RECOGNISING ACHIEVEMENT

ADVANCED GCE UNIT
 MATHEMATICS

Core Mathematics 3
THURSDAY 18 JANUARY 2007

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.

ADVICE TO CANDIDATES

- Read each question carefully and make sure you know what you have to do before starting your answer.
- You are reminded of the need for clear presentation in your answers.

1 Find the equation of the tangent to the curve $y=\frac{2 x+1}{3 x-1}$ at the point $\left(1, \frac{3}{2}\right)$, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

2 It is given that θ is the acute angle such that $\sin \theta=\frac{12}{13}$. Find the exact value of
(i) $\cot \theta$,
(ii) $\cos 2 \theta$.

3 (a) It is given that a and b are positive constants. By sketching graphs of

$$
y=x^{5} \quad \text { and } \quad y=a-b x
$$

on the same diagram, show that the equation

$$
x^{5}+b x-a=0
$$

has exactly one real root.
(b) Use the iterative formula $x_{n+1}=\sqrt[5]{53-2 x_{n}}$, with a suitable starting value, to find the real root of the equation $x^{5}+2 x-53=0$. Show the result of each iteration, and give the root correct to 3 decimal places.
(i) Given that $x=(4 t+9)^{\frac{1}{2}}$ and $y=6 \mathrm{e}^{\frac{1}{2} x+1}$, find expressions for $\frac{\mathrm{d} x}{\mathrm{~d} t}$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(ii) Hence find the value of $\frac{\mathrm{d} y}{\mathrm{~d} t}$ when $t=4$, giving your answer correct to 3 significant figures.

5 (i) Express $4 \cos \theta-\sin \theta$ in the form $R \cos (\theta+\alpha)$, where $R>0$ and $0^{\circ}<\alpha<90^{\circ}$.
(ii) Hence solve the equation $4 \cos \theta-\sin \theta=2$, giving all solutions for which $-180^{\circ}<\theta<180^{\circ}$.

6

The diagram shows the curve with equation $y=\frac{1}{\sqrt{3 x+2}}$. The shaded region is bounded by the curve and the lines $x=0, x=2$ and $y=0$.
(i) Find the exact area of the shaded region.
(ii) The shaded region is rotated completely about the x-axis. Find the exact volume of the solid formed, simplifying your answer.

7 The curve $y=\ln x$ is transformed to the curve $y=\ln \left(\frac{1}{2} x-a\right)$ by means of a translation followed by a stretch. It is given that a is a positive constant.
(i) Give full details of the translation and stretch involved.
(ii) Sketch the graph of $y=\ln \left(\frac{1}{2} x-a\right)$.
(iii) Sketch, on another diagram, the graph of $y=\left|\ln \left(\frac{1}{2} x-a\right)\right|$.
(iv) State, in terms of a, the set of values of x for which $\left|\ln \left(\frac{1}{2} x-a\right)\right|=-\ln \left(\frac{1}{2} x-a\right)$.

The diagram shows the curve with equation $y=x^{8} \mathrm{e}^{-x^{2}}$. The curve has maximum points at P and Q. The shaded region A is bounded by the curve, the line $y=0$ and the line through Q parallel to the y-axis. The shaded region B is bounded by the curve and the line $P Q$.
(i) Show by differentiation that the x-coordinate of Q is 2 .
(ii) Use Simpson's rule with 4 strips to find an approximation to the area of region A. Give your answer correct to 3 decimal places.
(iii) Deduce an approximation to the area of region B.

9 Functions f and g are defined by

$$
\begin{array}{ll}
\mathrm{f}(x)=2 \sin x & \text { for }-\frac{1}{2} \pi \leqslant x \leqslant \frac{1}{2} \pi \\
\mathrm{~g}(x)=4-2 x^{2} & \text { for } x \in \mathbb{R}
\end{array}
$$

(i) State the range of f and the range of g .
(ii) Show that $g f(0.5)=2.16$, correct to 3 significant figures, and explain why $f g(0.5)$ is not defined.
(iii) Find the set of values of x for which $\mathrm{f}^{-1} \mathrm{~g}(x)$ is not defined.

