Mathematics

Advanced GCE A2 7890-2

Mark Schemes for the Units

January 2007

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2007

Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annersley
NOTTINGHAM
NG15 0DL
Telephone: 08708706622
Facsimile: 08708706621
E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Mathematics (7890)
Advanced GCE Pure Mathematics (7891)
Advanced GCE Further Mathematics (7892)
Advanced Subsidiary GCE Mathematics (3890)
Advanced Subsidiary GCE Pure Mathematics (3891)
Advanced Subsidiary GCE Further Mathematics (3892)

MARK SCHEME ON THE UNITS

Unit

Content Page
Core Mathematics 1 1
Core Mathematics 2 7
Core Mathematics 3 11
Core Mathematics 4 15
Further Pure Mathematics 1 19
Further Pure Mathematics 2 25
Further Pure Mathematics 3 29
Mechanics 1 35
Mechanics 2 41
Mechanics 3 45
Probability \& Statistics 1 49
Probability \& Statistics 2 53
Probability \& Statistics 3 57
Decision Mathematics 1 61
Decision Mathematics 2 67
Grade Thresholds 72

Mark Scheme 4721 January 2007

1	$\begin{aligned} & \frac{5}{2-\sqrt{3}} \times \frac{2+\sqrt{3}}{2+\sqrt{3}} \\ & =\frac{5(2+\sqrt{3)}}{4-3} \\ & =10+5 \sqrt{3} \end{aligned}$	A1 $\begin{array}{ll}\text { A1 } & 3 \\ & 3\end{array}$	$\begin{aligned} & \text { Multiply top and bottom by } \\ & \pm(2+\sqrt{3}) \\ & (2+\sqrt{3})(2-\sqrt{3})=1 \text { (may be implied) } \\ & 10+5 \sqrt{3} \end{aligned}$
2(i) (ii)	$\left[\begin{array}{l} 1 \\ \frac{1}{2} \times 2^{4} \\ =8 \end{array}\right.$	B1 1 M1 M1 $\begin{array}{ll}\text { A1 } & 3 \\ & 4\end{array}$	$\begin{aligned} & 2^{-1}=\frac{1}{2} \text { or } 32^{\frac{1}{5}}=2 \text { or } 2^{5}=32 \\ & 32^{\frac{4}{5}}=2^{4} \text { or } 16 \text { seen or implied } \end{aligned}$ 8
3(i)	$\begin{aligned} & 3 x-15 \leq 24 \\ & 3 x \leq 39 \\ & x \leq 13 \end{aligned}$ or $\begin{array}{ll} x-5 \leq 8 & \text { M1 } \\ x \leq 13 & \text { A1 } \end{array}$	M1 $\text { A1 } 2$	Attempt to simplify expression by multiplying out brackets $x \leq 13$ Attempt to simplify expression by dividing through by 3
(ii)	$\begin{gathered} 5 x^{2}>80 \\ x^{2}>16 \\ x>4 \\ \text { or } x<-4 \end{gathered}$	M1 B1 A1 3	Attempt to rearrange inequality or equation to combine the constant terms $x>4$ fully correct, not wrapped, not 'and' SR B1 for $x \geq 4, x \leq-4$

4	$\begin{aligned} & \text { Let } y=x^{\frac{1}{3}} \\ & y^{2}+3 y-10=0 \\ & (y-2)(y+5)=0 \\ & y=2, y=-5 \\ & x=2^{3}, x=(-5)^{3} \\ & x=8, x=-125 \end{aligned}$	*M1 DM1 A1 DM1 A1 ft 5	Attempt a substitution to obtain a quadratic or factorise with $\sqrt[3]{x}$ in each bracket Correct attempt to solve quadratic Both values correct Attempt cube Both answers correctly followed through SR B2 $x=8$ from T \& I
5 (i)	$(1,3)$	M1	Reflection in either axis
			Correct reflection in x axis
(ii)		$\begin{array}{ll} \text { B1 } & \\ \text { B1 } & 2 \end{array}$	Correct x coordinate Correct y coordinate SR B1 for $(3,1)$
(iii)	Translation 2 units in negative x direction	$\begin{array}{ll} \text { B1 } & \\ \text { B1 } & 2 \end{array}$	
6 (i)	$\begin{aligned} & 2\left(x^{2}-12 x+40\right) \\ & =2\left[(x-6)^{2}-36+40\right] \\ & =2\left[(x-6)^{2}+4\right] \\ & =2(x-6)^{2}+8 \end{aligned}$	B1 B1 M1 A1 4	$\begin{array}{\|l\|} \hline a=2 \\ b=6 \\ 80-2 b^{2} \text { or } 40-b^{2} \text { or } 80-b^{2} \text { or } 40-2 b^{2} \\ \text { (their } b \text {) } \\ c=8 \end{array}$
(ii)	$x=6$	B1 ft 1	
(iii)	$y=8$	B1 ft 1	
		6	

7(i)	$\frac{d y}{d x}=5$	B1 1	
(ii)	$y=2 x^{-2}$		x^{-2} soi
	$\frac{d y}{x}=-4 x^{-3}$		$-4 x^{c}$
	$d x$	B1 3	$k x^{-3}$
(iii)	$\begin{aligned} & y=10 x^{2}-14 x+5 x-7 \\ & y=10 x^{2}-9 x-7 \end{aligned}$	$\begin{array}{\|l} \text { M1 } \\ \text { A1 } \end{array}$	Expand the brackets to give an expression of form $a x^{2}+b x+c \quad(a \neq 0, b \neq 0, c \neq 0)$ Completely correct (allow $2 x$-terms)
	$\frac{d y}{d x}=20 x-9$	B1 ft B1 ft 4	1 term correctly differentiated Completely correct (2 terms)
		8	
8 (i)	$\frac{d y}{d x}=9-6 x-3 x^{2}$	*M1	Attempt to differentiate y or $-y$ (at least one correct term)
		A1	3 correct terms
	At stationary points, $9-6 x-3 x^{2}=0$	M1	Use of $\frac{d y}{d x}=0 \quad($ for y or $-y)$
	$\begin{aligned} & 3(3+x)(1-x)=0 \\ & x=-3 \text { or } x=1 \end{aligned}$	$\begin{array}{\|l} \text { DM1 } \\ \text { A1 } \end{array}$	Correct method to solve 3 term quadratic $x=-3,1$
	$y=0,32$	A1ft 6	$\begin{aligned} & \mathrm{y}=0,32 \\ & (1 \text { correct pair www A1 A0) } \end{aligned}$
(ii)	$\frac{d^{2} y}{d x^{2}}=-6 x-6$	M1	Looks at sign of $\frac{d^{2} y}{d x^{2}}$, derived correctly from $k \frac{d y}{d x}$, or other correct method
	When $x=-3, \frac{d^{2} y}{d x^{2}}>0$	A1	$x=-3$ minimum
	When $x=1, \frac{d^{2} y}{d x^{2}}<0$	$\text { A1 } 3$	$x=1 \text { maximum }$
(iii)	$-3<x<1$	M1	Uses the x values of both turning points in inequality/inequalities
		$\text { A1 } 2$	Correct inequality or inequalities. Allow \leq
		11	

9 (i)	Gradient $=4$	B1	Gradient of 4 soi
	$\begin{aligned} & y-7=4(x-2) \\ & y=4 x-1 \end{aligned}$	M1 A1 3	Attempts equation of straight line through $(2,7)$ with any gradient
(ii)	$\begin{aligned} & \sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} \\ & =\sqrt{\left(2-^{-} 1\right)^{2}+\left(7-^{-} 2\right)^{2}} \end{aligned}$	M1	Use of correct formula for d or d^{2} (3 values correctly substituted)
	$\begin{aligned} & =\sqrt{3^{2}+9^{2}} \\ & =\sqrt{90} \end{aligned}$	A1	$\sqrt{3^{2}+9^{2}}$
	$=3 \sqrt{10}$	A1 3	Correct simplified surd
(iii)	Gradient of $\mathrm{AB}=3$	B1	
	$\text { Gradient of perpendicular line }=-\frac{1}{3}$	B1 ft	SR Allow B1 for $-\frac{1}{4}$
	$\text { Midpoint of } \mathrm{AB}=\left(\frac{1}{2}, \frac{5}{2}\right)$	B1	
	$y-\frac{5}{2}=-\frac{1}{3}\left(x-\frac{1}{2}\right)$ $x+3 y-8=0$	M1 A1	Attempts equation of straight line through their midpoint with any non-zero gradient $y-\frac{5}{2}=\frac{-1}{3}\left(x-\frac{1}{2}\right)$
		A1 6	$x+3 y-8=0$
		12	

10 (i)	Centre ($-1,2$) $\begin{aligned} & (x+1)^{2}-1+(y-2)^{2}-4-8=0 \\ & (x+1)^{2}+(y-2)^{2}=13 \\ & \text { Radius } \sqrt{ } 13 \end{aligned}$ $\begin{aligned} & (2)^{2}+(k-2)^{2}=13 \\ & (k-2)^{2}=9 \\ & k-2= \pm 3 \\ & k=-1 \end{aligned}$		Correct centre Attempt at completing the square Correct radius $\begin{array}{\|ll\|} \hline \text { Alternative method: } & \\ \hline \text { Centre }(-g,-f) \text { is }(-1,2) & \text { B1 } \\ g^{2}+f^{2}-c & \text { M1 } \\ \text { Radius }=\sqrt{ } 13 & \text { A1 } \end{array}$ Attempt to substitute $x=-3$ into circle equation Correct method to solve quadratic $k=-1$ (negative value chosen)
(iii)	$\begin{aligned} & \text { EITHER } \\ & y=6-x \\ & (x+1)^{2}+(6-x-2)^{2}=13 \\ & (x+1)^{2}+(4-x)^{2}=13 \\ & x^{2}+2 x+1+16-8 x+x^{2}=13 \\ & 2 x^{2}-6 x+4=0 \\ & 2(x-1)(x-2)=0 \end{aligned}$	M1 M1 A1 M1	Attempt to solve equations simultaneously Substitute into their circle equation for x / y or attempt to get an equation in 1 variable only Obtain correct 3 term quadratic Correct method to solve quadratic of form $a x^{2}+b x+c=0 \quad(b \neq 0)$
	$\begin{aligned} & x=1,2 \\ & \therefore y=5,4 \end{aligned}$ $\begin{aligned} & \text { OR } \\ & x=6-y \\ & (6-y+1)^{2}+(y-2)^{2}=13 \\ & (7-y)^{2}+(y-2)^{2}=13 \\ & 49-14 y+y^{2}+y^{2}-4 y+4=13 \\ & 2 y^{2}-18 y+40=0 \\ & 2(y-4)(y-5)=0 \\ & y=4,5 \\ & \therefore x=2,1 \end{aligned}$	$\begin{array}{ll} \text { A1 } & \\ \text { A1 } & 6 \end{array}$	Both x values correct Both y values correct or one correct pair of values www SR $\underline{\mathbf{T} \& \mathbf{I}}$ M1 A1 One correct x (or y) value A1 Correct associated coordinate

Mark Scheme 4722 January 2007

$1 \quad \begin{aligned} & 15+19 d=72 \\ & \\ & \text { Hence } d=3 \\ & S_{n}=100 / 2\{(2 \times 15)+(99 \times 3)\} \\ & \\ & =16350 \end{aligned}$	M1 A1 M1 A1 4	Attempt to find d, from $a+(n-1) d$ or $a+n d$ Obtain $d=3$ Use correct formula for sum of n terms Obtain 16350
2 (i) $46 \times \frac{\pi}{180}=0.802 / 0.803$ 360) (ii) $8 \times 0.803=6.4 \mathrm{~cm}$ (iii) $1 / 2 \times 8^{2} \times 0.803=25.6 / 25.7 \mathrm{~cm}^{2}$ radians	M1 A1 2 B1 $\quad 1$ M1 A1 2	Attempt to convert to radians using π and 180 (or $2 \pi \&$ Obtain $0.802 / 0.803$, or better State 6.4, or better Attempt area of sector using $1 / 2 r^{2} \theta$ or $r^{2} \theta$, with θ in Obtain 25.6 / 25.7, or better
3 (i) $\int(4 x-5) \mathrm{d} x=2 x^{2}-5 x+c$ (ii) $\begin{aligned} y & =2 x^{2}-5 x+c \\ 7 & =2 \times 3^{2}-5 \times 3+c \Rightarrow c=4 \end{aligned}$ So equation is $y=2 x^{2}-5 x+4$	M1 A1 2 B1 $\sqrt{ }$ M1 A1 3	Obtain at least one correct term Obtain at least $2 x^{2}-5 x$ State or imply $y=$ their integral from (i) Use $(3,7)$ to evaluate c Correct final equation
4 (i) $\begin{aligned} \text { area } & =\frac{1}{2} \times 5 \sqrt{2} \times 8 \times \sin 60^{\circ} \\ & =\frac{1}{2} \times 5 \sqrt{2} \times 8 \times \frac{\sqrt{3}}{2} \\ & =10 \sqrt{6} \end{aligned}$ (ii) $\begin{aligned} & A C^{2}=(5 \sqrt{2})^{2}+8^{2}-2 \times 5 \sqrt{2} \times 8 \times \cos 60^{\circ} \\ & A C=7.58 \mathrm{~cm} \end{aligned}$	B1 M1 A1 3 M1 A1 A1 3 6	State or imply that $\sin 60^{\circ}=\frac{\sqrt{3}}{2}$ or exact equiv Use $\frac{1}{2} a c \sin B$ Obtain $10 \sqrt{6}$ only, from working in surds Attempt to use the correct cosine formula Correct unsimplified expression for $A C^{2}$ Obtain $A C=7.58$, or better
5 (a) (i) $\log _{3} \frac{4 x+7}{x}$ $\text { (ii) } \begin{aligned} & \log _{3} \frac{4 x+7}{x}=2 \\ & \\ & \frac{4 x+7}{x}=9 \\ & \\ & 4 x+7=9 x \\ & \\ & x=1.4 \end{aligned}$ $\text { (b) } \begin{aligned} \int_{3}^{9} \log _{10} x \mathrm{~d} x & \approx \frac{1}{2} \times 3 \times\left(\log _{10} 3+2 \log _{10} 6+\log _{10} 9\right) \\ & \approx 4.48 \end{aligned}$	B1 $\quad 1$ B1 M1 A1 3 B1 M1 A1 A1 4	Correct single logarithm, as final answer, from correct working only State or imply $2=\log _{3} 9$ Attempt to solve equation of form $\mathrm{f}(x)=8$ or 9 Obtain $x=1.4$, or exact equiv State, or imply, the 3 correct y-values only Attempt to use correct trapezium rule Obtain correct unsimplified expression Obtain 4.48, or better

6
(i) $(1+4 x)^{7}=1+28 x+336 x^{2}+2240 x^{3}$

6 (i) $(1+4 x)=1+28 x+$

(ii) $28 a+1008=1001$

Hence $a=-1 / 4$
6 (i) $(1+4 x)=1+28 x+$

(ii) $28 a+1008=1001$

Hence $a=-1 / 4$

(b) $\cos x=0.4$
$x=66.4^{\circ}, 294^{\circ}$
(ii) $\tan x=2$
$x=63.4^{\circ},-117^{\circ}$

8
(i) $-8-36-14+33=-25$
(ii) $27-81+21+33=0 \quad$ A.G.
(iii) $x=3$
$f(x)=(x-3)\left(x^{2}-6 x-11\right)$
$x=\frac{6 \pm \sqrt{36+44}}{2}$
$=3 \pm 2 \sqrt{ } 5$ or $3 \pm \sqrt{ } 20$
(i) $u_{5}=1.5 \times 1.02^{4}$
$=1.624$ tonnes A.G.
(ii) $\frac{1.5\left(1.02^{N}-1\right)}{1.02-1} \leq 39$
$\left(1.02^{N}-1\right) \leq(39 \times 0.02 \div 1.5)$
$\left(1.02^{N}-1\right) \leq 0.52$
Hence $1.02^{N} \leq 1.52$
(iii) $\log 1.02^{N} \leq \log 1.52$
$N \log 1.02 \leq \log 1.52$
$N \leq 21.144$..
$N=21$ trips

Obtain $1+28 x$
Attempt binomial expansion of at least 1 more term, with each term the product of binomial coeff and power of $4 x$
Obtain $336 x^{2}$
Obtain 2240 x^{3}
Multiply together two relevant pairs of terms
Obtain $28 a+1008=1001$
Obtain $a=-1 / 4$
7

M1	
A1	$\mathbf{2}$

Obtain -25 , as final answer
Confirm $\mathrm{f}(3)=0$, or equiv using division
State $x=3$ as a root at any point
Attempt complete division by $(x-3)$ or equiv
Obtain $x^{2}-6 x+k$
Obtain completely correct quotient
Attempt use of quadratic formula, or equiv, to find roots
Obtain $3 \pm 2 \sqrt{ } 5$ or $3 \pm \sqrt{ } 20$

Use $1.5 r^{4}$, or find u_{2}, u_{3}, u_{4}
Obtain 1.624 or better
Use correct formula for S_{N}
Correct unsimplified expressions for S_{N}
Link S_{N} to 39 and attempt to rearrange
Obtain given inequality convincingly, with no sign errors
Introduce logarithms on both sides and use $\log a^{b}=b \log$ Obtain $N \log 1.02 \leq \log 1.52$ (ignore linking sign)
Attempt to solve for N
Obtain $N=21$ only
$10 \quad$ (i) $0=1-\frac{3}{\sqrt{9}}$
(ii) $\int_{9}^{a} 1-3 x^{-\frac{1}{2}} \mathrm{dx}=[x-6 \sqrt{x}]_{9}^{a}$
$=(a-6 \sqrt{a})-(9-6 \sqrt{9})$
$=a-6 \sqrt{a}+9$
$a-6 \sqrt{a}+9=4$
$a-6 \sqrt{a}+5=0$
$(\sqrt{a}-1)(\sqrt{a}-5)=0$
$\sqrt{a}=1, \sqrt{a}=5$
$a=1, a=25$
but $a>9$, so $a=25$

Mark Scheme 4723 January 2007

1 Attempt use of quotient rule to find derivative M
M1 allow for numerator 'wrong way round'; or attempt use of product rule
Obtain $\frac{2(3 x-1)-3(2 x+1)}{(3 x-1)^{2}}$
Obtain $-\frac{5}{4}$ for gradient
A1 or equiv

Attempt eqn of straight line with numerical gradien
Obtain $5 x+4 y-11=0$
A1 $\mathbf{5}$ or similar equiv

2 (i) Attempt complete method for finding $\cot \theta$ Obtain $\frac{5}{12}$
(ii) Attempt relevant identity for $\cos 2 \theta$

State correct identity with correct value(s) substituted
Obtain $-\frac{119}{169}$

M1 rt-angled triangle, identities, calculator, ...
A1 $\mathbf{2}$ or exact equiv
M1 $\pm 2 \cos ^{2} \theta \pm 1$ or $\pm 1 \pm 2 \sin ^{2} \theta$ or $\pm\left(\cos ^{2} \theta-\sin ^{2} \theta\right)$
A1
A1 3 correct answer only earns $3 / 3$

3 (a) Sketch reasonable attempt at $y=x^{5}$
Sketch straight line with negative gradient Indicate in some way single point of intersection B1
(b) Obtain correct first iterate

Carry out process to find at least 3 iterates in all M1
Obtain at least 1 correct iterate after the first A1
Conclude 2.175

$$
\begin{aligned}
& {[0 \rightarrow 2.21236} \rightarrow 2.17412 \rightarrow 2.17480 \rightarrow 2.17479 ; \\
& 1 \rightarrow 2.19540 \rightarrow 2.17442 \rightarrow 2.17480 \rightarrow 2.17479 ; \\
& 2 \rightarrow 2.17791 \rightarrow 2.17473 \rightarrow 2.17479 \rightarrow 2.17479 ; \\
&3 \rightarrow 2.15983 \rightarrow 2.17506 \rightarrow 2.17479 \rightarrow 2.17479]
\end{aligned}
$$

4 (i) Obtain derivative of form $k(4 t+9)^{-\frac{1}{2}}$
Obtain correct $2(4 t+9)^{-\frac{1}{2}}$
Obtain derivative of form $k \mathrm{e}^{\frac{1}{2} x+1}$
Obtain correct $3 \mathrm{e}^{\frac{1}{x+1}}$
(ii) Either: Form product of two derivatives M1 Substitute for t and x in product M1 Obtain 39.7
Or: Obtain $k(4 t+9)^{n} \mathrm{e}^{\frac{1}{2}(4 t+9)^{\frac{1}{2}}+1}$
Obtain correct $6(4 t+9)^{-\frac{1}{2}} \mathrm{e}^{\frac{1}{2}(4 t+9)^{\frac{1}{2}}+1}$
Substitute $t=4$ to obtain 39.7 A1
5 (i) Obtain $R=\sqrt{17}$ or 4.12 or 4.1
Attempt recognisable process for finding α Obtain $\alpha=14$

M1 any constant k
A1 or (unsimplified) equiv
M1 any constant k different from 6
A1 4 or equiv
numerical or algebraic
using $t=4$ and calculated value of x
A1 3 allow ± 0.1; allow greater accuracy
M1 differentiating $y=6 \mathrm{e}^{\frac{1}{2}(4 t+9)^{\frac{1}{2}}+1}$
A1 or equiv
(3) allow ± 0.1; allow greater accuracy

B1 or greater accuracy
M1 allow for $\sin /$ cos confusion
A1 3 or greater accuracy $14.036 \ldots$
(ii) Attempt to find at least one value of $\theta+\alpha$

Obtain or imply value 61
Obtain 46.9
Show correct process for obtaining second angl
Obtain -75

M1
A1 $\sqrt{ }$ following R value; or value rounding to 61 A1
M1
A1 5 allow ± 0.1; allow greater accuracy; max of $4 / 5$ if extra angles between -180 and 180

6 (i) Obtain integral of form $k(3 x+2)^{\frac{1}{2}}$
Obtain correct $\frac{2}{3}(3 x+2)^{\frac{1}{2}}$ M1 any constant k

A1 or equiv
Substitute limits 0 and 2 and attempt evaluation M1
Obtain $\frac{2}{3}\left(8^{\frac{1}{2}}-2^{\frac{1}{2}}\right)$
A1 $\mathbf{4}$ or exact equiv suitably simplified
(ii) State or imply $\pi \int \frac{1}{3 x+2} \mathrm{~d} x$ or unsimplified version

Obtain integral of form $k \ln (3 x+2) \quad$ M1
Obtain $\frac{1}{3} \pi \ln (3 x+2)$ or $\frac{1}{3} \ln (3 x+2)$ A1
Show correct use of $\ln a-\ln b$ property M1
Obtain $\frac{1}{3} \pi \ln 4$

B1 allow if $\mathrm{d} x$ absent or wrong
any constant k involving π or not

A1 5 or (similarly simplified) equiv

7 (i) State a in x-direction
State factor 2 in x-direction

B1 or clear equiv
B1 $\mathbf{2}$ or clear equiv

M1 with correct curvature
2 not touching y-axis and with no maximum point; ignore intercept

M1
A1 $\sqrt{ } 2$ following their graph in (ii) and showing correct curvatures
(iv) Identify $2 a$ as asymptote or $2 a+2$ as intercept State $2 a<x \leq 2 a+2$

B1 allow anywhere in question
B1 2 allow $<$ or \leq for each inequality

8 (i) Obtain $-2 x \mathrm{e}^{-x^{2}}$ as derivative of $\mathrm{e}^{-x^{2}}$
Attempt product rule
Obtain $8 x^{7} \mathrm{e}^{-x^{2}}-2 x^{9} \mathrm{e}^{-x^{2}}$
Either: Equate first derivative to zero and attempt solution
Confirm 2
Or: \quad Substitute 2 into derivative and show attempt at evaluation M1

Obtain 0

B1

A1 or (unsimplified) equiv

M1 \quad dep $*$ M; taking at least one step of solution
A1 5 AG

A1 (5) AG; necessary correct detail required
(ii) Attempt calculation involving attempts at y values

Attempt $k\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+y_{4}\right)$

Obtain $\frac{1}{6}(0+4 \times 0.00304+2 \times 0.36788$
$+4 \times 2.70127+4.68880)$
Obtain 2.707
(iii) Attempt 4(y value) - 2(part (ii))

Obtain 13.3

M1 with each of 1, 4, 2 present at least once as coefficients
with attempts at five y values corresponding to correct x values

A1 or equiv with at least $3 \mathrm{~d} . \mathrm{p}$. or exact values
A1 4 or greater accuracy; allow ± 0.001
M1 or equiv
A1 $\mathbf{2}$ or greater accuracy; allow ± 0.1

9 (i) State $-2 \leq y \leq 2$
B1 allow $<$; any notation
B1 2 allow $<$; any notation
(ii) Show correct process for composition M1 right way round

Obtain or imply 0.959 and hence 2.16 A1 AG; necessary detail required
Obtain $g(0.5)=3.5$
B1 or (unsimplified) equiv
B1 $\mathbf{4}$ or equiv
(iii) Relate quadratic expression to at least one end of range of f M1 or equiv
Obtain both of $4-2 x^{2}<-2$ and $4-2 x^{2}>2$ A1 or equiv; allow any sign in each $(<$ or \leq or $>$ or \geq or $=$)
Obtain at least two of the x values $-\sqrt{3},-1,1, \sqrt{3}$ A1
Obtain all four of the x values
Attempt solution involving four x values M1
Obtain $x<-\sqrt{3}, \quad-1<x<1, \quad x>\sqrt{3}$

A1
to produce at least two sets of values
A1 6 allow \leq instead of $<$ and/or \geq instead of $>$

Mark Scheme 4724 January 2007

January 2007

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(x y)=x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y
$$

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y^{2}\right)=2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}
$$

$$
4 x+x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0
$$

Put $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$
Obtain $4 x+y=0 \quad$ AEF
Attempt to solve simultaneously with eqn of curve
Obtain $x^{2}=1$ or $y^{2}=16$ from $4 x+y=0$ $(1,-4)$ and $(-1,4)$ and no other solutions
$\mathbf{8}$
(i) Use $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} y}{\mathrm{~d} t}}{\frac{\mathrm{~d} x}{\mathrm{~d} t}}$ and $-\frac{1}{m}$ for grad of normal $=-p$

AG WWW
(ii) Use correct formula to find gradient of line

Obtain $\frac{2}{p+q}$
AG WWW
(iii) State $-p=\frac{2}{p+q}$

Simplify to $p^{2}+p q+2=0$ AG WWW
(iv) $(8,8) \rightarrow t$ or p or $q=2$ only

Subst $p=2$ in eqn (iii) to find q_{1}
Subst $p=q_{1}$ in eqn (iii) to find q_{2}
$q_{2}=\frac{11}{3} \rightarrow\left(\frac{242}{9}, \frac{44}{3}\right)$
$9 \quad$ (i) Separate variables as $\int \sec ^{2} y \mathrm{~d} y=2 \int \cos ^{2} 2 x \mathrm{~d} x$
LHS $=\tan y$
RHS; attempt to change to double angle
Correctly shown as $1+\cos 4 x$
$\int \cos 4 x \mathrm{~d} x=\frac{1}{4} \sin 4 x$
Completely correct equation (other than +c)
+c on either side
(ii) Use boundary condition
c $($ on RHS $)=1$
Substitute $x=\frac{1}{6} \pi$ into their eqn, produce $y=1.05$
$10 \quad$ (i) For (either point) $+t$ (diff between posn vectors) $\mathbf{r}=($ either point $)+t(\mathbf{i}-2 \mathbf{j}-3 \mathbf{k}$ or $-\mathbf{i}+2 \mathbf{j}+3 \mathbf{k})$
(ii) $\mathbf{r}=s(\mathbf{i}+2 \mathbf{j}-\mathbf{k})$ or $(\mathbf{i}+2 \mathbf{j}-\mathbf{k})+s(\mathbf{i}+2 \mathbf{j}-\mathbf{k})$

Eval scalar product of $\mathbf{i}+2 \mathbf{j}-\mathbf{k} \&$ their dir vect in (i)
Show as $(1 \mathrm{x} 1$ or 1$)+(2 \mathrm{x}-2$ or -4$)+(-1 \mathrm{x}-3$ or 3$)$
$=0 \quad$ and state perpendicular $\quad \mathbf{A G}$
(iii) For at least two equations with diff parameters

Obtain $t=-2$ or $s=3$ (possibly -3 or 2 or -2)
Subst. into eqn $A B$ or $O T$ and produce $3 \mathbf{i}+6 \mathbf{j}-3 \mathbf{k}$
(iv) Indicate that $|\overline{O C}|$ is to be found
$\sqrt{54}$;f.t. $\sqrt{a^{2}+b^{2}+c^{2}}$ from $a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ in (iii)
(iii)
$3 k$
(iii)

In the above question, accept any vectorial notation
t and s may be interchanged, and values stated above need to be treated with caution.
In (iii), if the point of intersection is correct, it is more than likely that the whole part is correct - but check.

Mark Scheme 4725 January 2007

1.	(i) $a=-3$ (ii) $2 a-3=7$ or $3 a-6=9$ $a=5$	B1	M1	

\begin{tabular}{|c|c|c|c|c|}
\hline \& (ii)
\[
\text { (iii) }-1 \pm \mathrm{i} \sqrt{3}
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { A1 } \\
\& \text { B1 } \\
\& \text { B1 } \\
\& \text { B1 }
\end{aligned}
\] \& 3
7 \& \begin{tabular}{l}
Attempt to solve quadratic equation or substitute \(x+\mathrm{i} y\) and equate real and imaginary parts \\
Obtain answers as complex numbers Obtain correct answers, simplified Correct root on \(x\) axis, co-ords. shown \\
Other roots in \(2^{\text {nd }}\) and \(3^{\text {rd }}\) quadrants \\
Correct lengths and angles or coordinates or complex numbers shown
\end{tabular} \\
\hline 6. \& \begin{tabular}{l}
(i)
\[
u_{n+1}-u_{n}=2 n+4
\] \\
(ii)
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
B1 \\
M1 \\
M1 \\
A1 \\
A1
\end{tabular} \& 3

5

8 \& | Correct expression for u_{n+1} |
| :--- |
| Attempt to expand and simplify |
| Obtain given answer correctly |
| State $u_{1}=4\left(\right.$ or $\left.u_{2}=10\right)$ and is divisible by 2 |
| State induction hypothesis true for |
| u_{n} |
| Attempt to use result in (ii) |
| Correct conclusion reached for u_{n+1} |
| Clear,explicit statement of induction conclusion |

\hline 7. \& | (i) $\alpha+\beta=-5 \quad \alpha \beta=10$ |
| :--- |
| (ii) $\alpha^{2}+\beta^{2}=5$ |
| (iii) $x^{2}-\frac{1}{2} x+1=0$ | \& \[

$$
\begin{aligned}
& \text { B1 B1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { B1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { B1ft }
\end{aligned}
$$
\] \& 2

2
2

4 \& | State correct values |
| :--- |
| Use $(\alpha+\beta)^{2}-2 \alpha \beta$ |
| Obtain given answer correctly, using value of -5 |
| Product of roots $=1$ |
| Attempt to find sum of roots |
| Obtain $\frac{5}{10}$ or equivalent |
| Write down required quadratic equation, or any multiple. |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 8. \& \begin{tabular}{l}
(i)
\[
(r+1)^{2} r!
\] \\
(ii)
\[
(n+2)!-2!
\] \\
(iii)
\end{tabular} \& \[
\begin{aligned}
\& \hline \text { M1 } \\
\& \text { A1 } \\
\& \text { A1 } \\
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { B1ft }
\end{aligned}
\] \& 3

4
1
1

8 \& | Factor of r ! or $(\mathrm{r}+1)$! seen |
| :--- |
| Factor of $(r+1)$ found |
| Obtain given answer correctly |
| Express terms as differences using |
| (i) |
| At least $1^{\text {st }}$ two and last term correct |
| Show that pairs of terms cancel |
| Obtain correct answer in any form |
| Convincing statement for nonconverging, ft their (ii) |

\hline \multirow[t]{5}{*}{9.} \& (i) $\binom{0}{0}\binom{0}{-1}\binom{3}{0}\binom{3}{-1}$ \& | M1 |
| :--- |
| A1 | \& 2 \& | For at least two correct images |
| :--- |
| For correct diagram, co-ords.clearly written down |

\hline \& (ii) 90° clockwise, centre origin \& B1 B1 \& \& Or equivalent correct description

\hline \& $$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$ \& B1 \& 3 \& Correct matrix, not in trig form

\hline \& (iii) Stretch parallel to x-axis, s.f. 3 \& B1 B1 \& \& Or equivalent correct description, but must be a stretch for $2^{\text {nd }}$ B1

\hline \& $$
\left(\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right)
$$ \& B1 B1 \& 4

9 \& Each correct column

\hline
\end{tabular}

10.	(i) $\Delta=\operatorname{det} \mathbf{D}=3 a-6$ $\mathbf{D}^{-1}=\frac{1}{\Delta}\left(\begin{array}{rrr} 3 & -2 & 4 \\ -3 & a & -2 a \\ -3 & a & a-6 \end{array}\right)$ (ii) $\frac{1}{\Delta}\left(\begin{array}{r}5 \\ 2 a-9 \\ 5 a-15\end{array}\right)$	M1M1A1M1A1B1A1M1A1A1A1 ft all 3	4 11	Show correct expansion process for 3×3 Correct evaluation of any 2×2 det Obtain correct answer Show correct process for adjoint entries Obtain at least 4 correct entries in adjoint Divide by their determinant Obtain completely correct answer Attempt product of form $\mathbf{D}^{-1} \mathbf{C}$, or eliminate to get 2 equations and solve Obtain correct answers, ft their inverse

Mark Scheme 4726 January 2007

1 (i) $f(0)=\operatorname{In} 3 f$
$\mathrm{f}^{\prime}(0)=1 / 3$
$f^{\prime}(0)=-1 / 9$ A. G.
(ii) Reasonable attempt at Maclaurin

$$
f(x)=\ln 3+1 / 3 x-1 / 18 x^{2}
$$

B1

B1
B1 Clearly derived
M1 Form $\operatorname{In} 3+a x+b x^{2}$, with a, b related to f " f "
A $\sqrt{ } \sqrt{ }$ On their values off' and f "
SR Use $\operatorname{In}(3+x)=\operatorname{In} 3+\operatorname{In}\left(1+{ }^{1} / 3\right.$
x) Ml Use Formulae Book to get

$$
\begin{aligned}
& \text { In } 3+Y 3 X-Y 2(V J X) 2= \\
& \text { In } 3+Y 3 X-1 / g X 2
\end{aligned}
$$

B1
B1
SR Use $x=\sqrt{ } J\left(\tan ^{-1} x\right)$ and compare x to $\checkmark \mathrm{J}\left(\tan ^{-1} \mathrm{x}\right)$ for $x=0.8,0.9 \quad \mathrm{~B} 1$
Explain "change in sign" B 1
B1 Get $2 x-I I\left(1+x^{2}\right)$
M1 $0.8-f(0.8) / f^{\prime}(0.8)$
Miv
Al 3d.p. - accept answer which rounds
Ml Or numeric equivalent
Al At least 3 d.p. correct
Bl AG . Inequality required
B1 Inequality or diagram required
Ml Or numeric evidence
Al cao; or answer which rounds down

BI Correct shape for $\sinh x$
B1 Correct shape for $\operatorname{cosech} x$
B1 Obvious point $(d y / d x \neq \mathrm{O}) /$ asymptotes clear

B1 May be implied
B1 Must be clear; allow 2/(eX-e-X) as mimimum simplification
M1 Or equivalent, all x eliminated and $\operatorname{not} d x=d u$
Al
$\mathrm{A} 1 \sqrt{ }$ Use formulae book, PT, or atanh ${ }^{-1} \mathrm{u}$
Al No need for c

5 (i) Reasonable attempt at parts Get $\mathrm{xnsin} x-\int \sin x . n x^{n-1} \mathrm{dx}$
Attempt parts again Accurately Clearly derive AG.
(ii) Get $I_{4}=(1 / 2 \pi)^{4}-12 I_{2}$ or $I_{2}=(1 / 2 \pi)^{2}-2 I_{0}$

Show clearly $I_{0}=1$
Replace their values in relation Get $I_{4}=1 / 16 \pi^{4}-3 \pi^{2}+24$

6 (i) $x= \pm a, y=2$
(ii)

7 (i) Write as $A / t+B / t^{2}+(C t+D) /\left(t^{2}+1\right)$
Equate $A t\left(t^{2}+1\right)+B\left(t^{2}+1\right)+(C t+D) t^{2}$ to $1-t^{2}$
Insert t values I equate coeff.
Get $A=\mathrm{C}=0, B=\mathrm{L} \mathrm{D}=-2$
(ii) Derive or quote $\cos x$ in terms of t

Derive or quote $d x=2 d t /\left(1+t^{2}\right)$
Sub. in to correct P.F.
Integrate to $-1 / t-2 \tan ^{-1} t$
Use limits to clearly get AG.

8 (i) Get $\left(\mathrm{e}^{y}-\mathrm{e}^{-y}\right) /\left(\mathrm{e}^{y}+\mathrm{e}^{-y}\right)$
(ii) Attempt quad. in e^{y}

Solve for e^{y}
Clearly get AG.
(iii) Rewrite as $\tanh x=k$

Use (ii) for $x=V / \ln 7$ or equivalent
(iv) Use of log laws

Correctly equate $\ln A=\ln B$ to $A=B$
Get $x= \pm 3 / 5$

M1 Involving second integral Al
M1
Al
A1 Indicate $(1 / 2 \pi)^{n}$ and 0 from limits

B1
B1 May use I_{2}
M1
A1 cao

B1, B1, B1 Must be =; no working needed

B1 Two correct labelled asymptotes ${ }^{11} O x$ and approaches

B1 Two correct labelled asymptotes $11 O y$ and approaches

B1 Crosses at $(3 / 2 a, 0)$ (and $(0,0)$ - may be implied

B1 90° where it crosses $O x$; smoothly
B1 Symmetry in $O x$

M1 Allow $(A t+B) / t^{2}$; justify $B / t^{2}+D /\left(l+t^{2}\right)$ if only used

M1 $\sqrt{ }$
M1 Lead to at least two constant values Al

SR Other methods leading to correct PF can earn 4 marks; 2 M marks for reasonable method going wrong
B1
B1
M1 Allow $k\left(I-t^{2}\right) /\left(\left(t^{2}\left(I+t^{2}\right)\right.\right.$ or equivalent $\mathrm{Al} \sqrt{ }$ From their k
Al

B1 Allow $\left(e^{2 Y}-1\right) /\left(e^{2 y}+1\right)$ or if x used

M1 Multiply by e^{γ} and tidy
M1
Al

M1 SR Use hyp def ${ }^{n}$ to get quad. in e^{x} M I
Al Solve $e^{2 x}=7$ for x to $\frac{1}{2} \ln 7 \quad \mathrm{Al}$
Bl One used correctly
M1 Or $1 n\left({ }^{A} I_{B}\right)=0$
Al

9 (i)

(ii) U se correct formula with correct r
$f \sec ^{2} \mathrm{x} d x=\tan x$ used
Quote $f 2 \sec x \tan x d x=2 \sec x$
Replace $\tan ^{2} x$ by $\sec ^{2} x-1$ to integrate
Reasonable attempt to integrate 3 terms And to use limits correctly
Get $\sqrt{3}+1-1 / 6 \pi$
(iii) Use $x=r \cos \theta, y=r \sin \theta, r=\left(x^{2}+y^{2}\right)^{1 / 2}$

Reasonable attempt to eliminate r, θ Get $y=(x-1) \sqrt{ }\left(\mathrm{x}^{2}+y^{2}\right)$

B1 Shape for correct θ; ignore other θ
Used; start at $(r, 0)$
B1 $\theta=0, r=1$ and increasing r

B1
B1
B1 Or sub. correctly M1

M1

Al Exact only

M1
M1
A1 Or equivalent

Mark Scheme 4727 January 2007

1 (i) Attempt to show no closure $3 \times 3=1,5 \times 5=1$ OR $7 \times 7=1$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	For showing operation table or otherwise For a convincing reason For attempt to find identity $O R$ for showing operation table For showing identity is not 3 , not 5 , and not 7 by reference to operation table or otherwise
OR Attempt to show no identity	M1	
Show $a \times e=a$ has no solution	A1 2	
(ii) $(a=) 1$	B1 1	For value of a stated
(iii) EITHER: $\left\{e, r, r^{2}, r^{3}\right\}$ is cyclic, (ii) group is not cyclic	B1*	For a pair of correct statements
OR: $\left\{e, r, r^{2}, r^{3}\right\}$ has 2 self-inverse elements, (ii) group has 4 self-inverse elements	B1*	For a pair of correct statements
OR: $\left\{e, r, r^{2}, r^{3}\right\}$ has 1 element of order 2 (ii) group has 3 elements of order 2	B1*	For a pair of correct statements
OR: $\left\{e, r, r^{2}, r^{3}\right\}$ has element(s) of order 4 (ii) group has no element of order 4	B1*	For a pair of correct statements
Not isomorphic	B1 (dep*) 2 5	For correct conclusion
2 EITHER: $[3,1,-2] \times[1,5,4]$ $\Rightarrow \mathbf{b}=k[1,-1,1]$ e.g. put x OR y $O R z=0$ and solve 2 equations in 2 unknowns Obtain [0, 2, -1] $\operatorname{OR}[2,0,1] \operatorname{OR}[1,1,0]$	$\begin{array}{\|l} \mathrm{M} 1 \\ \mathrm{~A} 1 \\ \mathrm{M} 1 \\ \mathrm{M} 1 \\ \mathrm{~A} 1 \end{array}$	For attempt to find vector product of both normals For correct vector identified with \mathbf{b} For giving a value to one variable For solving the equations in the other variables For a correct vector identified with a
OR: Solve $3 x+y-2 z=4, x+5 y+4 z=6$ e.g. $y+z=1 O R x-z=1$ OR $x+y=2$ Put x OR y OR $z=t$ $[x, y, z]=[t, 2-t,-1+t] \text { OR }[2-t, t, 1-t]$ $O R[1+t, 1-t, t]$ Obtain [0, 2, -1] $\operatorname{OR}[2,0,1] \operatorname{OR}[1,1,0]$ Obtain $k[1,-1,1]$	M1 M1 M1 A1 A1 5 \qquad	For eliminating one variable between 2 equations For solving in terms of a parameter For obtaining a parametric solution for x, y, z For a correct vector identified with a For correct vector identified with \mathbf{b}
3 $\text { (i) } \begin{aligned} & z=\frac{6 \pm \sqrt{36-144}}{2} \\ & z=3 \pm 3 \sqrt{3} \mathrm{i} \\ & \text { Obtain }(r=) 6 \\ & \text { Obtain }(\theta=) \frac{1}{3} \pi \end{aligned}$	$\begin{array}{ll} \mathrm{M} 1 & \\ \text { A1 } & \\ \text { A1 } & \\ \text { A1 } & 4 \end{array}$	For using quadratic equation formula or completing the square For obtaining cartesian values AEF For correct modulus For correct argument
$\begin{aligned} & \text { (ii) EITHER: } 6^{-3} \text { OR } \frac{1}{216} \text { seen } \\ & Z^{-3}=6^{-3}(\cos (-\pi) \pm \operatorname{isin}(-\pi)) \\ & \text { Obtain }-\frac{1}{216} \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \sqrt{ } \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	f.t. from their r^{-3} For using de Moivre with $n= \pm 3$ For correct value
OR: $z^{3}=6 z^{2}-36 z=6(6 z-36)-36 z$ 216 seen Obtain $-\frac{1}{216}$	M1 B1 A1 3 7	For using equation to find z^{3} Ignore any remaining z terms For correct value

	B1 M1 $\text { A1 } 3$	For a correct statement For substituting into differential equation and attempting to simplify to a variables separable form For correct equation AG
$\begin{gathered} \text { (ii) } \int \frac{z}{1-2 z^{2}} \mathrm{~d} z=\int \frac{1}{x} \mathrm{~d} x \Rightarrow-\frac{1}{4} \ln \left(1-2 z^{2}\right)=\ln c x \\ 1-2 z^{2}=(c x)^{-4} \\ \frac{x^{2}-2 y^{2}}{x^{2}}=\frac{c^{-4}}{x^{4}} \\ x^{2}\left(x^{2}-2 y^{2}\right)=k \end{gathered}$	M1 M1* A1 A1 $\sqrt{ }$ M1 (dep*) A1 6	For separating variables and writing integrals For integrating both sides to \ln forms For correct result (c not required here) For exponentiating their In equation including a constant (this may follow the next M1) For substituting $z=\frac{y}{x}$ For correct solution properly obtained, including dealing with any necessary change of constant to k as given AG
$\begin{aligned} & 5 \text { (i) (a) } e, p, p^{2} \\ & \text { (b) } e, q, q^{2} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	For correct elements For correct elements SR If the answers to parts (i) and (iv) are reversed, full credit may be earned for both parts
$\text { (ii) } \begin{aligned} & p^{3}=q^{3}=e \Rightarrow(p q)^{3}=p^{3} q^{3}=e \\ & \Rightarrow \text { order } 3 \\ &\left(p q^{2}\right)^{3}=p^{3} q^{6}=p^{3}\left(q^{3}\right)^{2}=e \Rightarrow \text { order } 3 \end{aligned}$	M1 A1 A1 3	For finding $(p q)^{3}$ or $\left(p q^{2}\right)^{3}$ For correct order For correct order SR For answer(s) only allow B1 for either or both
(iii) 3	B1 1	For correct order and no others
(iv) $e, p q, p^{2} q^{2}$ OR e, $p q,(p q)^{2}$ $e, p q^{2}, p^{2} q \text { OR } e, p q^{2},\left(p q^{2}\right)^{2}$ $\text { OR } e, p^{2} q,\left(p^{2} q\right)^{2}$	B1 B1 B1 B1 4 10	For stating e and either $p q$ or $p^{2} q^{2}$ For all 3 elements and no more For stating e and either $p q^{2}$ or $p^{2} q$ For all 3 elements and no more

6 (i) (CF $m=-3 \Rightarrow) A \mathrm{e}^{-3 x}$	B1 1	For correct CF
(ii) $(y=) p x+q$	B1	For stating linear form for PI (may be implied)
$\Rightarrow p+3(p x+q)=2 x+1$	M1	For substituting PI into DE (needs y and $\frac{\mathrm{d} y}{\mathrm{~d} x}$)
$\Rightarrow p=\frac{2}{3}, \quad q=\frac{1}{9}$	A1 A1	For correct values
$\Rightarrow \mathrm{GS} \quad y=A \mathrm{e}^{-3 x}+\frac{2}{3} x+\frac{1}{9}$	A1V	For correct GS. f.t. from their CF + PI
		SR Integrating factor method may be used, but CF must be stated somewhere to earn the mark in (i)
I.F. $\mathrm{e}^{3 x} \Rightarrow \frac{\mathrm{~d}}{\mathrm{~d} x}\left(y \mathrm{e}^{3 x}\right)=(2 x+1) \mathrm{e}^{3 x}$		For stating integrating factor
$\Rightarrow y \mathrm{e}^{3 x}=\frac{1}{3} \mathrm{e}^{3 x}(2 x+1)-\int \frac{2}{3} \mathrm{e}^{3 x} \mathrm{~d} x$	M1	For attempt at integrating by parts the right way round
$\Rightarrow y \mathrm{e}^{3 x}=\frac{2}{3} x \mathrm{e}^{3 x}+\frac{1}{3} \mathrm{e}^{3 x}-\frac{2}{9} \mathrm{e}^{3 x}+A$	A2 *	For correct integration, including constant Award A1 for any 2 algebraic terms correct
\Rightarrow GS $y=A \mathrm{e}^{-3 x}+\frac{2}{3} x+\frac{1}{9}$	A1 $\sqrt{ } 5$	For correct GS. f.t. from their * with constant
(iii) EITHER $\frac{\mathrm{d} y}{\mathrm{~d} x}=-3 A \mathrm{e}^{-3 x}+\frac{2}{3}$		For differentiating their GS
$\Rightarrow-3 A+\frac{2}{3}=0$	M1	For putting $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $x=0$
$y=\frac{2}{9} \mathrm{e}^{-3 x}+\frac{2}{3} x+\frac{1}{9}$	A1	For correct solution
$O R \frac{\mathrm{~d} y}{\mathrm{~d} x}=0, x=0 \Rightarrow 3 y=1$		For using original DE with $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ and $x=0$ to find y
$\Rightarrow \frac{1}{3}=A+\frac{1}{9}$	M1	For using their GS with y and $x=0$ to find A
$y=\frac{2}{9} e^{-3 x}+\frac{2}{3} x+\frac{1}{9}$		
(iv) $y=\frac{2}{3} x+\frac{1}{9}$	$\begin{gathered} \mathrm{B} 1 \sqrt{ } 1 \\ 10 \end{gathered}$	For correct function. f.t. from linear part of (iii)

7 (i) EITHER: $\quad(\mathbf{A G}$ is $\mathbf{r}=)[6,4,8]+t k[1,0,1]$ or $[3,4,5]+t k[1,0,1]$ Normal to $B C D$ is $\mathbf{n}=k[1,1,-3]$ Equation of $B C D$ is $\mathbf{r} .[1,1,-3]=-6$ Intersect at $(6+t)+4+(-3)(8+t)=-6$ $t=-4(t=-1$ using $[3,4,5]) \Rightarrow \mathbf{O M}=[2,4,4]$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	For a correct equation For finding vector product of any two of $\pm[1,-4,-1], \pm[2,1,1], \pm[1,5,2]$ For correct \mathbf{n} For correct equation (or in cartesian form) For substituting point on $A G$ into plane For correct position vector of M AG
$\begin{aligned} & \text { OR: }(\mathbf{A G} \text { is } \mathbf{r}=)[6,4,8]+t k[1,0,1] \\ & \text { or }[3,4,5]+t k[1,0,1] \\ & \mathbf{r}=\mathbf{u}+\lambda \mathbf{v}+\mu \mathbf{w}, \text { where } \\ & \mathbf{u}= {[2,1,3] \text { or }[1,5,4] \text { or }[3,6,5] } \\ & \mathbf{v}, \mathbf{w}=\text { two of }[1,-4,-1],[1,5,2],[2,1,1] \\ & \quad(x=) 6+t=2+\lambda+\mu \\ & \text { e.g. }(y=) 4=1-4 \lambda+5 \mu \\ &(z=) 8+t=3-\lambda+2 \mu \\ & t=-4 \text { or } \lambda=-\frac{1}{3}, \mu=\frac{1}{3} \\ & \Rightarrow \mathbf{O M}=[2,4,4] \end{aligned}$	B1 M1 A1 M1 A1 A1 6	For a correct equation For a correct parametric equation of $B C D$ For forming 3 equations in t, λ, μ from line and plane, and attempting to solve them For correct value of t or λ, μ For correct position vector of M AG
(ii) $\left.\begin{array}{l} A, G, M \text { have } t=0,-3,-4 \quad \text { OR } \\ A G=3 \sqrt{2}, A M=4 \sqrt{2} \quad O R \\ \mathbf{A G}=[-3,0,-3], \mathbf{A M}=[-4,0,-4] \end{array}\right\} \Rightarrow A G: A M=3: 4$	B1 1	For correct ratio AEF
$\text { (iii) } \begin{aligned} \mathbf{O P} & =\mathbf{O C}+\frac{4}{3} \mathbf{C G} \\ & =\left[\frac{11}{3}, \frac{11}{3}, \frac{16}{3}\right] \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \end{aligned}$	For using given ratio to find position vector of P For correct vector
(iv) EITHER: Normal to $A B D$ is $\mathbf{n}=k[19,3,-17]$ Equation of $A B D$ is $\mathbf{r} .[19,3,-17]=-10$ 19. $\frac{11}{3}+3 \cdot \frac{11}{3}-17 \cdot \frac{16}{3}=-10$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	For finding vector product of any two of $\pm[4,3,5], \pm[1,5,2], \pm[3,-2,3]$ For correct \mathbf{n} For finding equation (or in cartesian form) For verifying that P satisfies equation
$O R$: Equation of $A B D$ is $\begin{aligned} & \mathbf{r}=[6,4,8]+\lambda[4,3,5]+\mu[1,5,2] \text { (etc.) } \\ & {\left[\frac{11}{3}, \frac{11}{3}, \frac{16}{3}\right]=[6,4,8]+\lambda[4,3,5]+\mu[1,5,2]} \\ & \lambda=-\frac{2}{3}, \quad \mu=\frac{1}{3} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	For finding equation in parametric form For substituting P and solving 2 equations for λ, μ For correct λ, μ For verifying 3rd equation is satisfied
$\begin{aligned} & O R: \mathbf{A P}=\left[-\frac{7}{3},-\frac{1}{3},-\frac{8}{3}\right] \\ & \mathbf{A B}=[-4,-3,-5], \mathbf{A D}=[-3,2,-3] \\ & \Rightarrow \mathbf{A B}+\mathbf{A D}=[-7,-1,-8] \\ & \Rightarrow \mathbf{A P}=\frac{1}{3}(\mathbf{A B}+\mathbf{A D}) \end{aligned}$	M1 A1 M1 A1 4 13	For finding 3 relevant vectors in plane $A B D P$ For correct AP or BP or DP For finding $\mathbf{A B}, \mathbf{A D}$ or $\mathbf{B A}, \mathbf{B D}$ or $\mathbf{D B}, \mathbf{D A}$ For verifying linear relationship

8 (i) $\cos 4 \theta+\mathrm{i} \sin 4 \theta=$ $\begin{aligned} & c^{4}+4 \mathrm{i} c^{3} s-6 c^{2} s^{2}-4 \mathrm{i} c s^{3}+s^{4} \\ & \Rightarrow \sin 4 \theta=4 c^{3} s-4 c s^{3} \\ & \text { and } \cos 4 \theta=c^{4}-6 c^{2} s^{2}+s^{4} \\ & \Rightarrow \tan 4 \theta=\frac{4 \tan \theta-4 \tan ^{3} \theta}{1-6 \tan ^{2} \theta+\tan ^{4} \theta} \end{aligned}$	M1 A1 M1 A1 4	For using de Moivre with $n=4$ For both expressions For expressing $\frac{\sin 4 \theta}{\cos 4 \theta}$ in terms of c and s For simplifying to correct expression
(ii) $\cot 4 \theta=\frac{\cot ^{4} \theta-6 \cot ^{2} \theta+1}{4 \cot ^{3} \theta-4 \cot \theta}$	B1 1	For inverting (i) and using $\cot \theta=\frac{1}{\tan \theta}$ or $\tan \theta=\frac{1}{\cot \theta}$. AG
(iii) $\cot 4 \theta=0$ Put $x=\cot ^{2} \theta$ $\theta=\frac{1}{8} \pi \Rightarrow x^{2}-6 x+1=0$ OR $x^{2}-6 x+1=0 \Rightarrow \theta=\frac{1}{8} \pi$	B1 B1 $\text { B1 } 3$	For putting $\cot 4 \theta=0$ (can be awarded in (iv) if not earned here) For putting $x=\cot ^{2} \theta$ in the numerator of (ii) For deducing quadratic from (ii) and $\theta=\frac{1}{8} \pi$ OR For deducing $\theta=\frac{1}{8} \pi$ from (ii) and quadratic
$\text { (iv) } \begin{aligned} & 4 \theta=\frac{3}{2} \pi O R \frac{1}{2}(2 n+1) \pi \\ & \text { 2nd root is } x=\cot ^{2}\left(\frac{3}{8} \pi\right) \\ & \Rightarrow \cot ^{2}\left(\frac{1}{8} \pi\right)+\cot ^{2}\left(\frac{3}{8} \pi\right)=6 \\ & \Rightarrow \operatorname{cosec}^{2}\left(\frac{1}{8} \pi\right)+\operatorname{cosec}^{2}\left(\frac{3}{8} \pi\right)=8 \end{aligned}$	$$	For attempting to find another value of θ For the other root of the quadratic For using sum of roots of quadratic For using $\cot ^{2} \theta+1=\operatorname{cosec}^{2} \theta$ For correct value

Mark Scheme 4728 January 2007

$\begin{array}{ll}1 & \text { (i) } \\ & \\ & \\ & \text { (ii) }\end{array}$	Net force on trailer is $+/-\left(700-\mathrm{R}_{\mathrm{T}}\right)$	B1		
		M1		For applying Newton's second law to the trailer with 2 terms on LHS (no vertical forces)
	$700-\mathrm{R}_{\mathrm{T}}=600 \times 0.8$	A1ft		$\mathrm{ftcv}\left(+/-\left(700-\mathrm{R}_{\mathrm{T}}\right)\right.$)
	Resistance is 220 N	A1	4	
		M1		For applying Newton's second law to the car or to the whole, with $\mathrm{a}=+/-0.8$ (no vertical forces)
	$\begin{gathered} 2100-700-\mathrm{R}_{\mathrm{C}}= \\ 1100 \times 0.8 \end{gathered}$	A1ft		
				$\mathrm{ft} \mathrm{cv}(220)$
	$\begin{array}{r} 2100-\left(\mathrm{R}_{\mathrm{C}}+220\right)= \\ (1100+600) \mathrm{x} \end{array}$			
	0.8			
	Resistance is 520 N	A1	3	

3	(i)	$\mathrm{T}=0.3 \mathrm{~g}$	B1		At particle (or $0.3 \mathrm{~g}-\mathrm{T}=0.3 \mathrm{a}$)
		$\mathrm{F}=\mathrm{T}$	B1		Or $\mathrm{F}=\operatorname{cv}(\mathrm{T}$ at particle) \quad (or $\mathrm{T}-\mathrm{F}=0.4 \mathrm{a})$
	(ii)	$\mathrm{R}=0.4 \mathrm{~g}$	B1		
			M1		For using $\mathrm{F}=\mu \mathrm{R}$
		Coefficient is 0.75	A1	5	
			M1		For resolving 3 relevant forces on B horizontally, $\mathrm{a}=0$
		$X=0.3 \mathrm{~g}+0.3 \mathrm{~g}$	A1ft		$\mathrm{Ft} \mathrm{X}=0.3 \mathrm{~g}+\operatorname{cv}(\mu)$
					$\operatorname{cv}(\mathrm{R})$
		$\mathrm{X}=5.88 \mathrm{~N}$	A1	3	

\begin{tabular}{|c|c|c|c|c|c|}
\hline 4 \& (i)

(ii)(a)

(ii)(b) \& \begin{tabular}{l}
Momentum before collision
$$
=+/-(0.8 \times 4-0.6 \times 2)
$$

Momentum after collision
$$
=+/-0.8 \mathrm{v}_{\mathrm{L}}+0.6 \times 2
$$

Speed is $1 \mathrm{~ms}^{-1}$

0.6x2-0.7x0.5

Total is $0.85 \mathrm{kgms}^{-1}$

Total momentum +ve after the collision. If N continues in its original direction, both particles have a negative momentum. N must reverse its direction.

$0.6 \times 2-0.7 \times 0.5$ (= $0.85)=0.7 \mathrm{v}$

Speed is $1.21 \mathrm{~ms}^{-1}$

 \&

B1

B1

M1

A1

M1

A1

DM

1

A1

A1ft

A1
\end{tabular} \& 4

2 \& | Or momentum change L $0.8 \mathrm{x} 4+/-0.8 \mathrm{v}_{\mathrm{L}}$ |
| :--- |
| Accept inclusion of g in both terms |
| Momentum change N |
| $0.6 \times 2+0.6 \times 2$ |
| Accept inclusion of g in both terms |
| For using the principle of conservation of momentum |
| even if g is included throughout |
| Accept -1 from correct work (g not used). |
| Must be a difference. SR $0.6 \times 1-0.7 \times 0.5$ M1 |
| Must be positive |
| Or $0.6 \mathrm{v}+0.7 \mathrm{w}$ is positive, confirming that the momentum is shared between two particles. |
| No reference need be made to the physically impossible scenario where M and N both might continue in their original directions. |
| ftcv (0.85). Award M1 if not given in ii(a). |
| Positive. Accept (a.r.t) 1.2 from correct work |

\hline \& (i)
(ii)

(iii) \& \begin{tabular}{l}
$$
\begin{aligned}
& 1.8 \mathrm{t}^{2} / 2 \quad(+\mathrm{C}) \\
& \mathrm{t}=0, \mathrm{v}=0) \mathrm{C}=0 \\
& \text { Expression is } 1.8 \mathrm{t}^{2} / 2 \\
& \\
& 0.9 \mathrm{t}^{3} / 3 \quad(+\mathrm{K}) \\
& 0.3 \times 64 \quad \\
& 19.2 \mathrm{~m} \quad \mathrm{AG} \\
& \mathrm{u}=0.9 \times 4^{2} \\
& \\
& \mathrm{~s}=14.4 \times 3+1 / 27.2 \times \\
& 3^{2} \\
& 19.2+75.6
\end{aligned}
$$

Displacement is 94.8 m OR
$$
\begin{aligned}
& v=\int 7.2 d t \\
& t=0, v=14.4, \mathrm{c}=
\end{aligned}
$$
$$
14.4
$$
$$
s=\int 7.2 t+14.4 d t
$$
$$
\mathrm{t}=0, \mathrm{~s}=0, \mathrm{k}=0
$$
$$
\begin{aligned}
& \mathrm{s}=3.6 \times 3^{2}+14.4 \times 3 \\
& 19.2+75.6=94.8
\end{aligned}
$$

Displacement is 94.8 m

 \&

M^{*}

B1

A1

M1

A1

M1

A1

D*

M1

M1

A1

M1

A1

D*

M1

M1

A1

M1

A1
\end{tabular} \& 3

4
4

5 \& | For using $v=\int a d t$ |
| :--- |
| May be awarded in (ii). Accept c written and deleted. also for $1.8 \mathrm{t}^{2}+\mathrm{c}$ |
| For using $s=\int v d t$ |
| SR Award B1 for $(s=0, t=0) K=0$ if not already given in (i), or +K included and limits used. |
| For using limits 0 to 4 (or equivalent) |
| For using ' u ' $=v(4)$ |
| For using $\mathrm{s}=\mathrm{ut}+1 / 2 \mathrm{x} 7.2 \mathrm{t}^{2}$ with non-zero u ($\mathrm{s}=75.6$) |
| For adding distances for the two distinct stages |
| For finding $v(4)$ |
| Integration and finding non-zero integration constant |
| Nb Using $\mathrm{t}=4, \mathrm{v}=14.4$ gives $\mathrm{c}=-14.4$ $s=\int 7.2 t-14.4 d t$ |
| Integration and finding integration constant. |
| $\mathrm{Nb} \mathrm{t}=4$ with $\mathrm{s}=19.2$ and $\mathrm{v}=7.2 \mathrm{t}-14.4$ gives $\mathrm{k}=19.2$ |
| Substituting $\mathrm{t}=3$ (OR 7 into $\mathrm{s}=3.6 \mathrm{t}^{2}-14.4 \mathrm{t}+19.2$) |
| $(\mathrm{s}=75.6)\left(\mathrm{OR} \mathrm{s}=3.6 \times 7^{2}-14.4 \times 7+19.2\right)$ |
| Adding two distinct stages OR $\mathrm{s}=3.6 \times 7^{2}-14.4 \times 7+19.2=94.8 \text { final M1A1 }$ |

\hline
\end{tabular}

| 6 | (i) $\quad$$1 / 225 \mathrm{v}_{\mathrm{m}}=8$ or
 $1 / 2 \mathrm{Tv}_{\mathrm{m}}+1 / 2(25-\mathrm{T}) \mathrm{v}_{\mathrm{m}}=$ | B $^{*} 1$ | Do not accept solution based on isosceles or right
 angled triangle |
| :--- | :--- | :--- | :--- | :--- |

7	(i)	$\mathrm{R}=0.5 \mathrm{gcos} 40^{\circ}$	B1		$\mathrm{R}=3.7536$
		$\mathrm{F}=0.6 \times 0.5 \mathrm{gcos} 40^{\circ}$	M1		For using $\mathrm{F}=\mu \mathrm{R}$
		Magnitude is 2.25 N AG	A1	3	
	(ii)		M1		For applying Newton's second law (either case) //slope, two forces
		$\begin{aligned} & -/+0.5 \mathrm{~g} \sin 40^{\circ}-\mathrm{F}= \\ & 0.5 \mathrm{a} \end{aligned}$	A1		Either case
		(a) Acceleration is	A1		Accept 10.8 from correct working (both forces have the same sign)
		$10.8 \mathrm{~ms}^{-2}$ (b) Acceleration is $1.79 \mathrm{~ms}^{-2}$	A1	4	Accept -1.79 from correct working (the forces have opposite sign) Accept! 1.8(0)
	(iii)a)	$\begin{aligned} & 0=4+(-10.8) \mathrm{T}_{1} \\ & \mathrm{~T}_{1}=0.370(3) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		Requires appropriate sign
	b)		M1		Accept 0.37 For complete method of finding distance from A to highest point using a(up) with appropriate sign
		$\begin{gathered} 0=4^{2}+2(-10.8) \mathrm{s} \text { or } \\ \mathrm{s}=(0+4) \times 0.37 / 2 \mathrm{or} \\ \mathrm{~s}=4(0.370)+ \\ 1 / 2(- \\ 10.8)(0.370)^{2} \end{gathered}$	$\begin{aligned} & \mathrm{A} 1 \\ & \mathrm{ft} \end{aligned}$		ft (up) and/or T_{1} $(\mathrm{s}=0.7405)$
			M1		For method of finding time taken from highest point to A and not using a(up)
		$0.7405=1 / 2(1.79) \mathrm{T}_{2}^{2}$	A1ft		ft a (down) and $\mathrm{cv}(0.7405)\left(\mathrm{T}_{2}=0.908\right.$ approx)
		$0.370+0.908$	M1		Using $\mathrm{T}=\mathrm{T}_{1}+\mathrm{T}_{2}$ with different values for $\mathrm{T}_{1}, \mathrm{~T}_{2}$
		$=1.28 \mathrm{~s}$	A1	8	3 significant figures cao

Mark Scheme 4729 January 2007

$\mathbf{1}$		com directly above lowest point	B1			
		$\tan \alpha=6 / 10$	M1			
		$\alpha=31.0$	A1	3	or 0.540 rads	$\mathbf{3}$

$\mathbf{2}$		$\mathrm{e}=1=(y-x) / 4$	B1		or $1 / 2 \times 0.2 x^{2}+1 / 2 \times 0.1 y^{2}=$	
		$0.8=0.2 x+0.1 y$	B1		$1 / 2 \times 0.2 \times 4^{2}(\mathrm{~B} 1 / \mathrm{B} 1$ for any 2$)$	
		solving sim. equ.	M1		not if poor quad. soln.	
		$x=4 / 3$ only	A1	4		$\mathbf{4}$

$\mathbf{3}$	(i)	$x^{2}=21^{2}+2 \times 40 \times 9.8$	M1			
		$x=35$	A1			
		$0=y^{2}-2 \times 40 \times 9.8$	M 1			
		$y=28$	A1		may be implied	
		$\mathrm{e}=28 / 35$	M 1			
		$\mathrm{e}=0.8$	A 1	6	aef	
	(ii)	$0.2 \times 28--0.2 \times 35$	M 1		must be double negative	
		$\mathrm{I}=12.6$	A 1	2		

$\mathbf{4}$	(i)	$1 / 2 \times 80 \times 5^{2}$ or $1 / 2 \times 80 \times 2^{2} \quad$ either KE	B1		$1000 / 160$	
		70×25	B1		1750	
		$80 \times 9.8 \times 25 \sin 20^{\circ}$	B1		6703.6	
		$\mathrm{WD}=1 / 2 \times 80 \times 5^{2}-1 / 2 \times 80 \times 2^{2}+70 \times 25+80 \times 9.8 \times 25 \sin 20^{\circ}$	M1		4 parts	
	9290	A1	5			
	(ii)	$\operatorname{Pcos} 30^{\circ} \times 25$	B1		or a=0.42	
		Pcos $30^{\circ} .25=9290 / \operatorname{Pcos} 30^{\circ}-70-80 \times 9.8 \sin 20^{\circ}=80 \mathrm{a}$	M1			
		P $=429 /$ if P found $1^{\text {st }}$ then $\operatorname{Pcos} 30^{\circ} \times 25=9290$ ok	A1	3		$\mathbf{8}$

$\mathbf{5}$	(i)	$\mathrm{D}=3000 / 5^{2}=120$	M 1			
			A1	2	AG	
	(ii)	$120-75=100 \mathrm{a}$	M 1			
		$\mathrm{a}=0.45 \mathrm{~ms}^{-2}$	A 1	2		
	(iii)	$100 \mathrm{x} 9.8 \times 1 / 98$	B 1		weight component	
		$3000 / \mathrm{v}^{2}=3 \mathrm{v}^{2}+100 \times 9.8 \times 1 / 98$	M 1			
		$3000=3 \mathrm{v}^{4}+10 \mathrm{v}^{2}$	A1		aef	
		solving quad in v^{2}	M 1		$\left(\mathrm{v}^{2}=30\right)$	
		$\mathrm{v}=5.48 \mathrm{~ms}^{-1}$	A1	5	accept $\sqrt{ } 30$	$\mathbf{9}$

6	(i)	com of $\Delta 4 \mathrm{~cm}$ right of C	B1			
		$1.5 \times 10+7 \times 20=\bar{x} \times 30$	M1			
			A1			
		$\bar{x}=5.17$	A1		$51 / 6$ 31/6	
		com of $\Delta 6 \mathrm{~cm}$ above E	B1		or 3 cm below C	
		$4.5 \times 10+6 \times 20=\bar{y} \times 30$	M1			
			A1			
		$\bar{y}=5.5$	A1	8		
	(ii)	$\tan \theta=5.17 / 3.5$	M1		right way up and (9- \bar{y})	
		55.9° or 124°	A1/	2	\int their $\bar{x} /(9-\bar{y})$	
	(iii)	$\mathrm{d}=15 \sin 45^{\circ} \quad(10.61)$	B1		dist to line of action of T	
		$\mathrm{Td}=30 \times 5.17$	M1		allow Tx15 i.e. T vertical	
		$\mathrm{T}=14.6$	A1	3		13

8	(i)	$\mathrm{v}_{\mathrm{v}}=42 \sin 30^{\circ}(=21)$	B1			
		$0=21^{2}-2 \times 9.8 \times h$	M1			
		$\mathrm{h}=22.5$	A1	3		
	(ii)	$\mathrm{v}_{\mathrm{n}}=42 \cos 30^{\circ}(=36.4)$	B1			
		$\mathrm{v}_{\mathrm{v}}= \pm \mathrm{v}_{\mathrm{n}} \mathrm{x} \tan 10^{\circ}$	M1			
		$\mathrm{v}_{\mathrm{v}}= \pm 6.41$ or $21 \sqrt{ } 3 \tan 10^{\circ}$	A1		or $42 \cos 30^{\circ} \cdot \tan 10^{\circ}$	
		$-6.41=42 \sin 30^{\circ}-9.8 t$	M1	**	must be -6.41 (also see "or" x 2)	
		$\mathrm{t}=2.80$	A1	**		
		$y=42 \sin 30^{\circ} \times 2.8-4.9 \times 2.8^{2}$	M1	**		
		$y=20.4$	A1/	**	$\int_{\text {their }} \mathrm{t}$	
		$x=42 \cos 30^{\circ} \times 2.80$	M1			
		$x=102$	A1/		\int their t	
		$\sqrt{ }\left(x^{2}+y^{2}\right)$	M1			
		$d=104$	A1	11		
	or	$6.41^{2}=21^{2}+2 \times-9.8 \mathrm{~s}$	M1	**	vert dist first then time	
		s=20.4	A1	**		
		$20.4=21 \mathrm{t}+1 / 2 .-9.8 \mathrm{t}^{2}$	M1	**		
		$\mathrm{t}=2.80$	A1	**		
	or	$22.5-\mathrm{s}$ and $6.41^{2}=2 \times 9.8 \mathrm{~s}$	M1	**	dist from top ($\mathrm{s}=2.096$)	
		$\mathrm{y}=20.4$	A1	**		
		22.5 \& 2.1 = $1 / 2.9 .9 \mathrm{t}^{2}$	M1	**	$\begin{aligned} & \hline 2 \text { separate times (2.143, } \\ & 0.654) \end{aligned}$	
		$\mathrm{t}=2.80$	A1	**	$2.143+0.654$	14
		alternatively				
	(ii)	$y=x / \sqrt{ } 3-x^{2} / 270 \quad$ aef	B1		$\begin{array}{\|l\|} \hline \mathrm{y}=\mathrm{xtan} 30^{\circ}- \\ 9.8 x^{2} / 2.42^{2} \cdot \cos ^{2} 30^{\circ} \\ \hline \end{array}$	
		$\mathrm{d} / \mathrm{/d} x=1 / \sqrt{3}-\mathrm{x} / 135$	M1		for differentiating	
			A1		aef	
		$\mathrm{d} y / \mathrm{d} x=-\tan 10^{\circ}$	M1		must be $-\tan 10^{\circ}$	
		$1 / \sqrt{ } 3-x / 135=-\tan 10^{\circ}$	A1			
		solve for x	M1			
		$x=102$	A1/		\int on their $\mathrm{dy} / \mathrm{d} x$	
		$y=x / \sqrt{3}-x^{2} / 270$	M1			
		$y=20.4$	A1/		\int their x	
		$\sqrt{ }\left(x^{2}+y^{2}\right)$	M1			
		$d=104$	A1	(11)		

Mark Scheme 4730 January 2007

1	M1		For using the principle of conservation of energy
$\begin{aligned} & 1 / 20.6 \times 5^{2}-1 / 20.6 v^{2}=0.6 g(2 x 0.4)\left[v^{2}=\right. \\ & 9.32] \end{aligned}$	A1		
$[\mathrm{T}+0.6 \mathrm{~g}=0.6 \mathrm{a}]$	M1		For using Newton's second law
[$\mathrm{a}=9.32 / 0.4]$	M1		For using $\mathrm{a}=\mathrm{v}^{2} / \mathrm{r}$
$\mathrm{T}+0.6 \mathrm{~g}=0.6 \mathrm{x} 9.32 / 0.4$	A1ft		ft incorrect energy equation
Tension is 8.1 N	A1	6	

ALTERNATIVELY		
	M1	For using cosine rule in correct triangle
$(\mathrm{I} / \mathrm{m})^{2}=28^{2}+10^{2}-2 \times 28 \times 10 \cos 60^{\circ}[=604]$	A1	For using I = mv change
$[\mathrm{I}=0.057 \sqrt{604}]$	M1	A1
$\mathrm{I}=1.40$	M1	For using sine rule in correct triangle
$(\mathrm{I} / \mathrm{m}) / \sin 60^{\circ}=$	A1	
$\quad 10 / \sin \left(\theta-30^{\circ}\right)$ or $28 / \sin \left(150^{\circ}-\right.$		
$\theta=50.6$	A1	7

5	$\begin{aligned} & \text { (i) } \quad\left[\mathrm{mg}-\mathrm{mkv}{ }^{2}=\mathrm{ma}\right] \\ & (\mathrm{v} \mathrm{dv} / \mathrm{dx}) /\left(\mathrm{g}-\mathrm{kv} \mathrm{v}^{2}\right)=1 \end{aligned}$	M1 A1		For using Newton's second law AG
	(ii) $\left[-1 / 2\left[\ln \left(\mathrm{~g}-\mathrm{kv}^{2}\right)\right] \mathrm{k}=\mathrm{x} \quad(+\mathrm{C})\right]$	M1		For separating variables and attempting to integrate For using $\mathrm{v}(0)=0$ to find C Any equivalent expression for x For expressing in the form $\ln f\left(v^{2}\right)=\ln g(x)$ or equivalent For using $\mathrm{e}^{-\mathrm{Ax}} \rightarrow 0$ for +ve A AG
	[-(lng) $/ 2 \mathrm{k}=\mathrm{C}]$	M1		
	$\mathrm{x}=\left[-1 / 2\left[\ln \left\{\left(\mathrm{~g}-\mathrm{kv}{ }^{2}\right) / \mathrm{g}\right\}\right] / \mathrm{k}\right.$	A1		
	$\left.\left[\ln \left\{(\mathrm{g}-\mathrm{kv})^{2}\right) \mathrm{g}\right\}=\ln \left(\mathrm{e}^{-2 \mathrm{kr}}\right)\right]$	M1		
	$\mathrm{v}^{2}=\left(1-\mathrm{e}^{-2 \mathrm{k} x}\right) \mathrm{g} / \mathrm{k}$	A1		
		M1		
	Limiting value is $\sqrt{g / k}$	A1ft	7	
	(iii) $\left[1-\mathrm{e}^{-60 \mathrm{~K}}=0.81\right]$	M1		For using $\mathrm{v}^{2}(300)=0.9^{2} \mathrm{~g} / \mathrm{k}$
	$[-600 \mathrm{k}=\ln (0.19)]$	M1		For using logarithms to solve for k
	$\mathrm{k}=0.00277$		3	

6	(i) $\left[\mathrm{u} \sin 30^{\circ}=3\right]$	M1		For momentum equation for B, normal to line of centres
	$u=6$	A1	2	
	(ii) $\left[4 \sin 88.1^{\circ}=\mathrm{v} \sin 45^{\circ}\right]$	M1		For momentum equation for A, normal to line of centres
	$\mathrm{v}=5.65$	A1		
		M1		For momentum equation along line of centres
	$\begin{aligned} & 0.4\left(4 \cos 88.1^{\circ}\right)-\mathrm{mu} \cos 30^{\circ}=-0.4 \mathrm{v} \cos 45^{\circ} \\ & \mathrm{m}=0.318 \end{aligned}$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	5	
	(iii)	M1		For using NEL
	$0.75\left(4 \cos \theta+\mathrm{u} \cos 30^{\circ}\right)=\mathrm{v} \cos 45^{\circ}$	A1		
	$4 \sin \theta=\mathrm{v} \sin 45^{\circ}$	B1		
	$\left[3 \cos \theta+4.5 \cos 30^{\circ}=4 \sin \theta\right]$	M1		For eliminating v
	$8 \sin \theta-6 \cos \theta=9 \cos 30^{\circ}$	A1	5	AG
7	(i)(a) Extension $=1.2 \alpha-0.6$	B1		For resolving forces tangentially AG
	[$\mathrm{T}=\mathrm{mg} \sin \alpha$]	M1		
	$\begin{aligned} & 0.5 \times 9.8 \sin \alpha=6.86(1.2 \alpha-0.6) / 0 . / 6 \\ & \sin \alpha=2.8 \alpha-1.4 \end{aligned}$	$\begin{aligned} & \text { A1ft } \\ & \text { A1 } \end{aligned}$	4	
	$\begin{aligned} & \text { (i)(b) }[0.8,0.756 \ldots, 0.745 \ldots, 0.742 . ., \\ & 0.7411 ., 0.741 \ldots,] \\ & \alpha=0.74 \end{aligned}$	M1 A1	2	For attempting to find α_{2} and α_{3}
	(ii) $\begin{aligned} & \Delta \mathrm{h}=1.2(\cos 0.5-\cos 0.8) \\ & {[0.217 \ldots]}\end{aligned}$	B1		For using $\Delta(\mathrm{PE})=\mathrm{mg} \Delta \mathrm{h}$ For using $E E=\lambda x^{2} / 2 L$ For using the principle of conservation of energy Any correct equation for v^{2}
	[$0.5 \times \mathrm{x} 9.8 \times 0.217 . .=1.06355 .$.	M1		
	$\left[6.86(1.2 \times 0.8-0.6)^{2} /(2 \times 0.6)=0.74088\right]$	M1		
		M1		
	$1 / 20.5 \mathrm{v}^{2}=1.06355 . .-0.74088$	A1		
	Speed is $1.14 \mathrm{~ms}^{-1}$	A1		
	Speed is decreasing	B1ft	7	

Mark Scheme 4732 January 2007

Note: " 3 sfs" means an answer which is equal to, or rounds to, the given answer. If such an answer is seen and then later rounded, apply ISW. Penalize over-rounding only once in paper, except qu 8 (ii).

1 i	$\begin{aligned} & 1-(3 / 10+1 / 5+2 / 5) \\ & 1 / 10 \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & 2 \end{array}$	or ($3 / 10+1 / 5+2 / 5)+p=1$
ii	$\begin{aligned} & 3 / 10+2 \times 1 / 5+3 \times 2 / 5 \\ & 19 / 10 \text { oe } \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } \end{array}$	$\div 40 \mathrm{r} 6 \Rightarrow \mathrm{M} 0 \mathrm{~A} 0$
Total		4	
2 i		$\begin{array}{ll} \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & 5 \end{array}$	$\operatorname{dep}-1 \leq r \leq 1$ ft their $S^{\prime} \mathrm{s}\left(S_{x x} \& S_{y y}+\mathrm{ve}\right)$ for M1 only
ii	Small sample oe	B1f 1	
Total		6	
3 i	120	B1 1	not just 5!
iia	$\begin{aligned} & 3 \times 4!\text { or } 72 \quad(\div 5!) \\ & 3 / 5 \text { oe } \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } \end{array}$	oe, eg ${ }^{72} / 120$
b	Starts 1 or 21 (both) $\begin{aligned} & 1 / 5+1 / 5 \times 1 / 4 \\ & =1 / 4 \text { oe } \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$	$12,13,14,15,(\geq 2$ of these incl 21 , or allow 1 extra) can be implied by wking or 5×3 ! or $4!+3$! $(\div 5!)$ complement: full equiv steps for Ms
Total		6	
4ia	W \& Y oe	B1 1	
b	X oe	B1 1	
ii	Geo probs always decrease or Geo has no upper limit to x or $x \neq 0$	B1 1	Geo not fixed no. of values diags have fixed no of trials not Geo has +ve skew
iii	W Bin probs cannot fall then rise or bimodal	B1 B1dep 2	indep allow Bin probs rise then fall
Total		5	
5 i		M1 A1 M1 A1 4	Correct sub in any correct formula for b (incl. $(x-\bar{x})$ etc) $\begin{aligned} & \text { or } a=106.8 / 8-0.777 \mathrm{x}^{140} / 8 \\ & \geq 2 \text { sfs sufficient for coeffs } \end{aligned} \quad \text { ft } b \text { for M1 }$
ii	$\begin{aligned} & 0.78 \times 12-0.25 \\ & =9.1(2 \mathrm{sfs}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1f } 2 \end{aligned}$	M1: ft their equn A1: dep const term in equn
$\begin{gathered} \text { iiia } \\ \text { b } \end{gathered}$	Reliable Unreliable because extrapolating oe	$\begin{array}{ll} \text { B1 } \\ \text { B1 } & 2 \end{array}$	Just "reliable" for both: B1
Total		8	

6 i	$\begin{aligned} & \operatorname{Geo}(2 / 3) \text { stated } \\ & (1 / 3)^{3} x^{2 / 3} \\ & =2 / 81 \text { or } 0.0247(3 \mathrm{sfs}) \end{aligned}$		3	or implied by $(1 / 3)^{n} \mathrm{x}^{2 / 3}$

ii	$\begin{aligned} & (1 / 3)^{3} \\ & 1-(1 / 3)^{3} \\ & 26 / 27.0 \text { or } 0.963 \text { (3 } \mathrm{sfs} \text {). } \end{aligned}$	M1 M1 A1 3	$\begin{aligned} & \text { or } 2 / 3+1 / 3 \mathrm{x}^{2} / 3 /\left(1 / 3 \mathrm{I}^{2} \mathrm{x}^{2} / 3: \mathrm{M} 2\right. \\ & \text { one term omitted or extra or wrong: M1 } \\ & 1-(1 / 3)^{4} \text { or } 1-\left({ }^{2} / 3^{2}+1 / 3 \mathrm{x}^{2} / 3+(1 / 3)^{2} \mathrm{x}^{2} / 3\right): \mathrm{M} 1 \end{aligned}$
iii	$\begin{aligned} & 1 / 2 / 3 \\ & =3 / 2 \text { oe } \end{aligned}$	$\begin{array}{ll} \mathrm{M} 1 & \\ \text { A1 } & 2 \end{array}$	
Total		8	
7 i	$2 / 9$ or $7 / 9$ oe seen $3 / 9$ or $6 / 9$ oe seen $1 / 8$ or $7 / 8$ oe seen Correct structure All correct	$\begin{array}{ll} \hline \text { B1 } & \\ & \\ \text { B1 } & 5 \end{array}$	ie 8 correct branches only, ignore probs \& values including probs and values, but headings not req'd
ii	$\begin{aligned} & 3 / 10 \times 7 / 9+7 / 10 \times 3 / 9+7 / 10 \times 6 / 9 \\ & 14 / 15 \text { or } 0.933 \text { oe } \end{aligned}$	$\begin{aligned} & \mathrm{M} 2 \\ & \mathrm{~A} 1 \end{aligned}$	or $3 / 10 \mathrm{x}^{7} / 9+7 / 10$ or $1-3 / 10 \mathrm{X}^{2} / 9$ M1: one correct prod or any prod $+7 / 10$ or $3 / 10 \times 2 / 9$
iii	$\begin{aligned} & 3 / 10 x^{2 / 9 x} / 8+7 / 10 \times 6 / 9 \\ & 21 / 40 \text { or } 0.525 \text { oe } \end{aligned}$	$\begin{array}{ll} \mathrm{M} 2 \\ & \\ \text { A1 } & 3 \end{array}$	M1: one correct prod cao
	No ft from diag except: with replacement: (i) structure: B1 (ii) $^{91} / 100: \mathrm{B} 20$ (iii) 0.553 : B2		
Total		11	
8 i	$\begin{aligned} & \mathrm{Med}=2 \\ & \mathrm{LQ}=1 \text { or } \mathrm{UQ}=4 \\ & \mathrm{IQR}=3 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	cao or if treat as cont data: read cf curve or interp at 25 \& 75 cao
ii	Assume last value $=7$ (or eg 7.5 or 8 or 8.5) $x f$ attempted ≥ 5 terms 2.6 or 3 sf ans that rounds to 2.6 $x^{2} f$ or $\left.\quad . x-m\right)^{2} f \quad \geq 5$ terms $\sqrt{ }\left(x^{2} f / 100-m^{2}\right)$ or $\left.\sqrt{ }(. x-m)^{2} f\right) / 100$ fully correct but $\mathrm{ft} m$ 1.6 or 1.7 or 3 sf ans that rounds to 1.6 or 1.7		stated, \& not contradicted in wking eg 7-9 or 7,8, 9 Not just in wking allow "midpts" in $x f$ or $x^{2} f$ dep M3 penalize >3 sfs only once
iii	Median less affected by extremes or outliers etc (NOT anomalies)	B1 1	or median is an integer or mean not int. or not affected by open-ended interval general comment acceptable
iv	Small change in var'n leads to lge change in IQR UQ for W only just 4 , hence IQR exaggerated orig data shows variations are similar	B1 1	for Old Moat LQ only just $1 \&$ UQ only just 3 oe specific comment essential
v	OM\% (or y) decr (as x incr) oe Old Moat	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	ranks reversed in OM or not rev in W NIS
Total		13	

9 i	$\begin{aligned} & { }^{11} \mathrm{C}_{5} \times(1 / 4)^{6} \times\left({ }^{3} / 4\right)^{5} \\ & 0.0268(3 \mathrm{sfs}) \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & 2 \end{array}$	or $462 \times(1 / 4)^{6} \times(3 / 4)^{5}$
ii	$\begin{aligned} & q^{11}=0.05 \text { or }(1-p)^{11}=0.05 \\ & \sqrt[11]{0.05} \\ & q=0.762 \text { or } 0.7616 \ldots \\ & p=0.238(3 \mathrm{sfs}) \end{aligned}$	M1 M1 A1 A1f 4	$(\text { any letter except } p)^{11}=0.05$ oe oe or invlog $\left(\frac{\log 0.05}{11}\right)$ ft dep M2
iii	$\begin{aligned} & 11 \times p \times(1-p)=1.76 \quad \text { oe } \\ & 11 p-11 p^{2}=1.76 \quad \text { or } p-p^{2}=0.16 \\ & 11 p^{2}-11 p+1.76=0 \quad \text { or } p^{2}-p+0.16=0 \\ & \left(25 p^{2}-25 p+4=0\right) \\ & (5 p-1)(5 p-4)=0 \\ & \text { or } p=\frac{11-\frac{1\left(11^{2}-4 \times 11 \times 1.76\right)}{2 \times 11}}{} \\ & p=0.2 \text { or } 0.8 \end{aligned}$	M1 A1 A1 M1 A1 5	not $11 p q=1.76$ any correct equn after mult out or equiv with $=0$ or correct fact' n or subst' n for their quad equ'n eg $p=\frac{1 \pm \frac{/(1-4 \times 0.16)}{2}}{2}$
Total		11	
Total 72 marks			

Mark Scheme 4733 January 2007

For over-specified answers ($>6 \mathrm{SF}$ where inappropriate) deduct 1 mark, no more than once in paper.

	$\begin{aligned} & \frac{22-\mu}{5}=-\Phi^{-1}(0.242) \\ &=-0.7 \\ & \mu=\mathbf{2 5 . 5} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { A1 } \end{aligned}$	4	Standardise with Φ^{-1}, allow +, " $1-$ " errors, cc, $\sqrt{ } 5$ or 5^{2} Correct equation including signs, no cc, can be wrong Φ^{-1} 0.7 correct to 3 SF , can be + Answer 25.5 correct to 3 SF
$\begin{array}{r}2 \\ \\ \hline\end{array}$	(i) $900 \div 12=\mathbf{7 5}$	B1	1	75 only
	(ii) (a) True, first choice is random (b) False, chosen by pattern	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	1	True stated with reason based on first choice False stated, with any non-invalidating reason
	(iii) Not equally likely e.g. $\mathrm{P}(1)=0$, or triangular	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	2	"Not equally likely", or "Biased" stated Non-invalidating reason
3	Let R be the number of 1 s $\begin{aligned} & R \sim \mathrm{~B}(90,1 / 6) \\ & \approx \mathrm{N}(15,12.5) \\ & \frac{13.5-15}{\sqrt{12.5}} \\ & \mathbf{0 . 6 6 4 3} \end{aligned}$	B1 B1 B1 M1 A1 A1	6	$B(90,1 / 6)$ stated or implied, e.g. $\operatorname{Po}(15)$ Normal, $\mu=15$ stated or implied 12.5 or $\sqrt{ } 12.5$ or 12.5^{2} seen Standardise, $n p$ and $n p q$, allow errors in $\sqrt{ }$ or cc or both $\sqrt{ }$ and cc both right Final answer, a.r.t. 0.664. [Po(15): 1/6]
4	$\text { (i) } \quad \begin{aligned} & \bar{w}=100.8 \div 14=7.2 \\ & \\ & \quad \frac{938.70}{14}-\bar{w}^{2}[=15.21] \\ & \\ & \\ & \\ & \\ & =14 / 13.38 \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	4	7.2 seen or implied Use Σw^{2} - their \bar{w}^{2} Multiply by $n /(n-1)$ Answer, a.r.t. 16.4
	(ii) $\quad \begin{aligned} & \mathrm{N}(7.2,16.38 \div 70) \\ & \\ & {[=\mathrm{N}(7.2,0.234)]}\end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \text { B1 } \sqrt{ } \\ & \text { B1 } \sqrt{ } \end{aligned}$	3	Normal stated Mean their $\bar{w} V$ Variance [their (i) $\sqrt{ } \div 70$], allow arithmetic slip
5	(i) $\lambda=1.2$ Tables or formula used 0.6626	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	3	Mean 1.2 stated or implied Tables or formula [allow ± 1 term, or " 1 -"] correctly used Answer in range [0.662, 0.663] $[.3012,6990,6268 \text { or } 8795: \text { B1M1A0] }$
	(ii) $\quad \begin{aligned} & { }^{\mathrm{B}}(20,0.6626 \mathrm{~V}) \\ & \\ & \\ & \\ & \\ & \mathbf{0 . 1 8 3}\end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	3	$\mathrm{B}(20, p), p$ from (i), stated or implied Correct formula for their p Answer, a.r.t. 0.183
	(iii) Let S be the number of stars $\begin{aligned} & S \sim \operatorname{Po}(24) \\ & \approx \mathrm{N}(24,24) \\ & \frac{29.5-24}{\sqrt{24}}[=1.1227] \\ & \mathbf{0 . 8 6 9 2} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \sqrt{ } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	6	Po(24) stated or implied Normal, mean 24 Variance 24 or 24^{2} or $\sqrt{ } 24, \sqrt{ }$ if 24 wrong Standardise with λ, λ, allow errors in cc or $\sqrt{ }$ or both $\sqrt{ } \lambda$ and ce both correct Answer, in range [0.868, 0.8694]

	$\begin{align*} & {\left[a x+\frac{b x^{2}}{2}\right]_{0}^{2}=1} \tag{i}\\ & 2 a+2 b=1 \tag{AG} \end{align*}$	M1 B1 A1 3	Use total area $=1$ Correct indefinite integral, or convincing area method Given answer correctly obtained, " 1 " appearing before last line [if $+c$, must see it eliminated]
(ii)	$\begin{aligned} & {\left[\frac{a x^{2}}{2}+\frac{b x^{3}}{3}\right]_{0}^{2}=\frac{11}{9}} \\ & 2 a+\frac{8 b}{3}=\frac{11}{9} \end{aligned}$ Solve simultaneously $a=\frac{1}{6}, \quad b=\frac{1}{3}$	M1 B1 A1 M1 A1 A1 6	Use $\int x \mathrm{f}(x) \mathrm{d} x=11 / 9$, limits 0,2 Correct indefinite integral Correct equation obtained, a.e.f. Obtain one unknown by correct simultaneous method a correct, $1 / 6$ or a.r.t 0.167 b correct, $1 / 3$ or a.r.t. 0.333
	$\begin{aligned} & \text { e.g. } \mathrm{P}(<11 / 9)=0.453 \text {, or } \\ & {\left[a x+\frac{b x^{2}}{2}\right]_{0}^{m}=0.5, m=1.303 \text { or } \frac{\sqrt{13}-1}{2}} \end{aligned}$ Hence median > mean	M1 M1 A1 $A 1 \sqrt{ } 4$	Use $\mathrm{P}(x<11 / 9)$, or integrate to find median m Substitute into $\int \mathrm{f}(x) \mathrm{d} x, \sqrt{ }$ on a, b, limits 0 and $11 / 9$ or m [if finding m, need to solve 3-term quadratic] Correct numerical answer for probability or m Correct conclusion, cwo ["Negative skew", M2; median > mean, A2]
7 (i) α : β :	$\begin{aligned} & \left.\mathrm{H}_{0}: p=0.35 \quad \text { or } p \geq 0.35\right] \\ & \mathrm{H}_{1}: p<0.35 \\ & \mathrm{~B}(14,0.35) \\ & \mathrm{P}(\leq 2) \quad=0.0839>0.025 \\ & \mathrm{CR} \leq 1 \text {, probability } 0.0205 \\ & \text { Do not reject } \mathrm{H}_{0} \text {. Insufficient } \\ & \text { evidence that proportion that can } \\ & \text { receive Channel } \mathrm{C} \text { is less than } 35 \% \end{aligned}$	B1 B1 M1 A1 B1 M1 A1 $\sqrt{ } 7$	Each hypothesis correct, $\mathrm{B} 1+\mathrm{B} 1$, allow $p \geq .35$ if .35 used [Wrong or no symbol, B1, but r or x or \bar{x} : B0] Correct distribution stated or implied, can be implied by $\mathrm{N}(4.9, \ldots)$, but not $\mathrm{Po}(4.9)$ 0.0839 seen, or $\mathrm{P}(\leq 1)=0.0205$ if clearly using CR Compare binomial tail with 0.025 , or $R=2$ binomial CR Do not reject $\mathrm{H}_{0}, \sqrt{ }$ on their probability, not from N or Po or $\mathrm{P}(<2)$; Contextualised conclusion $\sqrt{ }$
(ii)	$\begin{aligned} & \mathrm{B}(8,0.35): \mathrm{P}(0)=0.0319 \\ & \mathrm{~B}(9,0.35): \mathrm{P}(0)=0.0207 \end{aligned}$ Hence largest value of n is $\mathbf{8}$	M1 A1 A1 A1	Attempt to find $\mathrm{P}(0)$ from $\mathrm{B}(n, 0.35)$ One correct probability $\quad[\mathrm{P}(\leq 2)=.0236, n=18$: M1A1 $]$ Both probabilities correct Answer 8 or ≤ 8 only, needs minimum M1A1
or	$\begin{aligned} & 0.65^{n}>0.025 ; n \ln 0.65>\ln 0.025 \\ & 8.56 ; \quad \text { largest value of } n=8 \end{aligned}$	$\begin{aligned} & \text { M1M1 } \\ & \text { A1A1 } \end{aligned}$	$p^{n}>0.025$, any relevant p; take ln , or T\&I to get 1 SF In range [8.5, 8.6]; answer 8 or ≤ 8 only
8 (i) α :	$\frac{100.7-102}{5.6 / \sqrt{80}}=-2.076$ Compare with -2.576	M1 A1 B1 3	Standardise 100.7 with $\sqrt{ } 80$ or 80 a.r.t. -2.08 obtained, must be - , $n o t$ from $\mu=100.7$ -2.576 or -2.58 seen and compare z, allow both +
$\text { or } \beta$	$\begin{aligned} & \Phi(-2.076)=0.0189 \\ & \quad[\text { or } \Phi(2.076)=0.981] \\ & \text { and compare with } 0.005 \text { [or } 0.995] \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } \\ \text { B1 } \end{array}$	Standardise 100.7 with $\sqrt{ } 80$ or 80 a.r.t. 0.019 , allow 0.981 only if compared with 0.995 Compare correct tail with 0.005 or 0.995
or γ	$\begin{aligned} & 102-\frac{k \times 5.6}{\sqrt{80}} \\ & k=2.576, \text { compare } 100.7 \\ & 100.39 \end{aligned}$	M1 B1 A1 (3)	This formula, allow,+ 80 , wrong SD, any k from Φ^{-1} $k=2.576 / 2.58$, - sign, and compare 100.7 with CV CV a.r.t. 100.4
	Do not reject H_{0} Insufficient evidence that quantity of SiO_{2} is less than 102		Reject/Do not reject, $\sqrt{ }$, needs normal, 80 or $\sqrt{80, ~} \Phi^{-1}$ or equivalent, correct comparison, not if clearly $\mu=100.7$ Correct contextualised conclusion
(ii) (a)	$\begin{align*} & \frac{c-102}{5.6 / \sqrt{n}}=-2.326 \\ & 102-c=\frac{13.0256}{\sqrt{n}} \tag{AG} \end{align*}$	M1 B1 A1 3	One equation for c and n, equated to Φ^{-1}, allow $c c$, wrong sign, $\sigma^{2} ; \quad 2.326$ or 2.33 Correctly obtain given equation, needs in principle to have started from $c-102,-2.326$
(b)	$\frac{c-100}{5.6 / \sqrt{n}}=1.645 \quad \text { or } \quad c-100=\frac{9.212}{\sqrt{n}}$	$\begin{array}{ll} \\ \text { M1 } \\ \text { A1 } & 2 \end{array}$	Second equation, as before Completely correct, aef
(c)	Solve simultaneous equations $\begin{aligned} & V_{n}=11.12 \\ & n_{\text {min }}=\mathbf{1 2 4} \\ & c=\mathbf{1 0 0 . 8 3} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Correct method for simultaneous equations, find c or \sqrt{n} V_{n} correct to 3 SF $n_{\min }=124 \text { only }$ Critical value correct, 100.8 or better

Mark Scheme 4734 January 2007

3 (i) Assumes breaking strengths have normal
normal distributions
Equal variances
(ii) $\mathrm{H}_{0}: \mu_{T}=\mu_{U}, \mathrm{H}_{1}: \mu_{T}>\mu_{U}$
where μ_{T}, μ_{U} are means for treated and untreated thread.
$\bar{x}_{T}=18.05, \quad \bar{x}_{U}=17.26 \quad$ B1 \quad May be implied below by 0.79
$s_{T}{ }^{2}=0.715, \quad s_{U}{ }^{2}=0.738$
$s^{2}=(5 \times 0.715+4 \times 0.738) / 9$
EITHER:(18.05-17.26)/[s $\sqrt{ }(1 / 5+1 / 6)]$ M1 $=1.532$
Compare correctly with 1.383
B1 Allow biased, $0.596,0.590$ if s^{2}
M1 $\quad=(6 \times 0.596+5 \times 0.590) / 9$
With pooled variance est.
M1
Reject H_{0} and accept there is sufficient evidence that mean has increased so that the treatment has been successful.
OR: $\bar{X}_{T}-\bar{X}_{U} \geq k s \sqrt{1 / 5+1 / 6} ;=0.713$
$0.79>0.713$, reject H_{0} etc

B1

B1 2

B1 For both hypotheses

A1 $\sqrt{ }$	Conclusion in context. Ft 1.532
M1A1	Allow $>$ or $=$
M1A1 $\sqrt{ } \mathbf{8}$	Or equivalent. Ft 0.713

4
(i) $s^{2}=1 / 11\left(2604.4-177.6^{2} / 12\right)$ = $1.0836 \ldots$
M1 aef
Use $\bar{x} \pm t \sqrt{\frac{s^{2}}{12}}$
A1
$t=2.201$
$\bar{x}=177.6 / 12=14.8$
(14.14,15.46), (14.1, 15.5)
M1
(14.14,15.4),(14.1,15.5)

$$
=-1.997
$$

Compare correctly with -1.796
With their variance

Reject H_{0} and accept that there is
evidence that the mean is less than $15.4 \mathrm{~A} 1 \sqrt{ }$
In context. Ft - 1.997

OR: $\bar{X}-15.4 \leq-k \sqrt{\frac{s^{2}}{12}} ; \bar{X} \leq 14.86$
$14.8<14.86$, reject H_{0} etc
M1A1
M1A1 $\sqrt{ } 4 \quad$ Or equivalent. Ft 14.86
$5 \quad$ (i) $978 / 1200=0.815$
(ii) Use $p \pm z \sqrt{\frac{p(1-p)}{1200}}$
B1 1
$z=1.645$
$\sqrt{ }(0.815 \times 0.185 / 1200)$
(0.797,0.833)
(iii) If a large number of such samples were taken, p would be contained in about 90% of the confidence intervals.
(iv) $1.645 \sqrt{ }(0.815 \times 0.185 / n)=0.01$

$$
\begin{aligned}
n & =1.645^{2}(0.815 \times 0.185) / 0.01^{2} \\
& =4080
\end{aligned}
$$

M1 Reasonable variance
B1
$\mathrm{A} 1 \sqrt{ } \quad \mathrm{ft} p \quad$ Allow 1199

6
(i) $\int_{1}^{t} \frac{3}{x^{4}} \mathrm{~d} x$
$\mathrm{F}(t)= \begin{cases}1-\frac{1}{t^{3}} & t \geq 1, \\ (0 & \text { otherwise. })\end{cases}$
M1 Any variable
(ii) $\mathrm{G}(y)=\mathrm{P}(Y \leq y)$

M1
$=\mathrm{P}\left(T \leq y^{1 / 3}\right) \quad \mathrm{A} 1$
$=\mathrm{F}\left(y^{1 / 3}\right) \quad$ M1

$$
\begin{array}{lll}
=1-1 / y & & \text { A1 } \sqrt{ } \\
0=\mathrm{G}^{\prime}(v) & \mathrm{ft} \mathrm{~F}(t)
\end{array}
$$

$\mathrm{g}(\mathrm{y})=\mathrm{G}^{\prime}(y)$
$=1 / y^{2}, y \geq 1 \quad \mathrm{AG}$
M1
A1 6
(iii) EITHER $\int_{1}^{\infty} \frac{\sqrt{y}}{y^{2}} \mathrm{~d} y \quad$ OR $\int_{1}^{\infty} \frac{3 t^{\frac{3}{2}}}{t^{4}} \mathrm{~d} t \quad$ M1
$\left[-2 y^{-1 / 2}\right]_{1}^{\infty}$
$\left[-2 t^{-3 / 2}\right]_{1}^{\infty}$
B1
$=2$
A1 3

7 (i)(a) H_{0} : Eye colour and reaction are not associated.

B1 Or equivalent (independent, or unrelated)
H_{1} : Eye colour and reaction are associated

B1 2
(b) $65 \times 39 / 140$

B1 $\quad \mathbf{1}$
(c) $6.11^{2} / 18.11+5.3^{2} / 11.7+0.81^{2} / 9.19$ M1 Or equivalent ; one correct
$2.061+2.401+0.071$
A1
At least 3 dp here
4.533, 4.53 AG

A1 3
But accept from 2 dp
(d) $v=4$

B1 Stated or implied
Use tables to obtain $\alpha=2^{1 / 2}$
B1 2
(ii) $\mathrm{H}_{0}: p_{B L}=p_{B R}=0.4, p_{O}=0.2$

B1
(H_{1} : At least two prob. not as above)
E values $56 \quad 56 \quad 28$
$\chi^{2}=9^{2} / 56+14^{2} / 56+8^{2} / 28$

$$
=5.839
$$

Compare correctly with 5.991
Accept that sample is consistent with hypothesis.

SR: If three tests for p then count only
$p_{B R}=0.4$.
(42/140-0.4)/ σ M1
$\sigma=\sqrt{ }(0.4 \times 0.6 / 140) ;-2.415$
Compare with $-1 . .96$; conclusion in context

A1 $\sqrt{ }$
M1A1
M1
A1

Or in words, in terms of probs or proportions

Mark Scheme 4736 January 2007

1	(i)	$\begin{array}{rrlll} \hline 10 & 4 & 2 & 3 & 5 \\ 13 & 7 & 2 & 2 & \\ 4 & 5 & 8 & 5 & 3 \\ 10 & 5 & 5 & 3 & \\ \hline \end{array}$	M1 M1 A1	First bundle starting with 1042 and has at least one more bag in it Second bundle correct All bundles correct	[3]
	(ii)	Decreasing order: $\begin{array}{rrrrrrrrrrrllllll} 13 & 10 & 10 & 8 & 7 & 5 & 5 & 5 & 5 & 5 & 4 & 4 & 3 & 3 & 3 & 2 & 2 \end{array} 2$	M1 M1 A1	A value missing from written out list may be treated as a misread and lose the A mark only Sorting into decreasing order (may be implied from first bundle starting with 13) If each row sorted, award first M1 only Second and third bundles correct All bundles correct	[3]
	(iii)	Each person has roughly the same number of bags or the total weights are more evenly spread	B1	Saying that (i) gives a more even/equal allocation Five bundles in either part $\boldsymbol{\phi}$ B0	[1]
Total $=7$					
2	(i)	$\begin{aligned} & a=\text { number of apple cakes } \\ & b=\text { number of banana cakes } \\ & c=\text { number of cherry cakes } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { B1 } \end{array}$	Identifying variables as 'number of cakes' Indicating a as apple, b as banana and c as cherry.	[2]
	(ii)	$\begin{aligned} & 4 \times 30=3 \times 40=4 \times 30=120 \\ & \frac{a}{30}+\frac{b}{40}+\frac{c}{30}=30 \times 40 \times 30 \\ & 4 a+3 b+4 c \leq 120 \text { or } X=4, Y=3, Z=4 \end{aligned}$	M1 A1	Any reasonable attempt 4, 3 and 4	[2]
	(iii)	$\begin{aligned} & a+b+c \geq 30 \text { (or } a+b+c=30 \text {) } \\ & 0 \leq a \leq 20,0 \leq b \leq 25,0 \leq c \leq 10 \\ & \text { (no need to say 'all integer') } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \hline \end{array}$	Constraint from total number of cakes correct All three upper constraints correct All three lower constraints correct also	[3]
	(iv)	$4 a+3 b+2 c$	B1	Any multiple of this expression	[1]
Total $=8$					
3	(i) a	$9 \times 2=18$	B1	18	[1]
	b	Since the graph is simple, the two nodes of order 5 are each connected to every other node and hence every node has order at least 2 (exactly 2)	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Explicitly using the fact that the graph is simple Deducing that each node has order at least 2 or that all other nodes have order 2 A diagram on its own is not enough.	[2]
	c	$3 \times 5=15 \text { and } 18-15=3$ but the orders of the other nodes must sum to at least $3 \times 3=9$ (must sum to more than 3)	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Or, the nodes of order 5 contribute $5+4+3=12$ arcs But there are only 9 arcs available	[2]
	(ii)	or equivalent	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \end{array}$	A simply connected graph with 6 nodes and 9 arcs, with at least one odd node For such a graph with node orders 1, 3, 3, 3, 3, 5	[2]
	(iii)	or equivalent	M1 A1	A simply connected graph with 6 nodes and 9 arcs, with at least one even node For such a graph with node orders 2, 2, 2, 4, 4, 4	[2]
Total $=9$					

5	(i)	$\begin{gathered} I \\ \hline 9 / 8 \mid 7 \\ \hline 7 \\ \hline \end{gathered}$ Note: H may have only a temporary label if left until last Route: $A D G J K$ Number of speed cameras on route: 8	M1 M1 A1 B1 B1 B1 B1	Correct temporary labels at B to G, no extras Correct temporary labels at H to J, no extras All temporary labels correct Order of becoming permanent correct (follow through their permanent labels) All permanent labels correct Correct route 8 (cao)	[7]
	(ii)	Odd nodes: A I J K $\begin{array}{lll} A I=7 & A J=6 & A K=8 \\ J K=\underline{2} & I K=\underline{4} & I J=\underline{6} \\ \hline 10 & & \end{array}$ Repeat $A I$ and $J K \Rightarrow A B B I$ and $J K$ Route (example): KJDABIKJGKHGFHEFCGDCABC EBIEK Number of speed cameras on route: 81	M1 A1 A1 M1 A1 B1	Identifying or using A I $J K$ Weight of $A I$ + weight of $J K=9$ Weight of $A J+$ weight of $I K=10$ (follow through weight of $A I, A J$ from (i) if necessary) A list of 28 nodes that starts and ends with K Such a list that includes each of $A B, B I, J K$ (or reversed) twice $72+$ weight of their least pairing	[6]
	(iii)	The only odd nodes are I and J so she only needs to repeat $I J=6$ $\begin{aligned} & 72+6 \\ & =78 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Identifying I and J or $I J$ (not just implied from 6 or $72+6$ or 78) Correct calculation (may be implied from 78)	[3]
				Total	16

Mark Scheme 4737 January 2007

Total $=8$

3	(i)	-5	B1	-5	[1]
	(ii)	Because $-3<2$ in column Y and $2>-2$ in row Y	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	Either of these, possibly with others Both of these comparisons and no others	[2]
	(iii)	Play-safe for Rebecca is Z Play-safe for Claire is Y Best choice is X	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 ft } \end{aligned}$	Indicating row Z Indicating column Y The correct choice with their play-safe	[3]
	(iv)	For Rebecca, $-1>$ smaller of $\{-3$, value that 5 becomes $\}$ For Claire, $2<$ larger of $\{3$, value that 5 becomes $\}$	B1 B1	This, or equivalent, or 5 is not in the play-safe row This, or equivalent (but NOT ' 5 is not in the play-safe column')	[2]
	Total $=8$				

7	(i)	Alternating path: $D-H-C-S-B-M$ $-A-P$ Matching: $\begin{array}{lll} A & -P \\ B & -M \\ C & -S \\ D & -H \end{array}$	B1 B1 B1	Correct bipartite graph seen Ignore further working on graph for incomplete matching or alternating path This, or in reverse, listed (not just deduced from labelling of diagram) This matching	[3]
	(ii)		M1 A1 M1 A1 ft M1 A1 ft	Precedences correct A correct network (directions may be implied) Forwards pass Early event times correct (need not use boxes) Backwards pass Late event times (need not use boxes)	[6]
	(iii)	Completion time: 16 hours Critical activities: $A B F$	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { B1 } \\ \hline \end{array}$	16 with units Correct list	[2]
	(iv)		M1 A1 ft A1 ft	Accept any variation of cascade chart Structure of chart correct, activities may be collected together or on individual rows Non-critical activities correct, none split across rows (floats not necessary) Critical activities correct	[3]
Total $=14$					

Advanced GCE Mathematics (3892-2, 7890-2)
January 2007 Assessment Series

Unit Threshold Marks

Unit		Maximum	a	b	c	d	e	u
4721	Raw	72	63	55	48	41	34	0
	UMS	100	80	70	60	50	40	0
4722	Raw	72	57	49	41	33	26	0
	UMS	100	80	70	60	50	40	0
4723	Raw	72	55	48	41	34	28	0
	UMS	100	80	70	60	50	40	0
4724	Raw	72	57	49	41	33	26	0
	UMS	100	80	70	60	50	40	0
4725	Raw	72	58	50	42	34	26	0
	UMS	100	80	70	60	50	40	0
4726	Raw	72	54	46	39	32	25	0
	UMS	100	80	70	60	50	40	0
4727	Raw	72	55	48	41	34	27	0
	UMS	100	80	70	60	50	40	0
4728	Raw	72	61	53	45	38	31	0
	UMS	100	80	70	60	50	40	0
4729	Raw	72	61	53	45	37	29	0
	UMS	100	80	70	60	50	40	0
4730	Raw	72	54	47	40	33	26	0
	UMS	100	80	70	60	50	40	0
4732	Raw	72	59	52	45	38	32	0
	UMS	100	80	70	60	50	40	0
4733	Raw	72	61	54	47	40	33	0
	UMS	100	80	70	60	50	40	0
4734	Raw	72	56	49	42	35	28	0
	UMS	100	80	70	60	50	40	0
4736	Raw	72	53	46	39	32	25	0
	UMS	100	80	70	60	50	40	0
4737	Raw	72	61	53	45	38	31	0
	UMS	100	80	70	60	50	40	0

Specification Aggregation Results

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	U
$\mathbf{3 8 9 0} / \mathbf{3 8 9 2}$	300	240	210	180	150	120	0
7897892	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	U	Total Number of Candidates
$\mathbf{3 8 9 0}$	19.1	36.8	59.5	80.6	94.3	100	299
$\mathbf{3 8 9 2}$	66.7	77.8	88.9	88.9	100	100	9
$\mathbf{7 8 9 0}$	40.2	62.5	87.5	95.5	100	100	112
$\mathbf{7 8 9 2}$	50.0	83.3	83.3	83.3	91.7	100	12

For a description of how UMS marks are calculated see; http://www.ocr.org.uk/exam system/understand ums.html

Statistics are correct at the time of publication

OCR (Oxford Cambridge and RSA Examinations)

1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

(General Qualifications)
Telephone: 01223553998
Facsimile: 01223552627
Email: helpdesk@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

