

GCE

Mathematics

Advanced GCE A2 7890 - 2

Advanced Subsidiary GCE AS 3890 - 2

Mark Schemes for the Units

January 2007

3890-2/7890-2/MS/R/07J

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2007

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annersley NOTTINGHAM NG15 0DL

Telephone: 0870 870 6622 Facsimile: 0870 870 6621

E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Mathematics (7890)
Advanced GCE Pure Mathematics (7891)
Advanced GCE Further Mathematics (7892)

Advanced Subsidiary GCE Mathematics (3890) Advanced Subsidiary GCE Pure Mathematics (3891) Advanced Subsidiary GCE Further Mathematics (3892)

MARK SCHEME ON THE UNITS

Unit	Content	Page
4721	Core Mathematics 1	1
4722	Core Mathematics 2	7
4723	Core Mathematics 3	11
4724	Core Mathematics 4	15
4725	Further Pure Mathematics 1	19
4726	Further Pure Mathematics 2	25
4727	Further Pure Mathematics 3	29
4728	Mechanics 1	35
4729	Mechanics 2	41
4730	Mechanics 3	45
4732	Probability & Statistics 1	49
4733	Probability & Statistics 2	53
4734	Probability & Statistics 3	57
4736	Decision Mathematics 1	61
4737	Decision Mathematics 2	67
*	Grade Thresholds	72

Mark Scheme 4721 January 2007

1	$\frac{5}{2 - \sqrt{3}} \times \frac{2 + \sqrt{3}}{2 + \sqrt{3}}$ $= \frac{5(2 + \sqrt{3})}{4 - 3}$	M1 A1		Multiply top and bottom by $\pm (2 + \sqrt{3})$ $(2 + \sqrt{3})(2 - \sqrt{3}) = 1 \text{ (may be implied)}$
	$= 10 + 5\sqrt{3}$	A1	3 3	$10 + 5\sqrt{3}$
2(i)	1	B1	1	
(ii)	$\frac{1}{2} \times 2^4$	M1		$2^{-1} = \frac{1}{2} \ \underline{\text{or}} \ 32^{\frac{1}{5}} = 2 \ \underline{\text{or}} \ 2^{5} = 32 \ \text{soi}$
		M1		$32^{\frac{4}{5}} = 2^4$ or 16 seen or implied
	= 8	A1	3 4	8
3(i)	$3x - 15 \le 24$ $3x \le 39$	M1		Attempt to simplify expression by multiplying out brackets
	<i>x</i> ≤ 13	A1	2	$x \le 13$
	or $x-5 \le 8 \qquad M1$ $x \le 13 \qquad A1$			Attempt to simplify expression by dividing through by 3
(ii)	$5x^2 > 80$ $x^2 > 16$	M1 B1		Attempt to rearrange inequality or equation to combine the constant terms $x > 4$
	$\begin{array}{c} x > 4 \\ \text{or } x < -4 \end{array}$	A1	3	fully correct, not wrapped, not 'and'
				SR B1 for $x \ge 4$, $x \le -4$
			5	

	1			
4	Let $y = x^{\overline{3}}$	*M1		Attempt a substitution to obtain a quadratic or factorise with $\sqrt[3]{x}$ in each bracket
	$y^{2} + 3y - 10 = 0$ $(y - 2)(y + 5) = 0$	DV		
		DM	I	Correct attempt to solve quadratic
	y = 2, y = -5	A1		Both values correct
	$x = 2^3, x = (-5)^3$	DM1		Attempt cube
	x = 8, x = -125	A1 f	5	Both answers correctly followed through
			5	SR B2 $x = 8$ from T & I
5 (i)		M1		Reflection in either axis
		A1	2	Correct reflection in x axis
(ii)	(1,3)	B1 B1	2	Correct x coordinate Correct y coordinate
				SR B1 for (3, 1)
(iii)	Translation	B1		
	2 units in negative x direction	B1	2	
			6	
6 (i)	$2(x^2-12x+40)$	B1		a=2
	$2(x^{2} - 12x + 40)$ $= 2[(x - 6)^{2} - 36 + 40]$	B1		b = 6
	$= 2[(x-6)^2 + 4]$	M1		$80 - 2b^2$ or $40 - b^2$ or $80 - b^2$ or $40 - 2b^2$
	$= 2(x-6)^2 + 8$	A1	4	(their b) $c = 8$
(ii)	x = 6	B1 ft	1	
(iii)	y = 8	B1 fi	1	
			6	

7(i)	$\frac{dy}{dx} = 5$	B1 1	
(ii)	$y = 2x^{-2}$ $\frac{dy}{dx} = -4x^{-3}$	B1	x^{-2} soi
	$\frac{dy}{dy} = -4x^{-3}$	B1	$-4x^c$
	dx	B1 3	$x^{-2} \text{ soi}$ $-4x^{c}$ kx^{-3}
(iii)	$y = 10x^{2} - 14x + 5x - 7$ $y = 10x^{2} - 9x - 7$	M1 A1	Expand the brackets to give an expression of form $ax^2 + bx + c$ ($a \ne 0$, $b \ne 0$, $c \ne 0$) Completely correct (allow 2 <i>x</i> -terms)
	$\frac{dy}{dx} = 20x - 9$	B1 ft B1 ft 4	1 term correctly differentiated Completely correct (2 terms)
8 (i)	$\frac{dy}{dx} = 9 - 6x - 3x^2$	*M1	Attempt to differentiate y or –y (at least one
	$\frac{1}{dx} = 9 - 6x - 3x$	A1	correct term) 3 correct terms
	At stationary points, $9 - 6x - 3x^2 = 0$	M1	Use of $\frac{dy}{dx} = 0$ (for y or $-y$)
	3(3+x)(1-x) = 0 x = -3 or x = 1	DM1 A1	Correct method to solve 3 term quadratic $x = -3$, 1
	y = 0, 32	A1ft 6	y = 0, 32 (1 correct pair www A1 A0)
(ii)	$\frac{d^2y}{dx^2} = -6x - 6$	M1	Looks at sign of $\frac{d^2y}{dx^2}$, derived correctly
			from $k \frac{dy}{dx}$, or other correct method
	When $x = -3$, $\frac{d^2y}{dx^2} > 0$ When $x = 1$, $\frac{d^2y}{dx^2} < 0$	A1	x = -3 minimum
	When $x = 1$, $\frac{d^2y}{dx^2} < 0$	A1 3	x = 1 maximum
(iii)	-3 < x < 1	M1	Uses the <i>x</i> values of both turning points in inequality/inequalities
		A1 2	Correct inequality or inequalities. Allow ≤
		11	

9 (i)	Gradient = 4	B1	Gradient of 4 soi
	y-7=4(x-2)	M1	Attempts equation of straight line through (2, 7) with any gradient
	y = 4x - 1	A1 3	(=, /) g
(ii)	$ \begin{vmatrix} \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \\ = \sqrt{(2 - 1)^2 + (7 - 2)^2} \end{vmatrix} $	M1	Use of correct formula for d or d^2 (3 values correctly substituted)
	$=\sqrt{3^2+9^2}$	A1	$\sqrt{3^2+9^2}$
	$= \sqrt{90}$ $= 3\sqrt{10}$	A1 3	Correct simplified surd
(iii)	Gradient of AB = 3	B1	
	Gradient of perpendicular line = $-\frac{1}{3}$	B1 ft	SR Allow B1 for $-\frac{1}{4}$
	Midpoint of AB = $\left(\frac{1}{2}, \frac{5}{2}\right)$	B1	
	$y - \frac{5}{2} = -\frac{1}{3} \left(x - \frac{1}{2} \right)$	M1	Attempts equation of straight line through their midpoint with any non-zero gradient
	x + 3y - 8 = 0	A1	$y - \frac{5}{2} = \frac{-1}{3} \left(x - \frac{1}{2} \right)$
		A1 6	x + 3y - 8 = 0
		12	

		T		T
10 (i)	Centre (-1, 2)	B1		Correct centre
	$(x+1)^2 - 1 + (y-2)^2 - 4 - 8 = 0$	M1		Attempt at completing the square
	$(x+1)^2 + (y-2)^2 = 13$	A 1	2	Correct radius
	Radius √13	A1	3	Correct radius
				Alternative method:
				$\frac{\text{Atternative inethod.}}{\text{Centre } (-g, -f) \text{ is } (-1, 2)}$ B1
				$g^2 + f^2 - c $ M1
				Radius = $\sqrt{13}$ A1
(ii)	$(2)^{2} + (k-2)^{2} = 13$ $(k-2)^{2} = 9$	M1		Attempt to substitute $x = -3$ into circle
	$(k-2)^2 = 9$	3.61		equation
	$k-2=\pm 3$	M1	2	Correct method to solve quadratic
	k = -1	A1	3	k = -1 (negative value chosen)
(iii)	EXTLIED			
	EITHER	M1		Attempt to solve equations simultaneously
	y = 6 - x	M1		Substitute into their circle equation for x/y
	$(x+1)^{2} + (6-x-2)^{2} = 13$ $(x+1)^{2} + (4-x)^{2} = 13$	1011		or attempt to get an equation in 1 variable
	$\begin{vmatrix} (x+1) + (4-x) - 15 \\ x^2 + 2x + 1 + 16 - 8x + x^2 = 13 \end{vmatrix}$			only
	$\begin{vmatrix} x + 2x + 1 + 10 - 8x + x - 15 \\ 2x^2 - 6x + 4 = 0 \end{vmatrix}$	A1		Obtain correct 3 term quadratic
	2(x-1)(x-2) = 0	M1		Correct method to solve quadratic of form
	2(x-1)(x-2)=0	1,111		$ax^2 + bx + c = 0 (b \neq 0)$
	x=1,2	A1		Both x values correct
	$\therefore y = 5, 4$	A1	6	Both y values correct
				<u>or</u>
				one correct pair of values www B1
	OP			second correct pair of values B1
	OR			
	$\begin{vmatrix} x = 6 - y \\ (6 - y + 1)^2 + (y - 2)^2 = 13 \end{vmatrix}$			
	(6-y+1) + (y-2) = 13 $(7-y)^2 + (y-2)^2 = 13$			
	$ \begin{vmatrix} (7-y) + (y-2) - 13 \\ 49 - 14y + y^2 + y^2 - 4y + 4 = 13 \end{vmatrix} $			
	$\begin{vmatrix} 4y - 14y + y + y - 4y + 4 - 13 \\ 2y^2 - 18y + 40 = 0 \end{vmatrix}$			
	2(y-4)(y-5) = 0			
	v = 4, 5			SR
	$\therefore x = 2$, 1			T & I M1 A1 One correct x (or y) value
	,			
				A1 Correct associated coordinate
			12	

Mark Scheme 4722 January 2007

1	$15+19d = 72$ Hence $d = 3$ $S_n = {}^{100}/_2 \{(2 \times 15) + (99 \times 3)\}$ $= 16350$	M1 A1 M1 A1 4	Attempt to find d, from $a + (n - 1)d$ or $a + nd$ Obtain $d = 3$ Use correct formula for sum of n terms Obtain 16350
		4	
2	(i) $46 \times \frac{\pi}{180} = 0.802 / 0.803$	M1	Attempt to convert to radians using π and 180 (or 2π &
360		A1 2	Obtain 0.802 / 0.803, or better
	(ii) $8 \times 0.803 = 6.4 \text{ cm}$	B1 1	State 6.4, or better
1.	(iii) $\frac{1}{2} \times 8^2 \times 0.803 = 25.6 / 25.7 \text{ cm}^2$	M1	Attempt area of sector using $\frac{1}{2}r^2\theta$ or $r^2\theta$, with θ in
radi	ians	A1 2	Obtain 25.6 / 25.7, or better
		5	
3	(i) $\int (4x-5) dx = 2x^2 - 5x + c$	M1	Obtain at least one correct term
	·	A1 2	Obtain at least $2x^2 - 5x$
	(ii) $y = 2x^2 - 5x + c$ $7 = 2 \times 3^2 - 5 \times 3 + c \Rightarrow c = 4$	B1√ M1	State or imply $y =$ their integral from (i) Use (3,7) to evaluate c
	So equation is $y = 2x^2 - 5x + 4$	A1 3	Correct final equation
		5	
4	(i) area = $\frac{1}{2} \times 5\sqrt{2} \times 8 \times \sin 60^{\circ}$	B1	State or imply that $\sin 60^{\circ} = \frac{\sqrt{3}}{2}$ or exact equiv
	$= \frac{1}{2} \times 5\sqrt{2} \times 8 \times \frac{\sqrt{3}}{2}$	M1	Use $\frac{1}{2}ac\sin B$
	$=10\sqrt{6}$	A1 3	Obtain $10\sqrt{6}$ only, from working in surds
	(ii) $AC^2 = (5\sqrt{2})^2 + 8^2 - 2 \times 5\sqrt{2} \times 8 \times \cos 60^\circ$	M1	Attempt to use the correct cosine formula
	AC = 7.58 cm	A1 A1 3	Correct unsimplified expression for AC^2 Obtain $AC = 7.58$, or better
		6	
5	(a) (i) $\log_3 \frac{4x+7}{x}$	B1 1	Correct single logarithm, as final answer, from correct working only
	(ii) $\log_3 \frac{4x+7}{x} = 2$	D1	
	$\frac{4x+7}{x} = 9$ $4x+7 = 9x$	B1 M1	State or imply $2 = \log_3 9$ Attempt to solve equation of form $f(x) = 8$ or 9
	x = 1.4	A1 3	Obtain $x = 1.4$, or exact equiv
	(b) $\int_{3}^{9} \log_{10} x dx \approx \frac{1}{2} \times 3 \times \left(\log_{10} 3 + 2 \log_{10} 6 + \log_{10} 9 \right)$	B1	State, or imply, the 3 correct <i>y</i> -values only
	≈ 4.48	M1 A1 A1 4	Attempt to use correct trapezium rule Obtain correct unsimplified expression Obtain 4.48, or better
			50mm 1.10, 01 00mm
		8	

6	(i)	$(1+4x)^7 = 1+28x+336x^2+2240x^3$	B1 M1 A1 A1	4	Obtain $1 + 28x$ Attempt binomial expansion of at least 1 more term, with each term the product of binomial coeff and power of $4x$ Obtain $336x^2$ Obtain $2240x^3$
	(ii)	28a + 1008 = 1001 Hence $a = -\frac{1}{4}$	M1 A1√ A1	3	Multiply together two relevant pairs of terms Obtain $28a + 1008 = 1001$ Obtain $a = -\frac{1}{4}$
				7	
7	(i)	(a) •	B1 B1	2	Correct shape of $k\cos x$ graph (90, 0), (270, 0) and (0, 2) stated or implied
		(b) $\cos x = 0.4$ $x = 66.4^{\circ}, 294^{\circ}$	M1 A1 A1√	3	Divide by 2, and attempt to solve for x Correct answer of 66.4° / 1.16 rads Second correct answer only, in degrees, following their x
	(ii)	tan x = 2	M1		Use of $\tan x = \frac{\sin x}{\cos x}$ (or square and use $\sin^2 x + \cos^2 x \equiv 1$)
		$x = 63.4^{\circ}, -117^{\circ}$	A1 A1√	3	Correct answer of 63.4° / 1.56 rads Second correct answer only, in degrees, following their <i>x</i>
				8	
8	(i)	-8 - 36 - 14 + 33 = -25	M1 A1	2	Substitute $x = -2$, or attempt complete division by $(x + 2)$ Obtain -25 , as final answer
	(ii)	27 - 81 + 21 + 33 = 0 A.G.	В1	1	Confirm $f(3) = 0$, or equiv using division
	(iii)	x = 3 f(x) = (x - 3)(x ² - 6x - 11)	B1 M1 A1 A1		State $x = 3$ as a root at any point Attempt complete division by $(x - 3)$ or equiv Obtain $x^2 - 6x + k$ Obtain completely correct quotient
		$x = \frac{6 \pm \sqrt{36 + 44}}{2}$	M1		Attempt use of quadratic formula, or equiv, to find roots
		$= 3 \pm 2\sqrt{5} \text{ or } 3 \pm \sqrt{20}$	A1	6	Obtain $3 \pm 2\sqrt{5}$ or $3 \pm \sqrt{20}$
				9	
9	(i)	$u_5 = 1.5 \times 1.02^4$	M1		Use $1.5r^4$, or find u_2 , u_3 , u_4
	` '	$= 1.624 \text{ tonnes} \mathbf{A.G.}$	A1	2	Obtain 1.624 or better
	(ii)	$\frac{1.5(1.02^{N}-1)}{1.02-1} \le 39$	M1		Use correct formula for S_N
		$(1.02^{N} - 1) \le (39 \times 0.02 \div 1.5)$	A1 M1		Correct unsimplified expressions for S_N Link S_N to 39 and attempt to rearrange
		$(1.02^N - 1) \le 0.52$ Hence $1.02^N \le 1.52$	A1	4	Obtain given inequality convincingly, with no sign errors
	(iii)	$log 1.02^{N} \le log 1.52$ $N log 1.02 \le log 1.52$ $N \le 21.144$ N = 21 trips	M1 A1 M1 A1	4	Introduce logarithms on both sides and use $\log a^b = b \log$ Obtain $N \log 1.02 \le \log 1.52$ (ignore linking sign) Attempt to solve for N Obtain $N = 21$ only
			[10	

10	(i)	$0 = 1 - \frac{3}{\sqrt{9}}$	B1	1	Verification of (9, 0), with at least one step shown
	(ii)	$\int_{0}^{a} 1 - 3x^{-\frac{1}{2}} dx = \left[x - 6\sqrt{x} \right]_{0}^{a}$	M1		Attempt integration – increase in power for at least 1 term
		$= (a - 6\sqrt{a}) - (9 - 6\sqrt{9})$ $= a - 6\sqrt{a} + 9$	A1 A1 M1 A1		For second term of form $kx^{\frac{1}{2}}$ For correct integral Attempt $F(a) - F(9)$ Obtain $a - 6\sqrt{a} + 9$
		$a - 6\sqrt{a} + 9 = 4$ $a - 6\sqrt{a} + 5 = 0$ $(\sqrt{a} - 1)(\sqrt{a} - 5) = 0$	M1 M1		Equate expression for area to 4 Attempt to solve 'disguised' quadratic
		$\sqrt{a} = 1, \sqrt{a} = 5$ $a = 1, a = 25$ but $a > 9$, so $a = 25$	A1	9	Obtain at least $\sqrt{a} = 5$ Obtain $a = 25$ only
				10	

Mark Scheme 4723 January 2007

M1

1 Attempt use of quotient rule to find derivative allow for numerator 'wrong way round'; or attempt use of product rule

Obtain
$$\frac{2(3x-1)-3(2x+1)}{(3x-1)^2}$$

A1 or equiv

Obtain $-\frac{5}{4}$ for gradient

A1 or equiv

Attempt eqn of straight line with numerical gradient

obtained from their $\frac{dy}{dr}$; tangent not normal

Obtain 5x + 4y - 11 = 0

5 or similar equiv

Attempt complete method for finding $\cot \theta$ 2 (i) Obtain $\frac{5}{12}$

M1rt-angled triangle, identities, calculator, ...

A1 2 or exact equiv

Attempt relevant identity for $\cos 2\theta$ (ii)

 $+2\cos^{2}\theta + 1$ or $+1 + 2\sin^{2}\theta$ or M1 $\pm(\cos^2\theta-\sin^2\theta)$

State correct identity with correct value(s) substituted Obtain $-\frac{119}{169}$

A1 3 correct answer only earns 3/3

3 (a) Sketch reasonable attempt at $y = x^5$

Sketch straight line with negative gradient Indicate in some way single point of intersection B1 3 dep *B1 *B1

*B1 accept non-zero gradient at O but curvature to be correct in first and third quadrants

existing at least in (part of) first quadrant

(b) Obtain correct first iterate

Carry out process to find at least 3 iterates in all M1 Obtain at least 1 correct iterate after the first

B1 allow if not part of subsequent iteration

allow for recovery after error; showing at least 3 d.p. in iterates

Conclude 2.175

A1 4 answer required to precisely 3 d.p.

 $[0 \rightarrow 2.21236 \rightarrow 2.17412 \rightarrow 2.17480 \rightarrow 2.17479;$ $1 \rightarrow 2.19540 \rightarrow 2.17442 \rightarrow 2.17480 \rightarrow 2.17479$; $2 \rightarrow 2.17791 \rightarrow 2.17473 \rightarrow 2.17479 \rightarrow 2.17479$;

 $3 \rightarrow 2.15983 \rightarrow 2.17506 \rightarrow 2.17479 \rightarrow 2.17479$

Obtain derivative of form $k(4t+9)^{-\frac{1}{2}}$ 4 (i)

M1 any constant k Obtain correct $2(4t+9)^{-\frac{1}{2}}$ **A**1 or (unsimplified) equiv

Obtain derivative of form $ke^{\frac{1}{2}x+1}$ M1 any constant k different from 6

Obtain correct $3e^{\frac{1}{2}x+1}$

A1 4 or equiv

Either: Form product of two derivatives M1 (ii) Substitute for t and x in product M1

numerical or algebraic using t = 4 and calculated value of x

Obtain 39.7

3 allow ± 0.1 ; allow greater accuracy differentiating $y = 6e^{\frac{1}{2}(4t+9)^{\frac{1}{2}}+1}$

Obtain $k(4t+9)^n e^{\frac{1}{2}(4t+9)^{\frac{1}{2}}+1}$ Or: Obtain correct $6(4t+9)^{-\frac{1}{2}}e^{\frac{1}{2}(4t+9)^{\frac{1}{2}}+1}$

or equiv

Substitute t = 4 to obtain 39.7 A1 (3) allow ± 0.1 ; allow greater accuracy

Obtain $R = \sqrt{17}$ or 4.12 or 4.1 Attempt recognisable process for finding α Obtain $\alpha = 14$

B1 or greater accuracy

M1 allow for sin/cos confusion

3 or greater accuracy 14.036... **A**1

M1

A1

- (ii) Attempt to find at least one value of $\theta + \alpha$ M1
 Obtain or imply value 61 A1 $\sqrt{}$ following R value; or value rounding to 61
 Obtain 46.9 A1 allow ± 0.1 ; allow greater accuracy
 Show correct process for obtaining second angle M1
 Obtain -75 A1 5 allow ± 0.1 ; allow greater accuracy; max of
- 4/5 if extra angles between –180 and 180
- 6 (i) Obtain integral of form $k(3x+2)^{\frac{1}{2}}$ M1 any constant kObtain correct $\frac{2}{3}(3x+2)^{\frac{1}{2}}$ A1 or equiv

 Substitute limits 0 and 2 and attempt evaluation M1 for integral of form $k(3x+2)^n$ Obtain $\frac{2}{3}(8^{\frac{1}{2}}-2^{\frac{1}{2}})$ A1 4 or exact equiv suitably simplified
 - (ii) State or imply $\pi \int \frac{1}{3x+2} dx$ or unsimplified version B1 allow if dx absent or wrong Obtain integral of form $k \ln(3x+2)$ M1 any constant k involving π or not Obtain $\frac{1}{3}\pi \ln(3x+2)$ or $\frac{1}{3}\ln(3x+2)$ A1 Show correct use of $\ln a \ln b$ property M1 Obtain $\frac{1}{3}\pi \ln 4$ A1 5 or (similarly simplified) equiv
- 7 (i) State a in x-direction B1 or clear equiv State factor 2 in x-direction B1 2 or clear equiv
 - (ii) Show (largely) increasing function crossing x-axis
 Show curve in first and fourth quadrants only
 A1

 M1 with correct curvature
 not touching y-axis and with no maximum
 point; ignore intercept
 - (iii) Show attempt at reflecting negative part in x-axis
 Show (more or less) correct graph
 M1
 A1√2 following their graph in (ii) and showing correct curvatures
 - (iv) Identify 2a as asymptote or 2a + 2 as intercept B1 allow anywhere in question State $2a < x \le 2a + 2$ B1 2 allow < or \le for each inequality
- Obtain $-2xe^{-x^2}$ as derivative of e^{-x^2} 8 (i) B1Attempt product rule *M1 allow if sign errors or no chain rule Obtain $8x^7e^{-x^2} - 2x^9e^{-x^2}$ **A**1 or (unsimplified) equiv Either: Equate first derivative to zero and attempt solution M1 dep *M; taking at least one step of solution Confirm 2 **A**1 **5** AG Substitute 2 into derivative and show <u>Or</u>: attempt at evaluation M1
 - Obtain 0 A1 (5) AG; necessary correct detail required

M1

(ii) Attempt calculation involving attempts at y values

coefficients with attempts at five *y* values corresponding

with each of 1, 4, 2 present at least once as

Attempt $k(y_0 + 4y_1 + 2y_2 + 4y_3 + y_4)$

M1 with attempts at five *y* values corresponding to correct *x* values

Obtain $\frac{1}{6}(0 + 4 \times 0.00304 + 2 \times 0.36788$

$$+4 \times 2.70127 + 4.68880$$

+ 4 × 2.70127 + 4.68880) Obtain 2.707

(iii) Attempt 4(y value) – 2(part (ii)) Obtain 13.3 A1 or equiv with at least 3 d.p. or exact values

A1 **4** or greater accuracy; allow ± 0.001

Attempt 4(y value) - 2(part (ii)) M1 or equiv

A1 2 or greater accuracy; allow ± 0.1

9 (i) State $-2 \le y \le 2$ State $y \le 4$ B1 allow <; any notation B1 2 allow <; any notation

(ii) Show correct process for composition M1 Obtain or imply 0.959 and hence 2.16 A1 Obtain g(0.5) = 3.5

Observe that 3.5 not in domain of f

right way round AG; necessary detail required

AG; necessary detail required B1 or (unsimplified) equiv

B1 4 or equiv

(iii) Relate quadratic expression to at least one end

of range of f

M1 or equiv

Obtain both of $4 - 2x^2 < -2$ and $4 - 2x^2 > 2$

A1 or equiv; allow any sign in each (< or \le or > or \ge or =)

Obtain at least two of the x values $-\sqrt{3}$, -1, 1, $\sqrt{3}$ A1

Obtain all four of the x values

Attempt solution involving four x values M1

Attempt solution involving four x values M1

to produce at least two sets of values

Obtain $x < -\sqrt{3}$, -1 < x < 1, $x > \sqrt{3}$

A1 6 allow \leq instead of < and/or \geq instead of >

Mark Scheme 4724 January 2007

			¬
	1 Factorise numerator and denominator	M1	or Attempt long division
	Num = $(x+6)(x-4)$ or denom = $x(x-4)$	A1	Result = $1 + \frac{6x - 24}{r^2 - 4r}$
	Final answer = $\frac{x+6}{x}$ or $1+\frac{6}{x}$	A1 3	$= 1 + \frac{6}{x}$
•	2 Use parts with $u = \ln x, dv = x$	M1	& give 1 st stage in form $f(x) + /- \int g(x)(dx)$
	Obtain $\frac{1}{2}x^2 \ln x - \int \frac{1}{x} \cdot \frac{1}{2}x^2 (dx)$	A1	or $\frac{1}{2}x^2 \ln x - \int \frac{1}{2}x(\mathrm{d}x)$
	$= \frac{1}{2}x^{2} \ln x - \frac{1}{4}x^{2} (+c)$ Use limits correctly Exact answer $2 \ln 2 - \frac{3}{4}$	A1 M1 A1	5 AEF ISW
3	(i) Find $a - b$ or $b - a$ irrespective of label Method for magnitude of any vector $\sqrt{161}$ or $12.7(12.688578)$	M1 M1 A1	(expect $11i - 2j - 6k$ or $-11i + 2j + 6k$)
	(ii) Using $(\overline{AO} \text{ or } \overline{OA})$ and $(\overline{AB} \text{ or } \overline{BA})$ $\cos \theta = \frac{\text{scalar product of any two vectors}}{\text{product of their moduli}}$	B1 M1	Do not class angle AOB as MR
	43 or better (42.967), 0.75 or better (0.7499218)A1 3	If 137 obtained, followed by 43, award A0 Common answer 114 probably → B0 M1 A0
4	Attempt to connect dx and du	M1	but not just $dx = du$
	For $du = 2 dx$ AEF correctly used	A1	sight of $\frac{1}{2}$ (du) necessary
	$\int u^8 + u^7 (\mathrm{d}u)$	A1	or $\int u^7 (u+1)(du)$
	Attempt new limits for u at any stage (expect $0,1$)	M1	or re-substitute & use $(\frac{5}{2},3)$
	$\frac{17}{72}$	A1 5	5 AG WWW
	S.R. If M1 A0 A0 M1 A0, award S.R. B1 for answer	$\frac{68}{72}$, $\frac{34}{36}$ or $\frac{17}{18}$	$\left \frac{7}{3} \right $ ISW
5	(i) Show clear knowledge of binomial expansion	M1	$-3x$ should appear but brackets can be missing; $-\frac{1}{3} \cdot -\frac{4}{3}$ should appear, not $-\frac{1}{3} \cdot \frac{2}{3}$
	= 1 + x	B1	Correct first 2 terms; not dep on M1
	$+2x^2$	A1	
	$+\frac{14}{3}x^3$	A1 4	4
	(ii) Attempt to substitute $x + x^3$ for x in (i)	M1	Not just in the $\frac{14}{3}x^3$ term
	Clear indication that $(x + x^3)^2$ has no term in x^3	A1	
	$\frac{17}{3}$	√A1 3	$\mathbf{g} \int \mathbf{f.t.} \ \mathbf{cf}(x) + \mathbf{cf}(x^3) \text{ in part (i)}$
6	(i) $2x+1 = / \equiv A(x-3) + B$	M1	
	A=2	A1	
	B = 7		Cover-up rule acceptable for B1
	(ii) $\int \frac{1}{x-3} (dx) = \ln(x-3) \text{ or } \ln x-3 $	B1	Accept A or $\frac{1}{A}$ as a multiplier
	$\int \frac{1}{(x-3)^2} (\mathrm{d}x) = -\frac{1}{x-3}$	B1	Accept B or $\frac{1}{B}$ as a multiplier
	$6 + 2 \ln 7$ Follow-through $\frac{6}{7}B + A \ln 7$	√B2 4	1

4724	Mark Scheme		January 2007
7	$\frac{d}{dx}(xy) = x\frac{dy}{dx} + y$	B1]
	$\frac{d}{dx}(y^2) = 2y\frac{dy}{dx}$	B1	
	$4x + x \frac{dy}{dx} + y + 2y \frac{dy}{dx} = 0$	B1	
	Put $\frac{dy}{dx} = 0$	*M1	
	Obtain $4x + y = 0$ AEF	A1	and no other (different) result
	Attempt to solve simultaneously with eqn of curve	dep*M1	
	Obtain $x^2 = 1$ or $y^2 = 16$ from $4x + y = 0$	A1	
	(1,-4) and $(-1,4)$ and no other solutions		Accept $(\pm 1, \mp 4)$ but not $(\pm 1, \pm 4)$
8	(i) Use $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ and $-\frac{1}{m}$ for grad of normal	M1	or change to cartesian, diff & use $-\frac{1}{m}$
	=-p AG WWW	A1 2	Not $-t$.
	(ii) Use correct formula to find gradient of line	M1	
	Obtain $\frac{2}{p+q}$ AG WWW	A1 2	Minimum of denom = $2(p-q)(p+q)$
	(iii) State $-p = \frac{2}{p+q}$	M1	Or find eqn normal at P & subst $(2q^2,4q)$
	Simplify to $p^2 + pq + 2 = 0$ AG WWW	A1 2	With sufficient evidence
	(iv) $(8,8) \rightarrow t$ or p or $q = 2$ only	B1	No possibility of -2
	Subst $p = 2$ in eqn (iii) to find q_1	M1	Or eqn normal, solve simult with cartes/param
	Subst $p = q_1$ in eqn (iii) to find q_2	M1	Ditto
	$q_2 = \frac{11}{3} \to \left(\frac{242}{9}, \frac{44}{3}\right)$	A1 4	No follow-through; accept (26.9, 14.7)
9	(i) Separate variables as $\int \sec^2 y dy = 2 \int \cos^2 2x dx$	M1	seen or implied
	$LHS = \tan y$	A1	
	RHS; attempt to change to double angle Correctly shown as $1 + \cos 4x$	M1 A1	
	$\int \cos 4x dx = \frac{1}{4} \sin 4x$	A1	
	Completely correct equation (other than +c)	A1	$\tan y = x + \frac{1}{4}\sin 4x$
	+c on either side	A1 7	
	(ii) Use boundary condition	M1	provided a sensible outcome would ensue
	c (on RHS) = 1	A1	or $c_2 - c_1 = 1$; not fortuitously obtained
	Substitute $x = \frac{1}{6}\pi$ into their eqn, produce $y = 1.05$	A1 3	or 4.19 or 7.33 etc. Radians only
10	(i) For (either point) + t(diff between posn vectors)	M1	" r =" not necessary for the M mark
	$\mathbf{r} = (\text{either point}) + t(\mathbf{i} - 2\mathbf{j} - 3\mathbf{k} \text{ or } -\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$ (ii) $\mathbf{r} = s(\mathbf{i} + 2\mathbf{j} - \mathbf{k}) \text{ or } (\mathbf{i} + 2\mathbf{j} - \mathbf{k}) + s(\mathbf{i} + 2\mathbf{j} - \mathbf{k})$	A1 2 B1	but it is essential for the A mark Accept any parameter, including t
	Eval scalar product of $\mathbf{i}+2\mathbf{j}-\mathbf{k}$) & their dir vect in (i)	M1	Accept any parameter, including t
	Show as (1x1 or 1)+(2x-2 or -4)+(-1x-3 or 3)	A1	This is just one example of numbers involved
	= 0 and state perpendicular AG	A1 4	
	(iii) For at least two equations with diff parameters Obtain $t = -2$ or $s = 3$ (possibly -3 or 2 or -2)	M1 A1	e.g. $5+t=s$, $2-2t=2s$, $-9-3t=-s$ Check if $t=2,1$ or -1
	Subst. into eqn AB or OT and produce $3\mathbf{i} + 6\mathbf{j} - 3\mathbf{k}$	A1 3	-
	(iv) Indicate that $ \overline{OC} $ is to be found	M1	where C is their point of intersection
	$\sqrt{54}$; f.t. $\sqrt{a^2 + b^2 + c^2}$ from $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ in (iii)	√A1 2	

In the above question, accept any vectorial notation

t and s may be interchanged, and values stated above need to be treated with caution.

In (iii), if the point of intersection is correct, it is more than likely that the whole part is correct – but check.

Mark Scheme 4725 January 2007

1	(3) 2	D1	1	Ct-ttl
1.	(i) $a = -3$	B1	1	State correct value
	(ii) $2a - 3 = 7$ or $3a - 6 = 9$	M1		Sensible attempt at multiplication
	a=5	A1	2	Obtain correct answer
			3	
2.		M1		Attempt to equate real and
				imaginary parts of $(x + iy)^2$ and 15
	$x^2 - y^2 = 15$ and $xy = 4$	A1 A1		+8i
		M1		Obtain each result
		DM1		Eliminate to obtain a quadratic in x^2
	$\pm (4+i)$	A1	6	or y^2
			6	Solve to obtain $x = (\pm)4$, or $y =$
				(±)1
				Obtain only correct two answers as complex numbers
3.		M1		Expand to obtain $r^3 - r$
		M1		Consider difference of two standard results
	$\frac{1}{4}n^2(n+1)^2 - \frac{1}{2}n(n+1)$	A1		Obtain correct unfactorised answer
		M1		Attempt to factorise
		A1		Obtain factor of $\frac{1}{4}n(n+1)$
	$\frac{1}{4}n(n-1)(n+1)(n+2)$	A1	6	Obtain correct answer
			6	
4.	(i)	B1		Circle
		B1		Centre (1, -1)
		B1	3	Passing through (0, 0)
	(ii)	B1		Sketch a concentric circle
		B1		Inside (i) and touching axes
		B1	3	Shade between the circles
5.	(i)	B1	1	Show given answer correctly
5.	(i)			

		1	1	T
	(ii)	M1		Attempt to solve quadratic equation or substitute $x + iy$ and equate real and imaginary parts
	$-1\pm i\sqrt{3}$	A1 A1	3	Obtain answers as complex numbers Obtain correct answers, simplified
	(iii)	B1		Correct root on x axis, co-ords.
		B1		shown
		B1		Other roots in 2 nd and 3 rd quadrants
		Di	3	Correct lengths and angles or co-
			7	ordinates or complex numbers shown
			,	
6.	(i)	B1		Correct expression for u_{n+1}
		M1		Attempt to expand and simplify
	$u_{n+1}-u_n=2n+4$	A1	3	Obtain given answer correctly
	(ii)	B1		State $u_1 = 4$ (or $u_2 = 10$)and is divisible by 2
		M1		State induction hypothesis true for
		M1		u_n
		A1		Attempt to use result in (ii)
		A1	5	Correct conclusion reached for u_{n+1}
			8	Clear, explicit statement of induction conclusion
7.	(i) $\alpha + \beta = -5$ $\alpha\beta = 10$	B1 B1	2	State correct values
	$(ii) \alpha^2 + \beta^2 = 5$	M1		Use $(\alpha + \beta)^2 - 2\alpha\beta$
		A1	2	Obtain given answer correctly, using value of -5
	(iii)	B1		Product of roots = 1
		M1		Attempt to find sum of roots
		A1		Obtain $\frac{5}{10}$ or equivalent
	$x^2 - \frac{1}{2}x + 1 = 0$	B1ft	4	Write down required quadratic
			8	equation, or any multiple.

8.	(i)	M1		Factor of $r!$ or $(r + 1)!$ seen
		A1		Factor of $(r+1)$ found
	$(r+1)^2r!$	A1	3	Obtain given answer correctly
	(ii)	M1		Express terms as differences using
		A1		(i)
		M1		At least 1 st two and last term correct
	(n+2)! - 2!	A1	4	Show that pairs of terms cancel
	(iii)	B1ft	1	Obtain correct answer in any form
			8	Convincing statement for non- converging, ft their (ii)
9.		M1		For at least two correct images
	$ (i) \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ -1 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix} \begin{pmatrix} 3 \\ -1 \end{pmatrix} $	A1	2	For correct diagram, co-ords.clearly written down
	(ii) 90 ⁰ clockwise, centre origin	B1 B1		Or equivalent correct description
	$\left(\begin{array}{c} 0 & 1 \\ -1 & 0 \end{array}\right)$	В1	3	Correct matrix, not in trig form
	(iii) Stretch parallel to x-axis, s.f. 3	B1 B1		Or equivalent correct description, but must be a stretch for 2 nd B1
	$\begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$	D1 D1	4	
	(01)	B1 B1		Each correct column
			9	

(i) $\Delta = \det \mathbf{D} = 3a - 6$	M1 M1 A1 M1		Show correct expansion process for 3 x 3 Correct evaluation of any 2 x 2 det
$\Delta = \det \mathbf{D} = 3a - 6$	A1		
$\Delta = \det \mathbf{D} = 3a - 6$			Correct evaluation of any 2 x 2 det
	N/1		= = = = = = = = = = = = = = = = = = =
	IVI I		Obtain correct answer
	A1		Show correct process for adjoint
	B1		entries
$\mathbf{D}^{-1} = \frac{1}{\Delta} \begin{pmatrix} 3 - 2 & 4 \\ -3 & a - 2a \\ -3 & a & a - 6 \end{pmatrix}$ (ii) $\frac{1}{\Delta} \begin{pmatrix} 5 \\ 2a - 9 \\ 5a - 15 \end{pmatrix}$	A1	7	Obtain at least 4 correct entries in
	M1 A1A1A1 ft all 3		adjoint
			Divide by their determinant
		4	Obtain completely correct answer
		11	
			Attempt product of form D ⁻¹ C , or eliminate to get 2 equations and solve Obtain correct answers, ft their inverse
	$\mathbf{D}^{-1} = \frac{1}{\Delta} \begin{pmatrix} 3 - 2 & 4 \\ -3 & a - 2a \\ -3 & a a - 6 \end{pmatrix}$ (ii) $\frac{1}{\Delta} \begin{pmatrix} 5 \\ 2a - 9 \\ 5a - 15 \end{pmatrix}$	$\mathbf{D}^{-1} = \frac{1}{\Delta} \begin{pmatrix} 3 - 2 & 4 \\ -3 & a - 2a \\ -3 & a a - 6 \end{pmatrix}$ $(ii) \frac{1}{\Delta} \begin{pmatrix} 5 \\ 2a - 9 \\ 5a - 15 \end{pmatrix}$ $A1A1A1$	$\mathbf{D}^{-1} = \frac{1}{\Delta} \begin{pmatrix} 3 - 2 & 4 \\ -3 & a - 2a \\ -3 & a a - 6 \end{pmatrix}$ $(ii) \frac{1}{\Delta} \begin{pmatrix} 5 \\ 2a - 9 \\ 5a - 15 \end{pmatrix}$ $M1$ $A1A1A1$ $ft all 3$ 4

Mark Scheme 4726 January 2007

1 (i)
$$f(O) = \text{In 3 f}$$

 $f'(O) = \frac{1}{3}$
 $f'(O) = -\frac{3}{9} A.G.$

(ii) Reasonable attempt at Maclaurin

$$f(x) = \ln 3 + \frac{1}{3}x^{-1}/_{18}x^{2}$$

2 (i) f(0.8) = -0.03, f(0.9) = +0.077 (accurately e.g. accept -0.02 t0 -0.04) Explain (change of sign, graph etc.)

(ii) Differentiate two terms Use correct form of Newton-Ra ph son with 0.8, using their f (x)Use their N-R to give one more approximation to 3 d.p. minimum Get x = 0.835

3 (i) Show area of rect. = $\frac{1}{4} \left(e^{1/16} + e^{1/4} + e^{9/16} + e^{1} \right)$ Show area = 1.7054Explain the < 1.71 in terms of areas

(ii) Identify areas for > sign Show area of rect. = 1 /₄ ($e^{o} + e^{ll16} + e^{1/4} + e^{9/16}$) Get A > 1.27

4 (i)

(ii) Correct definition of sinh x Invert and mult. by eX to AG.

Sub.
$$u = e^{x}$$
 and $du = e^{x} dx$

Replace to $2/(u^2 - 1) du$ Integrate to aln((u - I)/(u + 1))Replace u

Βl Βl B1 Clearly derived

Ml Form In3 + $ax + bx^2$, with a,brelated to f" f' Al \sqrt{J} On their values off' and f' SR Use $ln(3+x) = In3 + In(1 + \frac{1}{3})$ x) Ml Use Formulae Book to get $In3 + y_3x - y_2(v_3x)_2 =$ $In3 + y_3x - 1/lgx^2$ Al

B1SR Use $x = \sqrt{J(tan^{-1}x)}$ and compare x to $\sqrt{J(\tan^{-1} x)}$ for x = 0.8, 0.9B 1 Explain "change in sign" B 1

B1 Get $2x - I I (1 + x^2)$

Ml 0.8 - f(0.8)/f '(0.8)

Ml√

В1

Al 3d.p. - accept answer which rounds Ml Or numeric equivalent Al At least 3 d.p. correct Bl AG. Inequality required

B1 Inequality or diagram required Ml Or numeric evidence Al cao; or answer which rounds down

BI Correct shape for sinh x

B1 Correct shape for cosech x

B1 Obvious point $(dy/dx \neq 0)$ /asymptotes clear

B1 May be implied

B1 Must be clear; allow 2/(eX-e-X) as mimimum simplification M1 Or equivalent, all x eliminated and

not dx = du

A1√Use formulae book, PT, or atanh⁻¹u Al No need for c

- 5 (i) Reasonable attempt at parts Get xnsin x \[\sin x. nx^{n-1} \] dx
 Attempt parts again Accurately Clearly derive AG.
 - (ii) Get $I_4 = (^1/_2\pi)^4 12I_2$ or $I_2 = (^1/_2\pi)^2 2I_0$ Show clearly $I_0 = 1$ Replace their values in relation Get $I_4 = ^1/_{16}\pi^4 - 3\pi^2 + 24$
- M1 Involving second integral Al M1 Al Al Indicate $(^{1}/_{2}\pi)^{n}$ and 0 from limits
- B1
 B1 May use *I*₂
 M1
 A1 cao

- 6 (i) $x = \pm a$, y = 2
- (ii) $\begin{array}{c} & & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$
- B1, B1, B1 Must be =; no working needed
 - B1 Two correct labelled asymptotes $\parallel Ox$ and approaches
 - B1 Two correct labelled asymptotes || *Oy* and approaches
 - B1 Crosses at $(^{3}/_{2}a,0)$ (and (0,0) may be implied
 - B1 90° where it crosses Ox; smoothly
 - B1 Symmetry in *Ox*
- 7 (i) Write as $A/t + B/t^2 + (Ct + D)/(t^2 + 1)$ Equate $At(t^2 + 1) + B(t^2 + 1) + (Ct + D)t^2$ to $1 - t^2$

Insert t values I equate coeff. Get A = C = 0, B = L D =-2 M1 Allow $(At+B)/t^2$; justify $B/t^2 + D/(l+t^2)$ if only used

M1√

M1 Lead to at least two constant values Al

SR Other methods leading to correct PF can earn 4 marks; 2 M marks for reasonable method going wrong

B1 B1 M1 Allow $k (l-t^2)/((t^2(l+t^2))$ or equivalent Al $\sqrt{\text{From their }}k$

- (ii) Derive or quote $\cos x$ in terms of tDerive or quote $dx = 2 \frac{dt}{(1 + t^2)}$ Sub. in to correct P.F. Integrate to $-1/t - 2 tan^{-1}t$ Use limits to clearly get AG.
- 8 (i) Get $(e^y e^{-y})/(e^y + e^{-y})$
 - (ii) Attempt quad. in e^y Solve for e^y Clearly get AG.
 - (iii) Rewrite as $\tanh x = k$ Use (ii) for $x = \sqrt{2} \ln 7$ or equivalent
 - (iv) Use of log laws Correctly equate $\ln A = \ln B$ to A = BGet $x = \pm \sqrt[3]{5}$

B1 Allow $(e^{2Y}-1)/(e^{2y}+1)$ or if x used

M1 Multiply by e^{γ} and tidy

M1

Al

M1 SR Use hyp defⁿ to get quad. in e^X M I Al Solve $e^{2x} = 7$ for x to $\frac{1}{2} \ln 7$ Al

Bl One used correctly M1 Or $1n(^{A}I_{B}) = 0$

Al

9 (i)

- (ii) U se correct formula with correct r $f \sec^2 x \, dx = \tan x \text{ used}$ Quote $f2 \sec x \tan x \, dx = 2 \sec x$ Replace $\tan^2 x \, \text{by } \sec^2 x 1$ to integrate
 Reasonable attempt to integrate 3 terms And to use limits correctly
 Get $\sqrt{3} + 1 \frac{1}{6}\pi$
- (iii) Use $x = r \cos\theta$, $y = r \sin\theta$, $r = (x^2 + y^2)^{1/2}$ Reasonable attempt to eliminate r, θ Get $y = (x-1)\sqrt{(x^2 + y^2)}$

B1 Shape for correct θ ; ignore other θ Used; start at (r,0)

B1 θ =0, r=1 and increasing r

B1

B1

B1 Or sub. correctly

M1

M1

Al Exact only

M1

M1

A1 Or equivalent

Mark Scheme 4727 January 2007

1 (i) Attempt to show no closure	M1		For showing operation table or otherwise
$3 \times 3 = 1$, $5 \times 5 = 1$ <i>OR</i> $7 \times 7 = 1$	A1		For a convincing reason
OR Attempt to show no identity	M1		For attempt to find identity OR for showing operation
Show $a \times e = a$ has no solution	A1	2	table For showing identity is not 3, not 5, and not 7 by reference to operation table or otherwise
(ii) (a =) 1	B1	1	For value of <i>a</i> stated
(iii) EITHER:			
$\{e, r, r^2, r^3\}$ is cyclic, (ii) group is not cyclic	B1*		For a pair of correct statements
$OR: \{e, r, r^2, r^3\}$ has 2 self-inverse elements, (ii) group has 4 self-inverse elements	B1*		For a pair of correct statements
$OR: \{e, r, r^2, r^3\}$ has 1 element of order 2 (ii) group has 3 elements of order 2	B1*		For a pair of correct statements
$OR: \{e, r, r^2, r^3\}$ has element(s) of order 4	B1*		For a pair of correct statements
(ii) group has no element of order 4	B1		
Not isomorphic	(dep*	^k)	For correct conclusion
		2	
	5		
2 EITHER: [3, 1, -2] × [1, 5, 4]	M1		For attempt to find vector product of both normals
\Rightarrow b = $k[1, -1, 1]$	A1		For correct vector identified with b
e.g. put $x OR y OR z = 0$	M1		For giving a value to one variable
and solve 2 equations in 2 unknowns	M1		For solving the equations in the other variables
Obtain [0, 2, -1] <i>OR</i> [2, 0, 1] <i>OR</i> [1, 1, 0]	A1		For a correct vector identified with a
OR: Solve $3x + y - 2z = 4$, $x + 5y + 4z = 6$			
e.g. $y+z=1$ $OR x-z=1$ $OR x+y=2$	M1		For eliminating one variable between 2 equations
Put $x OR y OR z = t$	M1		For solving in terms of a parameter
[x, y, z] = [t, 2-t, -1+t] OR [2-t, t, 1-t] $OR [1+t, 1-t, t]$	M1		For obtaining a parametric solution for x, y, z
Obtain [0, 2, -1] <i>OR</i> [2, 0, 1] <i>OR</i> [1, 1, 0]	A1		For a correct vector identified with a
Obtain $k[1, -1, 1]$	A1	5	For correct vector identified with b
	5		
3 (i) $z = \frac{6 \pm \sqrt{36 - 144}}{2}$	M1		For using quadratic equation formula or completing the square
$z = 3 \pm 3\sqrt{3} i$	A1		For obtaining cartesian values AEF
Obtain $(r =) 6$	A1		For correct modulus
Obtain $(\theta =) \frac{1}{3} \pi$	A1	4	For correct argument
(ii) EITHER: 6^{-3} OR $\frac{1}{216}$ seen	В1√		f.t. from their r^{-3}
$Z^{-3} = 6^{-3}(\cos(-\pi) \pm i\sin(-\pi))$	M1		For using de Moivre with $n = \pm 3$
Obtain $-\frac{1}{216}$	A 1		For correct value
$OR: z^3 = 6z^2 - 36z = 6(6z - 36) - 36z$	M1		For using equation to find z^3
216 seen	B1		Ignore any remaining z terms
Obtain $-\frac{1}{216}$	A1	3	For correct value
210	7		

4 (i) $(y = xz \Rightarrow) \frac{dy}{dx} = x\frac{dz}{dx} + z$	B1	For a correct statement
$x\frac{dz}{dx} + z = \frac{x^2(1-z^2)}{x^2z} = \frac{1}{z} - z$	M1	For substituting into differential equation and attempting to simplify to a variables separable form
$x\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{1}{z} - 2z = \frac{1 - 2z^2}{z}$	A1 3	For correct equation AG
(ii) $\int \frac{z}{1 - 2z^2} dz = \int \frac{1}{x} dx \Rightarrow -\frac{1}{4} \ln(1 - 2z^2) = \ln cx$	M1 M1* A1	For separating variables and writing integrals For integrating both sides to ln forms For correct result (<i>c</i> not required here)
$1 - 2z^2 = (cx)^{-4}$	A 1√	For exponentiating their ln equation including a constant (this may follow the next M1)
$\frac{x^2 - 2y^2}{x^2} = \frac{c^{-4}}{x^4}$	M1 (dep*)	For substituting $z = \frac{y}{x}$
$x^2(x^2 - 2y^2) = k$	A1 6	For correct solution properly obtained, including dealing with any necessary change of constant to k as given AG
5 (i) (a) e, p, p^2	B1	For correct elements
(b) e, q, q^2	B1 2	For correct elements
		SR If the answers to parts (i) and (iv) are reversed, full credit may be earned for both parts
(ii) $p^3 = q^3 = e \Rightarrow (pq)^3 = p^3q^3 = e$	M1	For finding $(pq)^3$ or $(pq^2)^3$
⇒ order 3	A1	For correct order
$(pq^2)^3 = p^3q^6 = p^3(q^3)^2 = e \Rightarrow \text{order } 3$	A1 3	For correct order
		SR For answer(s) only allow B1 for either or both
(iii) 3	B1 1	For correct order and no others
(iv)	B1	For stating <i>e</i> and either pq or p^2q^2
$e, pq, p^2q^2 OR e, pq, (pq)^2$	B1	For all 3 elements and no more
	B1	For stating e and either pq^2 or p^2q
$e, pq^2, p^2q \ OR \ e, pq^2, (pq^2)^2$	B1 4	For all 3 elements and no more
$OR e, p^2q, (p^2q)^2$		
	10	

6 (i) (CF $m = -3 \Rightarrow$) Ae^{-3x}	B1 1	For correct CF
(ii) (y =) px + q	B1	For stating linear form for PI (may be implied)
$\Rightarrow p + 3(px + q) = 2x + 1$	M1	For substituting PI into DE (needs y and $\frac{dy}{dx}$)
$\Rightarrow p = \frac{2}{3}, q = \frac{1}{9}$	A1 A1	For correct values
$\Rightarrow GS y = Ae^{-3x} + \frac{2}{3}x + \frac{1}{9}$	A1√	For correct GS. f.t. from their CF + PI
		SR Integrating factor method may be used, but CF must be stated somewhere to earn the mark in (i)
I.F. $e^{3x} \Rightarrow \frac{d}{dx} \left(y e^{3x} \right) = (2x+1)e^{3x}$	B1	For stating integrating factor
$\Rightarrow y e^{3x} = \frac{1}{3} e^{3x} (2x+1) - \int \frac{2}{3} e^{3x} dx$	M1	For attempt at integrating by parts the right way round
$\Rightarrow y e^{3x} = \frac{2}{3}x e^{3x} + \frac{1}{3}e^{3x} - \frac{2}{9}e^{3x} + A$	A2 *	For correct integration, including constant Award A1 for any 2 algebraic terms correct
$\Rightarrow GS y = Ae^{-3x} + \frac{2}{3}x + \frac{1}{9}$	A1√ 5	For correct GS. f.t. from their * with constant
(iii) EITHER $\frac{\mathrm{d}y}{\mathrm{d}x} = -3A\mathrm{e}^{-3x} + \frac{2}{3}$	M1	For differentiating their GS
$\Rightarrow -3A + \frac{2}{3} = 0$	M1	For putting $\frac{dy}{dx} = 0$ when $x = 0$
$y = \frac{2}{9}e^{-3x} + \frac{2}{3}x + \frac{1}{9}$	A1	For correct solution
$OR \frac{\mathrm{d}y}{\mathrm{d}x} = 0$, $x = 0 \Rightarrow 3y = 1$	M1	For using original DE with $\frac{dy}{dx} = 0$ and $x = 0$ to find y
$\Rightarrow \frac{1}{3} = A + \frac{1}{9}$	M1	For using their GS with y and $x = 0$ to find A
$y = \frac{2}{9}e^{-3x} + \frac{2}{3}x + \frac{1}{9}$	A1 3	For correct solution
(iv) $y = \frac{2}{3}x + \frac{1}{9}$	B1√ 1	For correct function. f.t. from linear part of (iii)
	10	

	1	
7 (i) EITHER: (AG is $\mathbf{r} =)[6, 4, 8] + tk[1, 0, 1]$ or $[3, 4, 5] + tk[1, 0, 1]$	B1	For a correct equation
Normal to <i>BCD</i> is	M1	For finding vector product of any two of $\pm[1, -4, -1], \pm[2, 1, 1], \pm[1, 5, 2]$
$\mathbf{n} = k[1, 1, -3]$	A1	For correct n
Equation of <i>BCD</i> is $\mathbf{r} \cdot [1, 1, -3] = -6$	A1	For correct equation (or in cartesian form)
Intersect at $(6+t)+4+(-3)(8+t)=-6$	M1	For substituting point on AG into plane
$t = -4 \ (t = -1 \text{ using } [3, 4, 5]) \Rightarrow \mathbf{OM} = [2, 4, 4]$	A1	For correct position vector of M AG
OR: (AG is $\mathbf{r} = $) [6, 4, 8] + tk [1, 0, 1] or [3, 4, 5] + tk [1, 0, 1]	B1	For a correct equation
$\mathbf{r} = \mathbf{u} + \lambda \mathbf{v} + \mu \mathbf{w}$, where $\mathbf{u} = [2, 1, 3] \ or \ [1, 5, 4] \ or \ [3, 6, 5]$ $\mathbf{v}, \mathbf{w} = \text{two of } [1, -4, -1], [1, 5, 2], [2, 1, 1]$	M1 A1	For a correct parametric equation of <i>BCD</i>
$(x =) 6+t = 2+\lambda + \mu$ e.g. $(y =) 4 = 1-4\lambda + 5\mu$ $(z =) 8+t = 3-\lambda + 2\mu$	M1	For forming 3 equations in t , λ , μ from line and plane, and attempting to solve them
$t = -4 \text{ or } \lambda = -\frac{1}{3}, \mu = \frac{1}{3}$	A1	For correct value of t or λ , μ
\Rightarrow OM = [2, 4, 4]	A1 6	For correct position vector of M AG
(ii) A, G, M have t = 0, -3, -4 OR $AG = 3\sqrt{2}, AM = 4\sqrt{2} OR$ $AG = [-3, 0, -3], AM = [-4, 0, -4]$ $\Rightarrow AG : AM = 3 : 4$	B1 1	For correct ratio AEF
(iii) $OP = OC + \frac{4}{3}CG$	M1	For using given ratio to find position vector of <i>P</i>
$= \left[\frac{11}{3}, \frac{11}{3}, \frac{16}{3}\right]$	A1 2	For correct vector
(iv) EITHER: Normal to ABD is	M1	For finding vector product of any two of $\pm [4, 3, 5], \pm [1, 5, 2], \pm [3, -2, 3]$
$\mathbf{n} = k[19, 3, -17]$	A1	For correct n
Equation of <i>ABD</i> is r .[19, 3, -17] = -10	M1	For finding equation (or in cartesian form)
$19.\frac{11}{3} + 3.\frac{11}{3} - 17.\frac{16}{3} = -10$	A1	For verifying that <i>P</i> satisfies equation
OR: Equation of ABD is $\mathbf{r} = [6, 4, 8] + \lambda[4, 3, 5] + \mu[1, 5, 2]$ (etc.)	M1	For finding equation in parametric form
$\left[\frac{11}{3}, \frac{11}{3}, \frac{16}{3}\right] = [6, 4, 8] + \lambda[4, 3, 5] + \mu[1, 5, 2]$	M1	For substituting P and solving 2 equations for λ , μ
$\lambda = -\frac{2}{3}, \mu = \frac{1}{3}$	A1	For correct λ , μ
	A1	For verifying 3rd equation is satisfied
OR: $\mathbf{AP} = \left[-\frac{7}{3}, -\frac{1}{3}, -\frac{8}{3} \right]$	M1	For finding 3 relevant vectors in plane ABDP
$\mathbf{AB} = [-4, -3, -5], \ \mathbf{AD} = [-3, 2, -3]$	A1 M1	For correct AP or BP or DP For finding AB , AD or BA , BD or DB , DA
$\Rightarrow \mathbf{AB} + \mathbf{AD} = [-7, -1, -8]$	1,11	To a mining rap, rap or pray pro or pro, pra
$\Rightarrow \mathbf{AP} = \frac{1}{3}(\mathbf{AB} + \mathbf{AD})$	A1 4	For verifying linear relationship
3 ` ′	13	
	13	

8 (i) $\cos 4\theta + i \sin 4\theta =$ $c^4 + 4ic^3s - 6c^2s^2 - 4ics^3 + s^4$ $\Rightarrow \sin 4\theta = 4c^3s - 4cs^3$	M1	For using de Moivre with $n = 4$
and $\cos 4\theta = c^4 - 6c^2s^2 + s^4$	A1	For both expressions
$\Rightarrow \tan 4\theta = \frac{4 \tan \theta - 4 \tan^3 \theta}{1 - 6 \tan^2 \theta + \tan^4 \theta}$	M1	For expressing $\frac{\sin 4\theta}{\cos 4\theta}$ in terms of c and s
40 6-420-1	A1 4	For simplifying to correct expression For inverting (i)
(ii) $\cot 4\theta = \frac{\cot^4 \theta - 6\cot^2 \theta + 1}{4\cot^3 \theta - 4\cot \theta}$	B1 1	and using $\cot \theta = \frac{1}{\tan \theta}$ or $\tan \theta = \frac{1}{\cot \theta}$. AG
(iii) $\cot 4\theta = 0$	B1	For putting $\cot 4\theta = 0$
Put $x = \cot^2 \theta$ $\theta = \frac{1}{8}\pi \Rightarrow x^2 - 6x + 1 = 0$ $OR x^2 - 6x + 1 = 0 \Rightarrow \theta = \frac{1}{8}\pi$	B1 B1 3	(can be awarded in (iv) if not earned here) For putting $x = \cot^2 \theta$ in the numerator of (ii) For deducing quadratic from (ii) and $\theta = \frac{1}{8}\pi$ OR For deducing $\theta = \frac{1}{8}\pi$ from (ii) and quadratic
(iv) $4\theta = \frac{3}{2}\pi OR \frac{1}{2}(2n+1)\pi$	M1	For attempting to find another value of θ
2nd root is $x = \cot^2\left(\frac{3}{8}\pi\right)$	A1	For the other root of the quadratic
$\Rightarrow \cot^2\left(\frac{1}{8}\pi\right) + \cot^2\left(\frac{3}{8}\pi\right) = 6$	M1	For using sum of roots of quadratic
$\Rightarrow \csc^2\left(\frac{1}{8}\pi\right) + \csc^2\left(\frac{3}{8}\pi\right) = 8$	M1 A1 5	For using $\cot^2 \theta + 1 = \csc^2 \theta$ For correct value

Mark Scheme 4728 January 2007

1	(i)	Net force on trailer is $+/-(700 - R_T)$	B1		
			M1		For applying Newton's second law to the trailer with 2 terms on LHS (no vertical forces)
		$700 - R_T = 600 \times 0.8$	A1ft		ft cv (+/-(700 - R _T))
		Resistance is 220N	A 1	4	
	(ii)		M1		For applying Newton's second law to the car or to the whole, with a $=+/-0.8$ (no vertical forces)
		$2100 - 700 - R_C = 1100 \times 0.8$	A1ft		
		or			ft cv(220)
		$2100 - (R_C + 220) = (1100 + 600)x$			
		0.8			
		Resistance is 520N	A1	3	

2	(i)		M1		For resolving forces vertically
		15 x 0.28 and 11x 0.8	A 1		Allow use of $= 16.3$ and $= 53.1$
		Y = 15x0.28 + 11x0.8 - 13	A1ft		Ft cv(15 x 0.28 and 11x 0.8)
		Component is zero AG	A1	4	SR 15sin + 11sin $-13 = 0$ gets M1A0A1ftA0
	(ii)		M1		For resolving forces horizontally
		$X = 15 \times 0.96 - 11 \times 0.6$	A1		Allow use of $= 16.3$ and $= 53.1$
		Magnitude is 7.8N	A 1	3	Accept 7.79, -7.8
	(iii)	Direction is that of the	B1	1	Do not allow horizontal, 90° from vertical.
		(+ve) x -axis			Do not award if $= 16.3$ and $= 53.1$
					have been used.

3	(i)	T = 0.3g	B1	At particle (or $0.3g - T = 0.3a$)
		F = T	B1	Or $F = cv(T \text{ at particle})$ (or $T - F = 0.4a$)
		R = 0.4g	B1	
			M1	For using $F = \mu R$
		Coefficient is 0.75	A1 5	
	(ii)		M1	For resolving 3 relevant forces on B horizontally, a=0
		X = 0.3g + 0.3g	A1ft	$Ft X = 0.3g + cv(\mu)$
				cv(R)
		X = 5.88N	A1 3	

4	(i)	Momentum before collision = +/-(0.8 x 4 - 0.6 x 2) Momentum after collision = +/-0.8v _L + 0.6 x 2	B1 B1		Or momentum change L $0.8x4 +/- 0.8v_L$ Accept inclusion of g in both terms Momentum change N $0.6x2 + 0.6x2$ Accept inclusion of g in both terms
		Speed is 1 ms ⁻¹	M1 A1	4	For using the principle of conservation of momentum even if g is included throughout Accept -1 from correct work (g not used).
	(ii)(a)	0.6x2 - 0.7x0.5 Total is 0.85kgms ⁻¹ <u>Total</u> momentum +ve after the collision. If N continues in its original direction, both particles have a negative momentum.	M1 A1 DM 1		Must be a difference. SR 0.6x1 - 0.7x0.5 M1 Must be positive Or 0.6v + 0.7w is positive, confirming that the momentum is shared between two particles. No reference need be made to the physically impossible scenario where M and N both might continue in their original directions.
	(ii)(b)	N must reverse its direction. 0.6x2 - 0.7x0.5 (= 0.85) = $0.7v$	A1 A1ft	4	ft cv (0.85). Award M1 if not given in ii(a).
		Speed is 1.21ms ⁻¹	A1	2	Positive. Accept (a.r.t) 1.2 from correct work

5	(i)	$1.8t^2/2$ (+C)	M*1		For using $v = \int adt$
	(ii)	(t = 0, v = 0) C = 0 Expression is $1.8t^2/2$	B1 A1 M1	3	May be awarded in (ii). Accept c written and deleted. also for $1.8t^2 + c$ For using $s = \int v dt$
		$0.9t^3/3$ (+K) 0.3×64	A1 M1		SR Award B1 for $(s = 0, t = 0)$ K = 0 if not already given in (i), or +K included and limits used. For using limits 0 to 4 (or equivalent)
		19.2m AG	A1	4	Tor using minus o to T (or equivarent)
	(iii)	$u = 0.9 \times 4^2$	D* M1	7	For using 'u' = $v(4)$
		$s = 14.4 \times 3 + \frac{1}{2} 7.2 \times $	M1 A1		For using $s = ut + \frac{1}{2} x7.2t^2$ with non-zero u (s = 75.6)
		3 ²			(5 .515)
		19.2 + 75.6	M1		For adding distances for the two distinct stages
		Displacement is 94.8m OR	A1	5	
		$v = \int 7.2dt$	D* M1		For finding v(4) Integration and finding non-zero integration constant
		t = 0, v = 14.4, c = 14.4	1111		Nb Using $t=4$, $v=14.4$ gives $c=-14.4$
		$s = \int 7.2t + 14.4dt$			$s = \int 7.2t - 14.4dt$
		t = 0, s = 0, k = 0			Integration and finding integration constant. Nb t=4 with s=19.2 and v=7.2t-14.4 gives k=19.2
		$s=3.6x3^2+14.4x3$ 19.2 + 75.6 = 94.8 Displacement is 94.8m	M1 A1 M1 A1		Substituting t = 3 (OR 7 into s = $3.6t^2$ - $14.4t + 19.2$) (s=75.6) (OR s = 3.6×7^2 - $14.4 \times 7 + 19.2$) Adding two distinct stages OR s = 3.6×7^2 - $14.4 \times 7 + 19.2$ = 94.8 final M1A1

6	(i)	$\frac{1}{2} 25 v_{\rm m} = 8$ or	B*1	Do not accept solution based on isosceles or right
		$\frac{1}{2}Tv_m + \frac{1}{2}(25 - T)v_m =$		angled triangle

	8			
	-	D*D	2	
	Greatest speed is		2	
	0.64	1		
(**)	ms ⁻¹	3.61		
(ii)		M1		For using $v = u + at$ or the idea that gradient
	11 0.02 40	. 1		represents acceleration
	$V = 0.02 \times 40$	A1	_	
	V = 0.8	A1	3	
(iii)		M1		For using the idea that the area represents
		N / 1		displacement. nb trapezium area is 16+8+8
	1/ (70 + T) 0.0 40	M1		For $A = \frac{1}{2}(L_1 + L_2)h$ or other appropriate breakdown
	$\frac{1}{2}(70 + T) \times 0.8 = 40$	A1ft		$\frac{1}{2}(30 + T) \times 0.8 = 40 - 8 - \frac{1}{2} \times 40 \times 0.8$ ft cv(0.8)
	8	. 1		
	Duration is 10s	A1	4	
(iv)		M1		For using $v = u + at$ or the idea that gradient
				represents acceleration
	0=0.8+a(30-10)	A1ft		ft $cv(10)$ and $cv(0.8)$
	Deceleration is	A 1	3	Accept -0.04 from correct work
	0.04ms^{-2}			
	Or	M1		Using the idea that the area represents displacement.
	$40-8-\frac{1}{2} \times 40 \times 0.8-$	Alft		Ft cv(0.8 and 10)
	10x0.8	A 1		Accept -0.04 from correct work. d=-0.04 A0
	=0.8(30-10)-a(30-			
	$(10)^2/2$			
	Deceleration is			
	0.04ms^{-2}			

7	(i)	$R = 0.5g\cos 40^{\circ}$	B1		R = 3.7536
		$F = 0.6 \times 0.5 g\cos 40^{\circ}$	M1		For using $F = \mu R$
		Magnitude is 2.25N AG	A1	3	
	(ii)		M1		For applying Newton's second law (either case) //slope, two forces
		$-/+0.5$ gsin $40^{\circ} - F = 0.5$ a	A 1		Either case
		(a) Acceleration is - 10.8ms ⁻²	A1		Accept 10.8 from correct working (both forces have the same sign)
		(b) Acceleration is 1.79ms ⁻²	A1	4	Accept -1.79 from correct working (the forces have opposite sign) Accept ! 1.8(0)
	(iii)a)	$0 = 4 + (-10.8)T_1$	M1		Requires appropriate sign
	(III)a)	$T_1 = 0.370(3)$	A1		requires appropriate sign
		. ()			Accept 0.37
	b)		M1		For complete method of finding distance from A to highest point using a(up) with appropriate sign
		$0 = 4^2 + 2(-10.8)$ s or	A 1		ft a(up) and/or T_1
		$s = (0 + 4) \times 0.37/2$ or $s = 4(0.370) + \frac{1}{2}(-3)$	ft		(s = 0.7405)
		$(10.8)(0.370)^2$	3.54		
			M1		For method of finding time taken from highest point to A and not using a(up)
		$0.7405 = \frac{1}{2} (1.79) T_2^2$	A1ft		ft a(down) and $cv(0.7405)$ ($T_2 = 0.908$ approx)
		0.370 + 0.908	M1		Using $T = T_1 + T_2$ with different values for T_1 , T_2
		= 1.28s	A1	8	3 significant figures cao

Mark Scheme 4729 January 2007

1		com directly above lowest point	B1			
		$\tan \alpha = 6/10$	M1			
		$\alpha = 31.0$	A1	3	or 0.540 rads	3
		T	<u> </u>	1		
2		e = 1 = (y-x)/4	B1		or $\frac{1}{2}$ x0.2 $x^2 + \frac{1}{2}$ x0.1 $y^2 =$	
		0.8 = 0.2x + 0.1y	B1		$\frac{1}{2}$ x0.2x4 ² (B1/B1 for any 2)	
		solving sim. equ.	M1		not if poor quad. soln.	
		x = 4/3 only	A1	4		4
3	(i)	$x^2 = 21^2 + 2x40x9.8$	M1			
<u> </u>	(1)	x = 35	A1			
		$0 = y^2 - 2x40x9.8$	M1			
		y = 28	Al		may be implied	
		e = 28/35	M1		may be implied	
		e = 0.8	Al	6	aef	
	(ii)	0.2x280.2x35	M1	<u> </u>	must be double negative	
	(11)	I = 12.6	Al	2	must be usuale negative	8
		1 12.0	711	1	I .	
4	(i)	$\frac{1}{2}$ x80x5 ² or $\frac{1}{2}$ x80x2 ² either KE	B1		1000/160	
		70 x 25	B1		1750	
		80x9.8x25sin20°	B1		6703.6	
		$WD = \frac{1}{2}x80x5^{2} - \frac{1}{2}x80x2^{2} + 70x25 + 80x9.8x25\sin 20^{\circ}$	M1		4 parts	
		9290	A1	5		
	(ii)	Pcos30°x25	B1		or a=0.42	
		Pcos30°.25=9290 / Pcos30°-70-80x9.8sin20°=80a	M1			
		P = 429 / if P found 1st then Pcos30°x25 = 9290 ok	A1	3		8
		1	1	1		8
5	(i)	$D = 3000/5^2 = 120$	M1	1		
	···	100 -5 100	A1	2	AG	
	(ii)	120 - 75 = 100a	M1			
	····	$a = 0.45 \text{ ms}^{-2}$	A1	2		
	(iii)	100x9.8x1/98	B1		weight component	_
		$3000/v^2 = 3v^2 + 100x9.8x1/98$	M1			
		$3000 = 3v^4 + 10v^2$	A1		aef	
		solving quad in v ²	M1	1-	$(v^2 = 30)$	
		$v = 5.48 \text{ ms}^{-1}$	A1	5	accept √30	9
6	(i)	$\operatorname{com of } \Delta \operatorname{4 cm right of } C$	B1			
-		$1.5 \times 10 + 7 \times 20 = \overline{x} \times 30$	M1	1		
		110 11 10 7 11 20 10 11 20	A1			
		$\overline{x} = 5.17$	A1	1	5 1/6 31/6	
		$com of \Delta 6 cm above E$	B1		or 3 cm below C	1
		$4.5 \times 10 + 6 \times 20 = \overline{y} \times 30$	M1	1		
		1	A1	1		
		$\overline{y} = 5.5$	A1	8		
	(ii)	$\tan\theta = 5.17/3.5$	M1		right way up and $(9-\overline{y})$	
	1 ` ′		A1 /	2	$\int \text{their } \overline{x} / (9 - \overline{y})$	
		55.9° or 124°	I A I√			
	(iii)				-	
	(iii)	d = 15sin45° (10.61) Td = 30 x 5.17	B1 M1		dist to line of action of T allow Tx15 i.e. T vertical	

7	(i)	Tsin30°	B1			
•	(.)	$T\sin 30^\circ = 0.3x0.4x2^2$	M1		resolving horizontally	
		131130 0.340.442	A1		receiving nemeentany	
		T = 0.96	A1	4		
	(ii)	R + Tcos30° = 0.3x9.8	M1	•	resolving vertically	
	(,	1 1 100000 0.000.0	A1		receiving vertically	
		R = 2.11	A1√	3		
			AIV		√ their T (2.94—Tcos30°)	
	(''')	2				
	(iii)	$T_1 \sin 30^\circ = 0.3 \text{ x } \text{v}^2 / 0.4$	M1		or $0.3 \times 0.4 \times \omega^2$	
		7 000 00 00	A1		$(T_1 = 1.5v^2)$	
	1	$T_1 \cos 30^\circ = 0.3 \times 9.8$	B1		$(T_1 = 1.96\sqrt{3} = 3.3948)$	
		R = 0	B1		may be implied or stated	
		$\tan 30^{\circ} = v^2 / (0.4 \times 9.8)$ for elim of T ₁	M1		and v=0.4 ω (ω = 3.76)	4.0
		v = 1.50	A1	6		13
3	/i)	v = 42ain200 (=24)	B1	l		
<u> </u>	(i)	$v_v = 42\sin 30^\circ (=21)$ 0 = 21 ² - 2x9.8xh	M1			<u> </u>
	-	h = 22.5	N1	3		-
		11 - 22.3	AI	3		
	(11)		<u> </u>			<u> </u>
	(ii)	v _h = 42cos30° (=36.4)	B1			
		$v_v = \pm v_h x \tan 10^\circ$	M1			
		$v_v = \pm 6.41 \text{ or } 21\sqrt{3} \text{ tan} 10^\circ$	A1		or 42cos30°.tan10°	
		-6.41 = 42sin30° - 9.8t	M1	**	must be –6.41(also see "or" x 2)	
		t = 2.80	A1	**		
		y=42sin30°x2.8 – 4.9x2.8 ²	M1	**		
		y = 20.4	A1	**	√ their t	
		·	M1		V trieii t	
		$x = 42\cos 30^{\circ} \times 2.80$ x = 102			<u> </u>	
			A1 √		√ their t	
		$\sqrt{(x^2+y^2)}$	M1			
		d = 104	A1	11		
	or	$6.41^2 = 21^2 + 2 \times -9.8s$	M1	**	vert dist first then time	
		s = 20.4	A1	**		
		$20.4 = 21t + \frac{1}{2}9.8t^2$	M1	**		
		t = 2.80	A1	**		
	or	22.5 — s and 6.41 ² =2x9.8s	M1	**	dist from top (s = 2.096)	
		y = 20.4	A1	**	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		$22.5 \& 2.1 = \frac{1}{2}.9.8t^2$	M1	**	2 separate times (2.143, 0.654)	
		t = 2.80	A1	**	2.143 + 0.654	14
		alternatively				
	(ii)	$y = x/\sqrt{3} - x^2/270$ aef	B1		y=xtan30°- 9.8x²/2.42².cos²30°	
		$dy/dx = 1/\sqrt{3} - x/135$	M1		for differentiating	
		1 3/	A1		aef	
		$dy/dx = - \tan 10^{\circ}$	M1		must be -tan10°	
	1	$1/\sqrt{3} - x/135 = -\tan 10^{\circ}$	A1		100000000000000000000000000000000000000	
	1	solve for <i>x</i>	M1			
	<u> </u>	x = 102			Com the aire district	
	-		A1√		✓ on their dy/dx	
		$y = x/\sqrt{3} - x^2/270$	M1		1	
		y = 20.4	A1 √		√ their x	
		$\sqrt{(x^2+y^2)}$	M1			
		d = 104	A1	(11)		

Mark Scheme 4730 January 2007

1	M1	For using the principle of conservation of energy
$\sqrt{20.6x5^2 - \sqrt{20.6v^2}} = 0.6g(2x0.4) [v^2 = 9.32]$	A 1	
[T + 0.6g = 0.6a]	M1	For using Newton's second law
[a = 9.32/0.4]	M1	For using $a = v^2/r$
T + 0.6g = 0.6x9.32/0.4	Alft	ft incorrect energy equation
Tension is 8.1N	A1 6	

2	$28\cos 30^{\circ} - 10\cos 30^{\circ} [= \Delta v_{H} =$	B1		
	$(I/m)\cos\theta$]			
	$10\sin 30^{\circ} + 28\sin 30^{\circ} [= \Delta v_{V} =$	B1		
	$(I/m)\sin\theta$]			
	$[X = -I\cos\theta = -0.8885, Y = I\sin\theta =$	M1		For using my change for
	1.083]			component or resultant
		M1		For using $I^2 = X^2 + Y^2$
	I = 1.40	A 1		
	$[\tan \theta = 1.083/0.8885 \text{ or } 19/15.588]$	M1		For using $\theta = \tan^{-1}(Y/-X)$ or
				$\tan^{-1}(\left \Delta\mathrm{v_{V}}\right /\left \Delta\mathrm{v_{H}}\right)$
	$\theta = 50.6$	A1	7	

	ALTERNATIVELY			
2		M1		For using cosine rule in correct triangle
	$(I/m)^2 = 28^2 + 10^2 - 2x28x10\cos 60^\circ$ [=604]	A 1		
	$[I = 0.057 \sqrt{604}]$	M1		For using I = mv change
	I = 1.40	A 1		
		M1		For using sine rule in correct triangle
	$(I/m)/\sin 60^{\circ} =$	A 1		
	$10/\sin(\theta - 30^{\circ})$ or $28/\sin(150^{\circ} - 10^{\circ})$			
	θ)			
	$\theta = 50.6$	A1	7	

3	(i) $160a = 2aY$	M1		For taking moments for AB about B
	Component at B is 80N	A 1		
	Component at C is 240N	B1ft	3	ft 160 + Y
	(ii)	M1		For taking moments for BC about B or C (and using X = F) or for whole about A
	$160a \cos 60^{\circ} + 2aF\sin 60^{\circ} = 240x2a \cos 60^{\circ}$ or	A1ft		
	$80x2a \cos 60^{\circ} + 160a \cos 60^{\circ} = 2aX\sin 60^{\circ}$			
	or			
	$240(2 + 2\cos 60^{\circ})a =$			
	$160a + 160(2 + \cos 60^{\circ})a +$			
	2aFsin60°			
	Frictional force is 92.4N	A 1		
	Direction is to the left	B1	4	
	(iii) [92.4/240]	M1		For using $F = \mu R$
	Coefficient is 0.385	A1ft	2	

4	(i)		M1		For using T = mg and T = λ e/L
	S	[e =	A1		
	0.392]				
	Position is 1.092m below O.		A1	3	AG
	(ii)		M1		For using Newton's second law
	0.2g - 3.5(0.392 + x)/0.7 = 0.2a		A1ft		ft incorrect e
	a = -25x		A1ft		ft incorrect e
	$[25A^2 = 1.6^2 \text{ or }$		M1		For using $A^2n^2 = v_{max}^2$ or
	$\frac{1}{2}(0.2)1.6^2 + 3.5 \times 0.392^2 / (2 \times 0.7) = 0.000$	+			Energy at lowest point =
	0.2gA				energy at equilibrium point (4
	=3.5x(0.392 +				terms needed including 2 EE
	$A)^2/(2x0.7)$				terms)
	Amplitude is 0.32m		A1ft	5	
	$(iii) \qquad [x = 0.32\sin 2^{c}]$		M1		For using $x = A\sin nt$ or $A\cos(\pi/2 -$
					nt)
	x = 0.291		A1		,
	$[v = 0.32x5\cos 2^{c} \text{ or } v^{2} = 25(0.32^{2} - 0)]$).291 ²)	M1		For using $v = Ancos nt$ or $v^2 = n^2(A^2 - x^2)$ or
	0.256 + 0.38416 + 0.2g(0.291)				Energy at equilibrium point =
	$= \frac{1}{2} 0.2 v^2 +$				energy at $x = 0.291$
	$2.5(0.683)^2$				
	$v^2 = 0.443$		A1		May be implied
	v = -0.666 (or 0.666 upwards)		A1	5	-

5	(i) $[mg - mkv^2 = ma]$	M1		For using Newton's second
				law
	$(v dv/dx)/(g - kv^2) = 1$	A1	2	AG
	(ii) $[-\frac{1}{2}[\ln(g - kv^2)]/k = x$ (+C)]	M1		For separating variables and attempting to integrate
	$[-(\ln g)/2k = C]$	M1		For using $v(0) = 0$ to find C
	$x = [-\frac{1}{2} [\ln{(g - kv^2)/g}]/k$	A 1		Any equivalent expression for
				X
	$[\ln\{(g - kv^2)/g\} = \ln(e^{-2kx})]$	M1		For expressing in the form
				$\ln f(v^2) = \ln g(x)$ or equivalent
	$v^2 = (1 - e^{-2kx})g/k$	A 1		
		M1		For using $e^{-Ax} \rightarrow 0$ for +ve A
	Limiting value is $\sqrt{g/k}$	A1ft	7	AG
	(iii) $[1 - e^{-600k} = 0.81]$	M1		For using $v^2(300) = 0.9^2 g/k$
	[-600k = ln(0.19)]	M1		For using logarithms to solve
				for k
	k = 0.00277	A 1	3	

6	(i) $[u \sin 30^\circ = 3]$		M1		For momentum equation for
					B, normal to line of centres
	u = 6		A1	2	
	(ii) $[4\sin 88.1^{\circ} = v]$	sin45°]	M1		For momentum equation for A, normal to line of centres
	v = 5.65		A 1		
			M1		For momentum equation along line of centres
	0.4(4cos88.1°) – mu c	$\cos 30^{\circ} = -0.4 \text{v} \cos 45^{\circ}$	A 1		
	m = 0.318		A1	5	
	(iii)		M1		For using NEL
	$0.75(4\cos\theta + u\cos30$	$(^{\circ}) = v \cos 45^{\circ}$	A1		
	$4\sin\theta = v \sin 45^{\circ}$		B1		
	$[3\cos\theta + 4.5\cos 30^{\circ} =$	$4\sin\theta$	M1		For eliminating v
	$8\sin\theta - 6\cos\theta = 9\cos\theta$	30°	A 1	5	AG
7	(i)(a) Extension = 1	$.2 \alpha - 0.6$	B1		
	$[T = mgsin \alpha]$		M1		For resolving forces tangentially
	0.5 x 9.8 sin $\alpha = 6.86$ (1	$.2\alpha - 0.6)/0./6$	A1ft		
	$\sin \alpha = 2.8 \alpha - 1.4$		A1	4	AG
	(i)(b) [0.8, 0.756, 0 0.741, 0.741		M1		For attempting to find α_2 and α_3
	$\alpha = 0.74$		A 1	2	
	(ii) $\Delta h = 1.2(\cos \theta)$ [0.217]	$0.5 - \cos(0.8)$	B1		
	[0.5x9.8x0.217] = 1.0	06355]	M1		For using Δ (PE) = mg Δ h
	$[6.86(1.2\times0.8-0.6)^2/($		M1		For using $EE = \lambda x^2/2L$
		·	M1		For using the principle of conservation of energy
	$\frac{1}{2} 0.5 v^2 = 1.06355 0$	0.74088	A 1		Any correct equation for v^2
	Speed is 1.14ms ⁻¹		A 1		•
	Speed is decreasing		B1ft	7	

Mark Scheme 4732 January 2007

Note: "3 sfs" means an answer which is equal to, or rounds to, the given answer. If such an answer is seen and then later rounded, apply ISW.

Penalize over-rounding or	ly once in paper,	except qu 8(ii).

Penalize over-	-rounding only once in paper, except qu 8(ii).			1 2
	rounding only once in paper, except qu 8(ii). $\frac{1 - (^{3}/_{10} + ^{1}/_{5} + ^{2}/_{5})}{1/_{10}}$	M1 A1	2	or $(^3/_{10} + ^1/_5 + ^2/_5) + p = 1$
ii	$\frac{3}{10} + 2 \times \frac{1}{5} + 3 \times \frac{2}{5}$ $\frac{19}{10}$ oe	M1 A1	2	÷ 4or6 ⇒ M0A0
Total	,10	4		
2i	$x = 20; y = 11; x^2 = 96; y^2 = 31; xy$	•		
2.	=52) $S_{xx} = 16$ or 3.2 $S_{yy} = 6.8$ or 1.36 $S_{xy} = 8$ or 1.6	B1 B1 B1 M1		$dep -1 \le r \le 1$
:	$\sqrt{(16x6.8)}$ $\sqrt{(3.2x1.36)}$ = 0.767 (3 sfs)		5	ft their S 's (S_{xx} & S_{yy} +ve) for M1 only
ii	Small sample oe		1	
Total		6		
3i	120	B1	1	not just 5!
iia	$\frac{3}{3}$ x 4! or 72 (÷ 5!)	M1 A1	2	oe, eg $^{72}/_{120}$
b	Starts 1 or 21 (both)	M1		12,13,14,15, (≥2 of these incl 21, or allow 1 extra) can be implied by wking
	$\frac{1}{5} + \frac{1}{5} \times \frac{1}{4}$	M1	2	or $5x 3!$ or $4! + 3!$ (÷5!)
Total	$= \frac{1}{4}$ oe	A1 6	3	complement: full equiv steps for Ms
4ia	W & Y oe	B1	1	
b	X oe	B1	1	
ii	Geo probs always decrease or Geo has no upper limit to x or $x \neq 0$	B1	1	Geo not fixed no. of values diags have fixed no of trials not Geo has +ve skew
iii	W Bin probs cannot fall then rise or bimodal	B1 B1dep	2	indep allow Bin probs rise then fall
Total	or official	5		
5i	$\frac{2685 - \frac{140 \times 106.8}{8}}{3500 - \frac{140^2}{8}} \text{or } \frac{2685 - }{8 \times 17.5 \times 13.35}$	M1		Correct sub in any correct formula for b (incl. $(x - \overline{x})$ etc)
	$= {}^{136}/_{175}$ or 0.777 (3 sfs)	A1		100.0
	$y - {}^{106.8}/_8 = 0.777(x - {}^{140}/_8)$ $y = 0.78x - 0.25$ or better or $y = {}^{136}/_{175}x - {}^{1}/_4$		4	or $a = {}^{106.8}/_8 - 0.777 x^{140}/_8$ ft b for M1 ≥ 2 sfs sufficient for coeffs
ii 	$0.78 \times 12 - 0.25$ = 9.1 (2 sfs)		2	M1: ft their equn A1: dep const term in equn
iiia	Reliable	B1		Just "reliable" for both: B1
b	Unreliable because extrapolating oe	B1	2	
Total		8		

6i	$Geo(^2/_3)$ stated	M1	or implied by $\binom{1}{3}^n x^2/_3$
	$(^{1}/_{3})^{3} \times ^{2}/_{3}$	M1	
	$= \frac{2}{81}$ or 0.0247 (3 sfs)	A1 3	

ii $\binom{1/_3}{3}^3$ $1 - \binom{1}{_3}^3$ $\frac{26}{_{27}}$ or 0.963 iii $\frac{1}{2/3}$ $\frac{3}{2}$ oe Total	(3 sfs)	M1 M1 A1	3	or ${}^2/_3 + {}^1/_3 x^2/_3 + ({}^1/_3)^2 x^2/_3$: M2 one term omitted or extra or wrong: M1 1 - $({}^1/_3)^4$ or 1 - $({}^2/_3 + {}^1/_3 x^2/_3 + ({}^1/_3)^2 x^2/_3$):M1
iii $\frac{\frac{26}{27} \text{ or } 0.963}{\frac{1}{27} \text{ or } 0.963}$ = 3/2 oe	(3 sfs)	A1	3	
iii $1/2/3$ = 3/2 oe	(3 sfs)		3	
iii $1 / 2/3$ = 3/2 oe	\$ <i>/</i>)	
		M1		
Total		A1	2	
		8		
$\frac{2}{9}$ or $\frac{7}{9}$ oe se		B1		
$\frac{3}{9}$ or $\frac{6}{9}$ oe so	een	B1		
$\frac{1}{8}$ or $\frac{7}{8}$ oe se		B1		
Correct struct	ture	B1		ie 8 correct branches only,
4.11		D1	_	ignore probs & values
All correct		B1	5	including probs and values,
3/ 7/ - 7/	3/ - 7/ 6/	142		but headings not req'd or $\frac{3}{10}x^{7/9} + \frac{7}{10}$ or $1 - \frac{3}{10}x^{2/9}$
ii $\frac{3}{10} \times \frac{7}{9} + \frac{7}{10}$	$_{0}$ $^{3}/_{9}$ + $^{7}/_{10}$ $^{6}/_{9}$	M2		
14/ 27 0 022	22	A1	3	M1: one correct prod or any prod $+ \frac{7}{10}$ or $\frac{3}{10}$ x $\frac{2}{9}$
iii $\frac{^{14}}{^{3}}$ or 0.933		M2	3	M1: one correct prod
/ ₁₀ X / ₉ X / ₈	T /10 X /9	1012		W1. one correct prod
$^{21}/_{40}$ or 0.525	5 ne	A1	3	cao
	ag except: with replacement:			re: B1 (ii) $^{91}/_{100}$: B2 (iii) 0.553: B2
Total	ug except. With replacement.	11		(II) / ₁₀₀ . B2 (III) 0.333. B2
8i Med = 2		B1	-	cao
LQ = 1 or UQ	0 = 4	M1		or if treat as cont data:
				read cf curve or interp at 25 & 75
IQR = 3		A1	3	cao
ii Assume last v	value = 7 (or eg 7.5 or 8 or 8.5)	B1		stated, & not contradicted in wking
				eg 7-9 or 7,8, 9 Not just in wking
xf attempte	d \geq 5 terms	M1		allow "midpts" in xf or x^2f
	ns that rounds to 2.6	A1		
$x^2 f$ or $\frac{x^2 f}{100}$		M1		
$\sqrt{(x^2f/100 - (x^2f/100)^2)^2}$				
, , ,	f)/100 fully correct but ft m	M1		don M2
1.0 Of 1./ or 3	sf ans that rounds to 1.6 or 1.7	A1		dep M3 penalize > 3 sfs only once
, , , , , , , , , , , , , , , , , , ,	CC , 11	 	6	
	iffected by extremes or	B1	1	or median is an integer or mean not int.
outliers etc ((NOT anomalies)			or not affected by open-ended interval
ixy Small change in	var'n leads to lge change in IQR			general comment acceptable
	ust 4, hence IQR exaggerated			for Old Moat LQ only just 1 & UQ only just 3
	ws variations are similar	B1	1	oe specific comment essential
	decr (as x incr) oe	B1		ranks reversed in OM or not rev in W
Old Moat		B1	2	NIS
Total		13		

9i	$^{11}C_5 \times (^{1}/_4)^6 \times (^{3}/_4)^5$	M1		or $462 \times (^{1}/_{4})^{6} \times (^{3}/_{4})^{5}$
	0.0268 (3 sfs)	A1	2	
ii	$q^{\bar{1}\bar{1}} = 0.05 \text{ or } (1-p)^{\bar{1}\bar{1}} = 0.05$	M1		(any letter except p) ¹¹ = 0.05 oe
	$\sqrt[11]{0.05}$	M1		oe or invlog $(\frac{\log 0.05}{11})$
	q = 0.762 or 0.7616	A 1		11
	p = 0.238 (3 sfs)	Alf	4	ft dep M2
iii	$11 \times p \times (1-p) = 1.76$ oe	M1		not $11pq = 1.76$
	$11p - 11p^2 = 1.76$ or $p - p^2 = 0.16$	A1		any correct equn after mult out
	$11p^2 - 11p + 1.76 = 0$ or $p^2 - p + 0.16 = 0$	A1		or equiv with $= 0$
	$(25p^2 - 25p + 4 = 0)$			
	(5p-1)(5p-4)=0			or correct fact'n or subst'n for their quad
	or $p = 11 - \sqrt{(11^2 - 4x11x1.76)}$	M1		equ'n eg $p = 1 \pm \sqrt{(1-4x0.16)}$
	2 x 11			2
	p = 0.2 or 0.8	A1	5	
Total		11		
	Total 72 marks			

Mark Scheme 4733 January 2007

For over-specified answers (> 6SF where inappropriate) deduct 1 mark, no more than once in paper.

1	$22 - \mu = \Phi^{-1}(0.242)$	M1		Standardise with Φ^{-1} , allow +, "1 -" errors, cc, $\sqrt{5}$ or 5^2
1	$\frac{22 - \mu}{5} = -\Phi^{-1}(0.242)$	A1		Correct equation including signs, no cc, can be wrong Φ^{-1}
	=-0.7	B1		0.7 correct to 3 SF, can be +
	$\mu = 25.5$	A1	1	
	<u> </u>		1	Answer 25.5 correct to 3 SF
2	(i) $900 \div 12 = 75$	B1	1	75 only
	(ii) (a) True, first choice is random	B1	1	True stated with reason based on first choice
	(b) False, chosen by pattern	B1	1	False stated, with any non-invalidating reason
	(iii) Not equally likely	M1		"Not equally likely", or "Biased" stated
	e.g. $P(1) = 0$, or triangular	A1	2	Non-invalidating reason
3	Let <i>R</i> be the number of 1s	B1		B(90, 1/6) stated or implied, e.g. Po(15)
	$R \sim B(90, 1/6)$	B1		Normal, $\mu = 15$ stated or implied
	\approx N(15, 12.5)	B1		12.5 or $\sqrt{12.5}$ or 12.5^2 seen
	13.5 - 15 [= -0.424]	M1		Standardise, np and npq , allow errors in $$ or cc or both
	$\sqrt{12.5}$	A1		$\sqrt{\text{and cc both right}}$
	0.6643	A1	6	Final answer, a.r.t. 0.664. [Po(15): 1/6]
4	(i) $\overline{w} = 100.8 \div 14 = 7.2$	B1		7.2 seen or implied
		M1		Use Σw^2 – their \overline{w}^2
	$\frac{938.70}{14} - \overline{w}^2 = 15.21$			
	× 14/13	M1		Multiply by $n/(n-1)$
	= 16.38	A1	4	Answer, a.r.t. 16.4
	(ii) N(7.2, 16.38 ÷ 70)	B1		Normal stated
	[=N(7.2, 0.234)]	В1√		Mean their \overline{w}
	, , , , ,	В1√	3	Variance [their (i) $\sqrt{\div}$ 70], allow arithmetic slip
5	(i) $\lambda = 1.2$	B1		Mean 1.2 stated or implied
	Tables or formula used	M1		Tables or formula [allow \pm 1 term, or "1 –"] correctly used
	0.6626	A1	3	Answer in range [0.662, 0.663]
				[.3012, .6990, .6268 or .8795: B1M1A0]
	(ii) B(20, 0.6626√)	M1		B(20, p), p from (i), stated or implied
	$^{20}\text{C}_{13} \ 0.6626^{13} \times 0.3374^{7}$	M1		Correct formula for their <i>p</i>
	0.183	A1	3	Answer, a.r.t. 0.183
	(iii) Let S be the number of stars	B1		Po(24) stated or implied
	$S \sim \text{Po}(24)$	B1		Normal, mean 24
	≈ N(24, 24)	В1√		Variance 24 or 24^2 or $\sqrt{24}$, $\sqrt{1}$ if 24 wrong
	29.5 – 24	M1		Standardise with λ , λ , allow errors in cc or $$ or both
	$\frac{29.5 - 24}{\sqrt{24}} [= 1.1227]$	A1		$\sqrt{\lambda}$ and cc both correct
	0.8692	A1	6	Answer, in range [0.868, 0.8694]
	0.00 <i>/</i> =			

			3.61	TT / / 1
6	(i)	$\left[ax + \frac{bx^2}{2}\right]_0^2 = 1$	M1	Use total area = 1
		$\left[\frac{\alpha x}{2}\right]_{0}^{-1}$	B1	Correct indefinite integral, or convincing area method
		$2a + 2b = 1 \qquad \mathbf{AG}$	A1 3	Given answer correctly obtained, "1" appearing before
				last line [if $+ c$, must see it eliminated]
	(ii)	$\left[\frac{ax^2}{2} + \frac{bx^3}{3}\right]^2 = \frac{11}{9}$	M1	Use $\int x f(x) dx = 11/9$, limits 0, 2
	()	$\begin{bmatrix} 2 & 3 \end{bmatrix}_0 = 9$	B1	Correct indefinite integral
		$2a + \frac{8b}{3} = \frac{11}{9}$	A1	Correct equation obtained, a.e.f.
		3 /	M1	Obtain one unknown by correct simultaneous method
		Solve simultaneously	A1	a correct, 1/6 or a.r.t 0.167
		$a = \frac{1}{6}, b = \frac{1}{3}$	A1 6	b correct, 1/3 or a.r.t. 0.333
	(iii)	e.g. $P(< 11/9) = 0.453$, or	M1	Use $P(x < 11/9)$, or integrate to find median m
	. ,		M1	Substitute into $\int f(x)dx$, $$ on a , b , limits 0 and 11/9 or m
		$\left[ax + \frac{bx^2}{2}\right]^m = 0.5, m = 1.303 \text{ or } \frac{\sqrt{13} - 1}{2}$		[if finding <i>m</i> , need to solve 3-term quadratic]
			A1	Correct numerical answer for probability or <i>m</i>
		Hence median > mean	A1√ 4	Correct conclusion, ewo
				["Negative skew", M2; median > mean, A2]
7	(i)	$H_0: p = 0.35$ [or $p \ge 0.35$]	B1	Each hypothesis correct, B1+B1, allow $p \ge .35$ if .35 used
	()	$H_1: p < 0.35$	B1	[Wrong or no symbol, B1, but r or x or \bar{x} : B0]
		B(14, 0.35)	M1	Correct distribution stated or implied, can be implied by
	α:	$P(\le 2) = 0.0839 > 0.025$		N(4.9,), but <i>not</i> $Po(4.9)$
	β:	$CR \le 1$, probability 0.0205	A1	0.0839 seen, or $P(\le 1) = 0.0205$ if clearly using CR
	μ.	Do not reject H ₀ . Insufficient	B1	Compare binomial tail with 0.025, or $R = 2$ binomial CR
		evidence that proportion that can	M1	Do not reject H_0 , $$ on their probability, <i>not</i> from N or Po
		receive Channel C is less than 35%	A1√ 7	or $P(<2)$; Contextualised conclusion $\sqrt{}$
	(ii)	B(8, 0.35): $P(0) = 0.0319$	M1	Attempt to find $P(0)$ from $B(n, 0.35)$
	(11)	B(9, 0.35): $P(0) = 0.0207$	A1	One correct probability $[P(\le 2) = .0236, n = 18: M1A1]$
		2(3, 0.00). 1(0)	A1	Both probabilities correct
		Hence largest value of <i>n</i> is 8	A1 4	
	or	$0.65^n > 0.025$; $n \ln 0.65 > \ln 0.025$	M1M1	$p^n > 0.025$, any relevant p; take ln, or T&I to get 1 SF
		8.56; largest value of $n = 8$	A1A1	In range [8.5, 8.6]; answer 8 or \leq 8 only
8	(i) α:		M1	Standardise 100.7 with $\sqrt{80}$ or 80
	(1) u.	$\frac{100.7 - 102}{5.6 / \sqrt{80}} = -2.076$	A1	a.r.t. -2.08 obtained, must be $-$, <i>not</i> from $\mu = 100.7$
		Compare with –2.576	B1 3	
	or β:	$\Phi(-2.076) = 0.0189$	M1	Standardise 100.7 with $\sqrt{80}$ or 80
	οι μ.	$[\text{or }\Phi(2.076) = 0.981]$	A1	a.r.t. 0.019, allow 0.981 only if compared with 0.995
		and compare with 0.005 [or 0.995]	B1 (3)	Compare correct tail with 0.005 or 0.995
			M1	This formula, allow +, 80, wrong SD, any k from Φ^{-1}
	or γ .	$102 - \frac{k \times 5.6}{\sqrt{80}}$	1111	This formula, allow 1, 00, wrong 5D, any k from Φ
		k = 2.576, compare 100.7	B1	k = 2.576/2.58, – sign, and compare 100.7 with CV
		100.39	A1 (3)	CV a.r.t. 100.4
		Do not reject H ₀	M1	Reject/Do not reject, $\sqrt{\ }$, needs normal, 80 or $\sqrt{80}$, Φ^{-1} or
		Insufficient evidence that quantity		equivalent, correct comparison, <i>not</i> if clearly $\mu = 100.7$
		of SiO ₂ is less than 102	A1 2	Correct contextualised conclusion
	(ii) (a)		M1	One equation for c and n , equated to Φ^{-1} , allow cc,
	(11) (a)	$\frac{c-102}{5.6/\sqrt{n}} = -2.326$	B1	wrong sign, σ^2 ; 2.326 or 2.33
			A1 3	Correctly obtain given equation, needs in principle to
		$102 - c = \frac{13.0256}{\sqrt{n}} \qquad \mathbf{AG}$		have started from $c - 102$, -2.326
	(b)	c-100 9212	M1	Second equation, as before
	(b)	$\frac{c-100}{5.6/\sqrt{n}} = 1.645$ or $c-100 = \frac{9.212}{\sqrt{n}}$	A1 2	Completely correct, aef
		$5.0/\sqrt{n}$	***	Completely contest, uct
	(c)	Solve simultaneous equations	M1	Correct method for simultaneous equations, find c or \sqrt{n}
	(*)	$\sqrt{n} = 11.12$	A1	\sqrt{n} correct to 3 SF
		$n_{min} = 124$	A1	$n_{min} = 124$ only
		c = 100.83	A1 4	Critical value correct, 100.8 or better
				The state of the s

Mark Scheme 4734 January 2007

1		$T(T) = E(X) + \lambda E(Y)$ $00 = 45 + 33\lambda$	M1		Use I	$\Xi(X+\lambda Y)$
		$= \frac{5}{3} \text{ AG}$		A 1	2	aef
	(ii)	$Var(T) = Var(X) + (5/3)^2 Var(Y)$		M1		
		= 256 $T \sim N(100, 256)$	В1√	A1 3	ft var	riance
	(iii)	Same student for X and Y so				
		independence unlikely.	B1	1	Sensi	ible reason
2	(i)	Use $3a/2 = 1$		B1	1	Or similar
	(ii)	$y = \frac{2}{3}x$ $y = 1 - \frac{1}{3}x$		B1 M1A1	3	M1 for correct gradient B1M1A0 if not y=
	(iii)	$f(x) = \begin{cases} \frac{2}{3}x & 0 \le x \\ 1 - \frac{1}{2}x & 1 < x \end{cases}$	x ≤ 1			
		$\left(1-\frac{1}{3}x\right)$	≥ 3.	В1√	1	ft (ii)
	(iv)	$\int_{0}^{1} \frac{2}{3} x^{2} dx + \int_{1}^{3} (x - \frac{1}{3} x^{2}) dx$		M1		One correct, with limits
		$\left[\frac{2}{9}x^{3}\right]_{0}^{1} + \left[\frac{1}{2}x^{2} - \frac{1}{9}x^{3}\right]_{1}^{3}$		A1√A	1√	ft from similar f
		= 4/3		A1	4	aef
3	(i) As	ssumes breaking strengths have no	ormal			
	norm	al distributions variances		B1 B1	2	
		where μ_T , μ_U are means for		B1	<u>-</u>	For both hypotheses
	$\overline{\mathbf{r}}$ –	treated and untreated thread. 18.05, $\bar{x}_{IJ} = 17.26$		B1		May be implied below by 0.79
	1	$s_{U} = 17.20$ $s_{U} = 0.715, s_{U}^{2} = 0.738$		B1		Allow biased, 0.596, 0.590 if s^2
	$s^2 = (5)^2$	$5 \times 0.715 + 4 \times 0.738)/9$		M1		$= (6 \times 0.596 + 5 \times 0.590)/9$
	= 1. Comp Rejec	ER: $(18.05 - 17.26)/[s\sqrt{(1/5+1/6)}]$ 532 ware correctly with 1.383 t H ₀ and accept there is sufficient nee that mean has increased so that		A1 M1	With	pooled variance est.
	the tre	eatment has been successful.		A 1√		Conclusion in context. Ft 1.532
		$\overline{X}_T - \overline{X}_U \ge ks\sqrt{1/5 + 1/6}; = 0.7$	13	M1A1		Allow > or =
	0.79 >	> 0.713, reject H ₀ etc		M1A1	√ 8	Or equivalent. Ft 0.713

4	= 1.0836	M1	A1	aef	
	Use $\overline{x} \pm t \sqrt{\frac{s^2}{12}}$		M1		
	t = 2.201 $\overline{x} = 177.6/12 = 14.8$ (14.14,15.46), $(14.1, 15.5)$		B1 A1 A1	6	
	(ii) EITHER: $(14.8 - 15.4)/(\sqrt{s^2/12})$ = -1.997 Compare correctly with -1.796 Reject H ₀ and accept that there is	M1	M1 A1		With their variance
	evidence that the mean is less than 15.4	A1√		In conte	ext. Ft – 1.997
	OR: $\overline{X} - 15.4 \le -k\sqrt{\frac{s^2}{12}}$; $\overline{X} \le 14.86$		M1A1		Allow < or =
	14.8 < 14.86, reject H ₀ etc		M1A1	√ 4	Or equivalent. Ft 14.86
5	(i) 978/1200 = 0.815		B1	1	
	(ii) Use $p \pm z \sqrt{\frac{p(1-p)}{1200}}$		M1		Reasonable variance
	z = 1.645		B1		
	$\sqrt{(0.815 \times 0.185/1200)}$		A1		ft p Allow 1199
	(0.797,0.833)		A1	4	Interval
	(0.797,0.833) (iii) If a large number of such samples w taken, p would be contained in about 90% of the confidence intervals.		A1 B2	2	B1 if idea correct but badly expressed.
	(iii) If a large number of such samples w taken, p would be contained in about 90% of the confidence intervals.		B2		B1 if idea correct but badly expressed.
	(iii) If a large number of such samples w taken, p would be contained in about 90% of the confidence intervals. (iv) $1.645\sqrt{(0.815\times0.185/n)} = 0.01$				B1 if idea correct but badly
	(iii) If a large number of such samples w taken, p would be contained in about 90% of the confidence intervals. (iv) $1.645\sqrt{(0.815\times0.185/n)} = 0.01$		B2 M1	2	B1 if idea correct but badly expressed. Allow one error; > or <

6 (i)
$$\int_{1}^{t} \frac{3}{x^{4}} dx$$
 M1 Any variable

$$F(t) = \begin{cases} 1 - \frac{1}{t^{3}} & t \ge 1, \\ (0 & \text{otherwise.}) \end{cases}$$
A1 2

(ii) $G(y) = P(Y \le y)$ M1
$$= P(T \le y^{1/3})$$
 A1
$$= F(y^{1/3})$$
 M1
$$= 1 - 1/y$$
 A1 $\sqrt{}$ ft $F(t)$

$$g(y) = G'(y)$$
 M1
$$= 1/y^{2}, y \ge 1$$
 AG A1 6

(iii) EITHER
$$\int_{1}^{\infty} \frac{\sqrt{y}}{y^2} dy$$

OR
$$\int_{1}^{\infty} \frac{3t^{\frac{3}{2}}}{t^4} dt$$

M1

$$\begin{bmatrix} -2y^{-1/2} \end{bmatrix}_{1}^{\infty} & \begin{bmatrix} -2t^{-3/2} \end{bmatrix}_{1}^{\infty} & B1 \\ = 2 & A1 & 3 \end{bmatrix}$$

7 (i)(a) H_0 : Eye colour and reaction are not associated.

 H_1 : Eye colour and reaction are associated

 H_2 : Eye colour and reaction are associated

 H_3 : Eye colour and reaction are associated

 H_4 : Eye colour and reaction are not associated

 H_4 : Eye colour and reaction are not associated

 H_4 : Eye colour and reaction are not unrelated)

 H_4 : At least 3 dp here

 H_4 : At least 4 dp here

 H_4 : At least 5 dp here

 H_4 : At least 4 dp here

 H_4 : At least 5 dp here

 H_4 : At least 5 dp here

 H_4 : At least 5 dp here

 H_4 : At least 3 dp here

 H_4 : At leas

Mark Scheme 4736 January 2007

	(*)	10 4 2 2 5	3.61	E: (1 11 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1	т —
I	(i)	10 4 2 3 5	M1	First bundle starting with 10 4 2 and has at least	
		13 7 2 2	2.61	one more bag in it	
		4 5 8 5 3	M1	Second bundle correct	
		10 5 5 3	A1	All bundles correct	[3]
	(ii)			A value missing from written out list may be	
		Decreasing order:		treated as a misread and lose the A mark only	
		13 10 10 8 7 5 5 5 5 5 4 4 3 3 3 2 2 2	M1	Sorting into decreasing order (may be implied	
				from first bundle starting with 13)	
		13 10 2		If each row sorted, award first M1 only	
		10 8 7	M1	Second and third bundles correct	
		5 5 5 5 5			
		4 4 3 3 3 2 2	A1	All bundles correct	[3]
	(iii)	Each person has roughly the same number of bags	B1	Saying that (i) gives a more even/equal allocation	
l	()	or the total weights are more evenly spread		Five bundles in either part Θ B0	[1]
		<u>=</u>		Five bundles in either part ψ bo	[-]
				Total =	7
2	(i)	a = number of apple cakes	B1	Identifying variables as 'number of cakes'	1
		b = number of banana cakes	B1	Indicating a as apple, b as banana and c as cherry.	
		c = number of cherry cakes			[2]
	(ii)	$4 \times 30 = 3 \times 40 = 4 \times 30 = 120$	M1	Any reasonable attempt	
		$\frac{a}{30} + \frac{b}{40} + \frac{c}{30} = 30 \times 40 \times 30$			
		30 10 30			
		$4a + 3b + 4c \le 120 \text{ or } X = 4, Y = 3, Z = 4$	A1	4, 3 and 4	[2]
	(iii)	$a+b+c \ge 30 \text{ (or } a+b+c=30)$	B1	Constraint from total number of cakes correct	
		$0 \le a \le 20, \ 0 \le b \le 25, \ 0 \le c \le 10$	M1	All three upper constraints correct	
		(no need to say 'all integer')	A1	All three lower constraints correct also	[3]
	(iv)	4a + 3b + 2c	B1	Any multiple of this expression	[1]
				Total =	8
3	(i) a	$9 \times 2 = 18$	B1	18	[1]
	b	Since the graph is simple, the two nodes of order	B1	Explicitly using the fact that the graph is simple	
		5 are each connected to every other node and	B1	Deducing that each node has order at least 2	
		hence every node has order at least 2 (exactly 2)		or that all other nodes have order 2	
				A diagram on its own is not enough.	[2]
	С	$3 \times 5 = 15$ and $18 - 15 = 3$	B1	Or, the nodes of order 5 contribute $5+4+3 = 12$	
		but the orders of the other nodes must sum to at		arcs	I
		least $3\times3 = 9$ (must sum to more than 3)	B1	But there are only 9 arcs available	[2]
	(ii)	(must sum to more than 3)	M1	A simply connected graph with 6 nodes and 9	[-]
	(11)	or equivalent	1411	arcs, with at least one odd node	I
		or equivalent	A1	For such a graph with node orders 1, 3, 3, 3, 3, 5	[2]
	(;;;)		M1		[4]
	(iii)	or one in a series	IVII	A simply connected graph with 6 nodes and 9	I
		or equivalent	A 1	arcs, with at least one even node	[2]
			A1	For such a graph with node orders 2, 2, 2, 4, 4, 4	[2]
				Total =	9

(i)	1 4 5 3 2 7 6 A B C D E F G A 0 4 5 3 2 5 6 B 4 0 1 2 4 7 6 C 5 1 0 3 4 6 7 D 3 2 3 0 2 6 4 E 2 4 4 2 0 6 6 F 5 7 6 6 6 0 10	M1	FIRST THREE MARKS ARE FOR WORK ON THE TABLE ONLY (Starting by) choosing row E in column A Choosing more than one entry from column A	
	F 5 7 6 6 6 0 10 G 6 6 7 4 6 10 0 Order: $A E D B C G F$	A1	Correct entries chosen (or all transposed)	
	Minimum spanning tree:	B1	Correct order, listed or marked on arrows or table, or arcs listed AE ED DB BC DG AF	
	D E F	B1	Tree (correct or follow through from table, provided solution forms a spanning tree)	
	Total weight: 16 (or 1600 m)	D1	16 1600 (6 11 11 1 6 1 11	
		B1	16 or 1600m (or follow through from table or diagram, provided solution forms a spanning tree)	[6
(ii)	Travelling salesperson (problem)	B1	Identifying TSP by name	[1
(iii)	Two shortest arcs from H : $12 + 13 = 25$	B1	12 + 13 or 25, or implied from final answer	
	25 + 16 = 41	M1	Adding their 25 to their 16 or for 41 (must be using two arcs from <i>H</i>)	
(1)	4100 m	A1	4100 m or 4.1 km (correct and with units)	[3
(iv)	H A E D B C F G H	M1	(H) A E D B C	
	12+2+2+2+1+6+10+16 = 51	A1 M1	Correct tour	
	12+2+2+2+1+6+10+16 = 51	IVII	A substantially correct attempt at sum	Ĭ
	5100 m	A1	5100m or 5.1 km (correct and with units)	ΓΔ

(i)				
	B E I 9/8 7	M1	Correct temporary labels at <i>B</i> to <i>G</i> , no extras	
	4 7 7 7	M1	Correct temporary labels at H to J , no extras	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1	All temporary labels correct	
		B1	Order of becoming permanent correct (follow through their permanent labels)	
	3 3 5 5 7/6 6 7 6	B1	All permanent labels correct	
	Note: <i>H</i> may have only a temporary label if left until last			
	Route: ADGJK	B1	Correct route	I.
	Number of speed cameras on route: 8	B1	8 (cao)	
(ii)	Odd nodes: A I J K	M1	Identifying or using A I J K	
	$A I = 7 AJ = 6 AK = 8$ $JK = 2 IK = 4 IJ = 6$ $9 10 14$ Repeat AI and $JK \Rightarrow AB BI \text{ and } JK$	A1 A1	Weight of AI + weight of $JK = 9$ Weight of AJ + weight of $IK = 10$ (follow through weight of AI , AJ from (i) if necessary)	
	Route (example): KJDABIKJGKHGFHEFCGDCABC EBIEK	M1 A1	A list of 28 nodes that starts and ends with <i>K</i> Such a list that includes each of <i>AB</i> , <i>BI</i> , <i>JK</i> (or	
	Number of speed cameras on route: 81	B1	reversed) twice 72 + weight of their least pairing	
(iii)	The only odd nodes are I and J so she only needs to repeat $IJ = 6$	B1	Identifying <i>I</i> and <i>J</i> or <i>IJ</i> (not just implied from 6 or 72+6 or 78)	
	72 + 6	M1	Correct calculation (may be implied from 78)	
1	= 78	A1		

(i) P		Х	V	z	s	t		B1	Correct use of two slack variable columns	
	1	-3	5	-4	0	0	0	B1	\pm (-3 5 -4) in objective row	
(1	2	-3	1	0	12			
(ו	2	5	-8	0	1	40	B1	1 2 -3 12 and 2 5 -8 40 in constraint rows	Γ .
(ii)				rows 2	and 3 o	f the z	column are	e B1	Entries for potential pivots are not positive	Į.
		egative		colum	n			B1	Correct pivot choice (cao) (stated or entry ringed)	
						e entrie	s in obj. r		Correct pivot choice (cao) (stated of entry finged)	
							so choose.		Follow through their table	
				$0 \div 2 =$				В1	'Negative in top row for x' and a correct	
					12 so p	ivot on	the 1		explanation of choice of row 'least ratio $12 \div 1$ '	
(iii)									Follow through their tableau if possible	Ť
P		X	V	Z	3 1 -2	t		M1	Correct method evident	
	1	0	11	-13	<u>s</u> 3	0	36			
		1	2	-3	1	0	36 12	A1	Correct tableau (ft if reasonable and possible,	
		0	1	-2	-2	1	16		column representing RHS of equations must	
`		•	•	_	_	·	. •		contain non-negative entries)	
		= 12, y						B1	Correct non-negative values for their tableau	[
(iv)	Z	can in	crease	withou	t limit a	nd incr	easing z w	ill B1	Discussing the effect of increasing z	
		ncrease							Not just referring to pivoting in tableau	1
(v)						xcept e	ntry in z c			
				comes -			1	B1	Describing change to obj. row of initial tableau	
							ged except		or showing tableau that results	I
	1	or this	entry w	vnich b	ecomes	31		B1 B1	Identifying 31 instead of -13 (cao)	
	2	66						B1	No other changes 36 stated (cao)	ſ.
(vi)			the cor	nstraint	s gives	3r - 511	$+7z \le 52$	B1	52	H
(*1)	s	o Q < 5	52		_	-	12 < 32	Di	52	lΓ
(vii)	x	z - 3z =	12 and	$\frac{1}{1} 2x + 1$	0z = 40	(A	ccept ≤)	M1	Eliminating <i>y</i> terms (may be implied)	t
		→ 10z -				•		M1	Trying to solve simultaneous equations	
	-	$\Rightarrow x = 1$	5 and 2	z = 1				A1	Correct values (may imply method marks)	[
	- !							l .	Total =	1

Mark Scheme 4737 January 2007

	(i)					imum cost		
		allocation						
		to convert				isation.	B1	A valid reference to maximising/minimising
	(ii)	First sub		entry fro				
			Attic	Back	Down	Front		
		Phil	1	5	6	2		
		Rob	5	0	5	4	B1	Correctly subtracting each entry from 6 (cao)
		Sam	2	4	4	3		
		Tim	3	1	6	6		
		Reduce	rows					
			0	4	5	1	3.54	
			5	0	5	4	M1	Reducing rows first
			0	2	2	1		
			2	0	5	5		
		Then rec	luce colur	nns	•		3.61 1	
			0	4	3	0	M1 dep	Then reducing columns
			5	0	3	3		
			0	2	0	0	A1	A correct reduced cost matrix from rows reduced first (cao) Covering zeros using minimum number of lines and augmenting by (their) 2
			2	0	3	4		
		Cover 0	s using 3	lines				
			0	4	3	0		
			5	0	3	3	M1	
			0	2	0	0	1,11	
			2	0	3	4		
		Augmen	t by 2					
			0	6	3	0		
			3	0	1	1	A1	A correct augmented matrix (cao) from rows
			0	4	0	0		reduced first
			0	0	1	2		
		Phil = Fro						
		Rob = Ba						
		Sam = Dc		room				
		Tim = Att	ic room				B1	Correct matching

2	(i)	16 hours	B1	16 with units	
		A, B, D, F	B1	All four critical activities and no others	[2]
	(ii) V 4 2	0 2 4 6 8 10 12 14	M1 A1	A reasonable attempt at a resource histogram An entirely correct graph with scales and labels	[2]
		time (hours)			
	(iii)	Start <i>C</i> at time 3	B1	'C' and '3' or 'after A' or 'with B'	
		Start E at time 8	B1	'E' and '8' or 'after B' or 'with D'	
		Start <i>G</i> at time 16	B1	'G' and '16' or 'after F'	
		Complete in 19 hours	B1	19	[4]
				Total =	8

3 (i)	-5	B1	-5	[1]
(ii	Because $-3 < 2$ in column Y	M1	Either of these, possibly with others	
Ì	and $2 > -2$ in row Y	A1	Both of these comparisons and no others	[2]
(ii	i) Play-safe for Rebecca is Z	B1	Indicating row Z	
	Play-safe for Claire is <i>Y</i>	B1	Indicating column <i>Y</i>	
	Best choice is X	B1 ft	The correct choice with their play-safe	[3]
(iv	r) For Rebecca,			
	-1 > smaller of {-3, value that 5 becomes}	B1	This, or equivalent, or 5 is not in the play-safe row	
	For Claire,			
	2 < larger of {3, value that 5 becomes}	B1	This, or equivalent	
			(but NOT '5 is not in the play-safe column')	[2]
			Total =	8

(i)	5 <i>p</i> -4(1- <i>p</i>)	M1	This, or implied	
	= 9p - 4	A1	9p - 4 or -4 + 9p	[2
(ii)	6.1 6.2 6.3 8.7 6.5 9.6 6.7 6.8 6.7 1	M1 A1 A1 A1	Correct structure to graph Line $E = 9p - 4$ plotted from $(0,-4)$ to $(1, 5)$ Line $E = 3 - 6p$ plotted from $(0, 3)$ to $(1,-3)$ Line $E = 1 - 3p$ plotted from $(0, 1)$ to $(1,-2)$	
			Withhold an A1 for horizontal scale beyond 0 to 1	[4
(iii)	9p - 4 = 1 - 3p $\Rightarrow p = 5/12 \text{ or } 0.41 \text{ to } 0.42 \text{ (or better)}$	M1 A1 ft	Solving the correct pair of lines for their graph Correct value for their lines	[2
(iv)		B1	Showing why it is +0.25 for Colin	
	Even if Colin plays optimally he cannot expect, in the long run, to do better on average than to win what Rowan loses.	B1	Realising that Colin need to play his optimal strategy as well as Rowan	

5	(i)	4+2+4+0+5	M1	At least four correct terms		
		= 15	A1	15 from correct calculation	[2]	
	(ii)	Subtract 3 from SA, AD, DT and add 3 to TD, DA, AS	M1	Correctly subtracting along one of the three flow augmenting routes		
		Subtract 2 from SB, BE, ET and add 2 to TE, EB, BS	M1	Correctly adding along one of the three flow augmenting routes		
		Subtract 2 from SC, CF, FT and add 2 to TF, FC, CS	A1	All changes correct and no other changes made	[3]	
	(iii)	eg Route SCET Flow = 3	B1 B1 ft	Any valid flow augmenting route (not ft) Maximum extra flow on their route		
	(iv)	Maximum flow = 11 litres per second Cut: $X = \{S\}, Y = \{A,B,C,D,E,F,T\}$	B1 B1	11 with units This cut described in this way	[2]	
	(v)	eg 3 1 5 3 5	M1	At each vertex, flow in = flow out		
		5 3 2 1 3	M1	On each arc, flow \leq capacity		
		2	A1	A valid directed flow of 11	[3]	
	•			Total =	1	

(i	i)	Stage	State	Action	Working	Maximin					
ì	,	1	0	0	4	4					
			1	0	3	3					
		2	0	0	min(6, 4) = 4	4					
				1 $\min(2, 3) = 2$			B1	Maximin value correct for (2;0)			
			1	0	min(2, 4) = 2		3 M1	Completing working column of (2.1)			
				1	min(4, 3) = 3	3		Completing working column of (2;1) Maximin value correct for (2;1)			
			2	0	min(2, 4) = 2		AI	viaximini value confect for (2,1)			
				1	min(3, 3) = 3	3	M1	Completing working column for (2;2)			
		3	0	0	min(5, 4) = 4	4	A1	Maximin value correct for (2;2)			
				1	min(5, 3) = 3			(,)			
				2	min(2, 3) = 2		B1 ft	Transferring maximin values from stage 2			
							M1 ft	Completing working column for stage 3			
							A1 ft	Maximin value correct for stage 3	[8]		
(i	ii)	4					B1 ft	4, or ft their table if possible			
		(3;0) - (2;0) - (1;0) - (0;0) (or in reverse)						(3;0) - (2;0), or ft their table if possible			
								(2;0) - (1;0), or ft their table if possible			
							A1	For maximin route correct	[4]		

7 (i)	A M P C H	B1	Correct bipartite graph seen Ignore further working on graph for incomplete matching or alternating path	
	D S Alternating path: $D-H-C-S-B-M$ $-A-P$	B1	This, or in reverse, listed (not just deduced from labelling of diagram) This matching	
	Matching: A - P B - M C - S D - H			[3]
(ii)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1 M1 A1 ft M1 A1 ft	Precedences correct A correct network (directions may be implied) Forwards pass Early event times correct (need not use boxes) Backwards pass Late event times (need not use boxes)	[6]
(iii)	Completion time: 16 hours Critical activities: <i>A B F</i>	B1 B1	16 with units Correct list	[2]
(iv)	H CD G E B F 0 2 4 6 8 10 12 14 16 time hours) (mins)	M1 A1 ft A1 ft	Accept any variation of cascade chart Structure of chart correct, activities may be collected together or on individual rows Non-critical activities correct, none split across rows (floats not necessary) Critical activities correct	[3]

Advanced GCE Mathematics (3892 – 2, 7890 - 2) January 2007 Assessment Series

Unit Threshold Marks

Unit	Unit		а	b	С	d	е	u
4721	Raw	72	63	55	48	41	34	0
	UMS	100	80	70	60	50	40	0
4722	Raw	72	57	49	41	33	26	0
	UMS	100	80	70	60	50	40	0
4723	Raw	72	55	48	41	34	28	0
	UMS	100	80	70	60	50	40	0
4724	Raw	72	57	49	41	33	26	0
	UMS	100	80	70	60	50	40	0
4725	Raw	72	58	50	42	34	26	0
	UMS	100	80	70	60	50	40	0
4726	Raw	72	54	46	39	32	25	0
	UMS	100	80	70	60	50	40	0
4727	Raw	72	55	48	41	34	27	0
	UMS	100	80	70	60	50	40	0
4728	Raw	72	61	53	45	38	31	0
	UMS	100	80	70	60	50	40	0
4729	Raw	72	61	53	45	37	29	0
	UMS	100	80	70	60	50	40	0
4730	Raw	72	54	47	40	33	26	0
	UMS	100	80	70	60	50	40	0
4732	Raw	72	59	52	45	38	32	0
	UMS	100	80	70	60	50	40	0
4733	Raw	72	61	54	47	40	33	0
	UMS	100	80	70	60	50	40	0
4734	Raw	72	56	49	42	35	28	0
	UMS	100	80	70	60	50	40	0
4736	Raw	72	53	46	39	32	25	0
	UMS	100	80	70	60	50	40	0
4737	Raw	72	61	53	45	38	31	0
	UMS	100	80	70	60	50	40	0

Specification Aggregation Results

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

	Maximum Mark	Α	В	С	D	E	U
3890/3892	300	240	210	180	150	120	0
7897892	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
3890	19.1	36.8	59.5	80.6	94.3	100	299
3892	66.7	77.8	88.9	88.9	100	100	9
7890	40.2	62.5	87.5	95.5	100	100	112
7892	50.0	83.3	83.3	83.3	91.7	100	12

For a description of how UMS marks are calculated see; http://www.ocr.org.uk/exam_system/understand_ums.html

Statistics are correct at the time of publication

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge **CB1 2EU**

OCR Customer Contact Centre

(General Qualifications)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: helpdesk@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

