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1 Calculate the variance of the continuous random variable with probability density function given by

f(x) = { 3
37

x2 3 ≤ x ≤ 4,

0 otherwise.
[6]

2 (i) The random variable R has the distribution B(6, p). A random observation of R is found to be
6. Carry out a 5% significance test of the null hypothesis H0: p = 0.45 against the alternative
hypothesis H1: p ≠ 0.45, showing all necessary details of your calculation. [4]

(ii) The random variable S has the distribution B(n, p). H0 and H1 are as in part (i). A random
observation of S is found to be 1. Use tables to find the largest value of n for which H0 is not
rejected. Show the values of any relevant probabilities. [3]

3 The continuous random variable T has mean µ and standard deviation σ. It is known that
P(T < 140) = 0.01 and P(T < 300) = 0.8.

(i) Assuming that T is normally distributed, calculate the values of µ and σ. [6]

In fact, T represents the time, in minutes, taken by a randomly chosen runner in a public marathon, in
which about 10% of runners took longer than 400 minutes.

(ii) State with a reason whether the mean of T would be higher than, equal to, or lower than the value
calculated in part (i). [2]

4 (i) Explain briefly what is meant by a random sample. [1]

Random numbers are used to select, with replacement, a sample of size n from a population numbered
000, 001, 002, …, 799.

(ii) If n = 6, find the probability that exactly 4 of the selected sample have numbers less than 500.
[3]

(iii) If n = 60, use a suitable approximation to calculate the probability that at least 40 of the selected
sample have numbers less than 500. [6]

5 An airline has 300 seats available on a flight to Australia. It is known from experience that on average
only 99% of those who have booked seats actually arrive to take the flight, the remaining 1% being
called ‘no-shows’. The airline therefore sells more than 300 seats. If more than 300 passengers then
arrive, the flight is over-booked. Assume that the number of no-show passengers can be modelled by
a binomial distribution.

(i) If the airline sells 303 seats, state a suitable distribution for the number of no-show passengers,
and state a suitable approximation to this distribution, giving the values of any parameters. [2]

Using the distribution and approximation in part (i),

(ii) show that the probability that the flight is over-booked is 0.4165, correct to 4 decimal places,
[2]

(iii) find the largest number of seats that can be sold for the probability that the flight is over-booked
to be less than 0.2. [5]

4733/S06



3

6 Customers arrive at a post office at a constant average rate of 0.4 per minute.

(i) State an assumption needed to model the number of customers arriving in a given time interval
by a Poisson distribution. [1]

Assuming that the use of a Poisson distribution is justified,

(ii) find the probability that more than 2 customers arrive in a randomly chosen 1-minute interval,
[2]

(iii) use a suitable approximation to calculate the probability that more than 55 customers arrive in a
given two-hour interval, [6]

(iv) calculate the smallest time for which the probability that no customers arrive in that time is less
than 0.02, giving your answer to the nearest second. [5]

7 Three independent researchers, A, B and C, carry out significance tests on the power consumption
of a manufacturer’s domestic heaters. The power consumption, X watts, is a normally distributed
random variable with mean µ and standard deviation 60. Each researcher tests the null hypothesis
H

0
: µ = 4000 against the alternative hypothesis H

1
: µ > 4000.

Researcher A uses a sample of size 50 and a significance level of 5%.

(i) Find the critical region for this test, giving your answer correct to 4 significant figures. [6]

In fact the value of µ is 4020.

(ii) Calculate the probability that Researcher A makes a Type II error. [6]

(iii) Researcher B uses a sample bigger than 50 and a significance level of 5%. Explain whether the
probability that Researcher B makes a Type II error is less than, equal to, or greater than your
answer to part (ii). [2]

(iv) Researcher C uses a sample of size 50 and a significance level bigger than 5%. Explain whether
the probability that Researcher C makes a Type II error is less than, equal to, or greater than your
answer to part (ii). [2]

(v) State with a reason whether it is necessary to use the Central Limit Theorem at any point in this
question. [2]
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