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1 (i) Write down and simplify the first three terms of the Maclaurin series for e2x. [2]

(ii) Hence show that the Maclaurin series for

ln(e2x + e
−2x)

begins ln a + bx2, where a and b are constants to be found. [4]

2 It is given that α is the only real root of the equation x5 + 2x − 28 = 0 and that 1.8 < α < 2.

(i) The iteration x
n+1

= 5
√

28 − 2x
n
, with x

1
= 1.9, is to be used to find α. Find the values of x

2
, x

3

and x
4
, giving the answers correct to 7 decimal places. [3]

(ii) The error e
n

is defined by e
n
= α − x

n
. Given that α = 1.891 574 9, correct to 7 decimal places,

evaluate
e

3

e
2

and
e

4

e
3

. Comment on these values in relation to the gradient of the curve with

equation y = 5
√

28 − 2x at x = α. [3]

3 (i) Prove that the derivative of sin−1 x is
1

√

1 − x2
. [3]

(ii) Given that

sin
−1

2x + sin
−1

y = 1

2
π,

find the exact value of
dy

dx
when x = 1

4
. [4]

4 (i) By means of a suitable substitution, show that

ä x2

√

x2 − 1
dx

can be transformed to ã cosh2 θ dθ. [2]

(ii) Hence show that ä x2

√

x2 − 1
dx = 1

2
x
√

x2 − 1 + 1

2
cosh−1 x + c. [4]
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The diagram shows the curve with equation y = f(x), where

f(x) = 2x
3 − 9x

2 + 12x − 4.36.

The curve has turning points at x = 1 and x = 2 and crosses the x-axis at x = α, x = β and x = γ , where

0 < α < β < γ .

(i) The Newton-Raphson method is to be used to find the roots of the equation f(x) = 0, with x
1
= k.

(a) To which root, if any, would successive approximations converge in each of the cases k < 0

and k = 1? [2]

(b) What happens if 1 < k < 2? [2]

(ii) Sketch the curve with equation y2 = f(x). State the coordinates of the points where the curve

crosses the x-axis and the coordinates of any turning points. [4]

6 (i) Using the definitions of cosh x and sinh x in terms of ex and e−x, show that

1 + 2 sinh
2
x ≡ cosh 2x. [3]

(ii) Solve the equation

cosh 2x − 5 sinh x = 4,

giving your answers in logarithmic form. [5]
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The diagram shows the curve with equation, in polar coordinates,

r = 3 + 2 cos θ, for 0 ≤ θ < 2π.

The points P, Q, R and S on the curve are such that the straight lines POR and QOS are perpendicular,

where O is the pole. The point P has polar coordinates (r, α).
(i) Show that OP + OQ + OR + OS = k, where k is a constant to be found. [3]

(ii) Given that α = 1

4
π, find the exact area bounded by the curve and the lines OP and OQ (shaded in

the diagram). [5]
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The diagram shows the curve with equation y = 1

x + 1
. A set of n rectangles of unit width is drawn,

starting at x = 0 and ending at x = n, where n is an integer.

(i) By considering the areas of these rectangles, explain why

1

2
+ 1

3
+ . . . + 1

n + 1
< ln(n + 1). [5]

(ii) By considering the areas of another set of rectangles, show that

1 + 1

2
+ 1

3
+ . . . + 1

n
> ln(n + 1). [2]

(iii) Hence show that

ln(n + 1) + 1

n + 1
< n+1

∑
r=1

1

r
< ln(n + 1) + 1. [2]

(iv) State, with a reason, whether

∞
∑
r=1

1

r
is convergent. [2]

9 A curve has equation

y = 4x − 3a

2(x2 + a2) ,

where a is a positive constant.

(i) Explain why the curve has no asymptotes parallel to the y-axis. [2]

(ii) Find, in terms of a, the set of values of y for which there are no points on the curve. [5]

(iii) Find the exact value of ä
2a

a

4x − 3a

2(x2 + a2) dx, showing that it is independent of a. [5]

© OCR 2009 4726 Jan09



6

BLANK PAGE

© OCR 2009 4726 Jan09



7

BLANK PAGE

© OCR 2009 4726 Jan09



8

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable

effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be

pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES),

which is itself a department of the University of Cambridge.

© OCR 2009 4726 Jan09


