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INSTRUCTIONS TO CANDIDATES

• Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided
on the Answer Booklet.

• Use black ink. Pencil may be used for graphs and diagrams only.

• Read each question carefully and make sure that you know what you have to do before starting your answer.
• Answer all the questions.
• Do not write in the bar codes.
• Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is

specified in the question or is clearly appropriate.
• You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

• The number of marks is given in brackets [ ] at the end of each question or part question.
• You are reminded of the need for clear presentation in your answers.

• The total number of marks for this paper is 72.
• This document consists of 4 pages. Any blank pages are indicated.
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1 Express
2 + 3i

5 − i
in the form x + iy, showing clearly how you obtain your answer. [4]

2 The matrix A is given by A = ( 2 0

a 5
). Find

(i) A−1, [2]

(ii) 2A − ( 1 2

0 4
). [2]

3 Find
n

∑
r=1

(4r3 + 6r2 + 2r), expressing your answer in a fully factorised form. [6]

4 Given that A and B are 2 × 2 non-singular matrices and I is the 2 × 2 identity matrix, simplify

B(AB)−1
A − I. [4]

5 By using the determinant of an appropriate matrix, or otherwise, find the value of k for which the

simultaneous equations

2x − y + ß = 7,

3y + ß = 4,

x + ky + kß = 5,

do not have a unique solution for x, y and ß. [5]

6 (i) The transformation P is represented by the matrix ( 1 0

0 −1
). Give a geometrical description of

transformation P. [2]

(ii) The transformation Q is represented by the matrix ( 0 −1

−1 0
). Give a geometrical description of

transformation Q. [2]

(iii) The transformation R is equivalent to transformation P followed by transformation Q. Find the

matrix that represents R. [2]

(iv) Give a geometrical description of the single transformation that is represented by your answer to

part (iii). [3]

7 It is given that u
n
= 13n + 6n−1, where n is a positive integer.

(i) Show that u
n
+ u

n+1
= 14 × 13n + 7 × 6n−1. [3]

(ii) Prove by induction that u
n

is a multiple of 7. [4]
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8 (i) Show that (α − β)2 ≡ (α + β)2 − 4αβ . [2]

The quadratic equation x2 − 6kx + k2 = 0, where k is a positive constant, has roots α and β , with α > β .

(ii) Show that α − β = 4
√

2k. [4]

(iii) Hence find a quadratic equation with roots α + 1 and β − 1. [4]

9 (i) Show that
1

2r − 3
− 1

2r + 1
= 4

4r2 − 4r − 3
. [2]

(ii) Hence find an expression, in terms of n, for

n

∑
r=2

4

4r2 − 4r − 3
. [6]

(iii) Show that

∞

∑
r=2

4

4r2 − 4r − 3
= 4

3
. [1]

10 (i) Use an algebraic method to find the square roots of the complex number 2 + i
√

5. Give your

answers in the form x + iy, where x and y are exact real numbers. [6]

(ii) Hence find, in the form x + iy where x and y are exact real numbers, the roots of the equation

ß4 − 4ß2 + 9 = 0. [4]

(iii) Show, on an Argand diagram, the roots of the equation in part (ii). [1]

(iv) Given that α is the root of the equation in part (ii) such that 0 < arg α < 1

2
π, sketch on the same

Argand diagram the locus given by |ß − α | = |ß|. [3]
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