
x + 2). Use the Newton-

Raphson method, with f(x) = 1
3
(e1

2
x + 2) − x and x

1
= 1.2, to find α correct to 2 decimal places.

Show all your working. [4]

(iv) Given that x
1
= ln 36, explain why the Newton-Raphson method would not converge to a root of

f(x) = 0. [2]

[Questions 8 and 9 are printed overleaf.]
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8 (i) Using the definition of cosh x in terms of ex and e−x, show that

4 cosh3 x − 3 cosh x ≡ cosh 3x. [4]

(ii) Use the substitution u = cosh x to find, in terms of 5
1
3 , the real root of the equation

20u3 − 15u − 13 = 0. [6]

9

A
O

B

y

x
41

2
–

The diagram shows the curve with equation y = √
2x + 1 between the points A (−1

2
, 0) and B (4, 3).

(i) Find the area of the region bounded by the curve, the x-axis and the line x = 4. Hence find the

area of the region bounded by the curve and the lines OA and OB, where O is the origin. [4]

(ii) Show that the curve between B and A can be expressed in polar coordinates as

r = 1

1 − cos θ
, where tan−1(3

4
) ≤ θ ≤ π. [5]

(iii) Deduce from parts (i) and (ii) that ã π

tan−1(3
4
) cosec4(1

2
θ) dθ = 24. [4]
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