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• Write your name, centre number and candidate number in the spaces provided on the answer booklet.

• Answer all the questions.

• Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is
specified in the question or is clearly appropriate.

• You are permitted to use a graphical calculator in this paper.
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• The total number of marks for this paper is 72.
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• Read each question carefully and make sure you know what you have to do before starting your answer.

• You are reminded of the need for clear presentation in your answers.
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1 Find the equation of the tangent to the curve y = 2x + 1
3x − 1

at the point (1, 3
2
), giving your answer in the

form ax + by + c = 0, where a, b and c are integers. [5]

2 It is given that θ is the acute angle such that sin θ = 12
13

. Find the exact value of

(i) cot θ, [2]

(ii) cos 2θ . [3]

3 (a) It is given that a and b are positive constants. By sketching graphs of

y = x5 and y = a − bx

on the same diagram, show that the equation

x5 + bx − a = 0

has exactly one real root. [3]

(b) Use the iterative formula xn+1 = 5
√

53 − 2xn, with a suitable starting value, to find the real root

of the equation x5 + 2x − 53 = 0. Show the result of each iteration, and give the root correct to
3 decimal places. [4]

4 (i) Given that x = (4t + 9)1
2 and y = 6e

1
2
x+1

, find expressions for
dx
dt

and
dy
dx

. [4]

(ii) Hence find the value of
dy
dt

when t = 4, giving your answer correct to 3 significant figures. [3]

5 (i) Express 4 cos θ − sin θ in the form R cos(θ + α), where R > 0 and 0◦ < α < 90◦. [3]

(ii) Hence solve the equation 4 cos θ − sin θ = 2, giving all solutions for which −180◦ < θ < 180◦.
[5]
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The diagram shows the curve with equation y = 1√
3x + 2

. The shaded region is bounded by the curve

and the lines x = 0, x = 2 and y = 0.

(i) Find the exact area of the shaded region. [4]

(ii) The shaded region is rotated completely about the x-axis. Find the exact volume of the solid
formed, simplifying your answer. [5]

7 The curve y = ln x is transformed to the curve y = ln(1
2
x − a) by means of a translation followed by a

stretch. It is given that a is a positive constant.

(i) Give full details of the translation and stretch involved. [2]

(ii) Sketch the graph of y = ln(1
2
x − a). [2]

(iii) Sketch, on another diagram, the graph of y = ∣∣ln(1
2
x − a)∣∣. [2]

(iv) State, in terms of a, the set of values of x for which ∣∣ln(1
2
x − a)∣∣ = − ln(1

2
x − a). [2]

[Questions 8 and 9 are printed overleaf.]
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The diagram shows the curve with equation y = x8e−x2
. The curve has maximum points at P and Q.

The shaded region A is bounded by the curve, the line y = 0 and the line through Q parallel to the
y-axis. The shaded region B is bounded by the curve and the line PQ.

(i) Show by differentiation that the x-coordinate of Q is 2. [5]

(ii) Use Simpson’s rule with 4 strips to find an approximation to the area of region A. Give your
answer correct to 3 decimal places. [4]

(iii) Deduce an approximation to the area of region B. [2]

9 Functions f and g are defined by

f(x) = 2 sin x for −1
2
π ≤ x ≤ 1

2
π,

g(x) = 4 − 2x2 for x ∈ �.

(i) State the range of f and the range of g. [2]

(ii) Show that gf(0.5) = 2.16, correct to 3 significant figures, and explain why fg(0.5) is not defined.
[4]

(iii) Find the set of values of x for which f−1g(x) is not defined. [6]
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