OXFORD CAMBRIDGE AND RSA EXAMINATIONS

 Advanced Subsidiary General Certificate of Education

 Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

 Advanced General Certificate of Education}

MATHEMATICS

4733
Probability \& Statistics 2
Thursday
15 JUNE 2006
Afternoon
1 hour 30 minutes
Additional materials:
8 page answer booklet
Graph paper
List of Formulae (MF1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 Calculate the variance of the continuous random variable with probability density function given by

$$
\mathrm{f}(x)= \begin{cases}\frac{3}{37} x^{2} & 3 \leqslant x \leqslant 4 \tag{6}\\ 0 & \text { otherwise } .\end{cases}
$$

2 (i) The random variable R has the distribution $\mathrm{B}(6, p)$. A random observation of R is found to be 6. Carry out a 5% significance test of the null hypothesis $\mathrm{H}_{0}: p=0.45$ against the alternative hypothesis $\mathrm{H}_{1}: p \neq 0.45$, showing all necessary details of your calculation.
(ii) The random variable S has the distribution $\mathrm{B}(n, p) . \mathrm{H}_{0}$ and H_{1} are as in part (i). A random observation of S is found to be 1 . Use tables to find the largest value of n for which H_{0} is not rejected. Show the values of any relevant probabilities.

3 The continuous random variable T has mean μ and standard deviation σ. It is known that $\mathrm{P}(T<140)=0.01$ and $\mathrm{P}(T<300)=0.8$.
(i) Assuming that T is normally distributed, calculate the values of μ and σ.

In fact, T represents the time, in minutes, taken by a randomly chosen runner in a public marathon, in which about 10% of runners took longer than 400 minutes.
(ii) State with a reason whether the mean of T would be higher than, equal to, or lower than the value calculated in part (i).

4 (i) Explain briefly what is meant by a random sample.
Random numbers are used to select, with replacement, a sample of size n from a population numbered 000, 001, 002, ..., 799.
(ii) If $n=6$, find the probability that exactly 4 of the selected sample have numbers less than 500 .
(iii) If $n=60$, use a suitable approximation to calculate the probability that at least 40 of the selected sample have numbers less than 500 .

5 An airline has 300 seats available on a flight to Australia. It is known from experience that on average only 99% of those who have booked seats actually arrive to take the flight, the remaining 1% being called 'no-shows'. The airline therefore sells more than 300 seats. If more than 300 passengers then arrive, the flight is over-booked. Assume that the number of no-show passengers can be modelled by a binomial distribution.
(i) If the airline sells 303 seats, state a suitable distribution for the number of no-show passengers, and state a suitable approximation to this distribution, giving the values of any parameters.

Using the distribution and approximation in part (i),
(ii) show that the probability that the flight is over-booked is 0.4165 , correct to 4 decimal places,
(iii) find the largest number of seats that can be sold for the probability that the flight is over-booked to be less than 0.2.

6 Customers arrive at a post office at a constant average rate of 0.4 per minute.
(i) State an assumption needed to model the number of customers arriving in a given time interval by a Poisson distribution.

Assuming that the use of a Poisson distribution is justified,
(ii) find the probability that more than 2 customers arrive in a randomly chosen 1 -minute interval,
(iii) use a suitable approximation to calculate the probability that more than 55 customers arrive in a given two-hour interval,
(iv) calculate the smallest time for which the probability that no customers arrive in that time is less than 0.02 , giving your answer to the nearest second.

7 Three independent researchers, A, B and C, carry out significance tests on the power consumption of a manufacturer's domestic heaters. The power consumption, X watts, is a normally distributed random variable with mean μ and standard deviation 60 . Each researcher tests the null hypothesis $\mathrm{H}_{0}: \mu=4000$ against the alternative hypothesis $\mathrm{H}_{1}: \mu>4000$.

Researcher A uses a sample of size 50 and a significance level of 5\%.
(i) Find the critical region for this test, giving your answer correct to 4 significant figures.

In fact the value of μ is 4020 .
(ii) Calculate the probability that Researcher A makes a Type II error.
(iii) Researcher B uses a sample bigger than 50 and a significance level of 5%. Explain whether the probability that Researcher B makes a Type II error is less than, equal to, or greater than your answer to part (ii).
(iv) Researcher C uses a sample of size 50 and a significance level bigger than 5\%. Explain whether the probability that Researcher C makes a Type II error is less than, equal to, or greater than your answer to part (ii).
(v) State with a reason whether it is necessary to use the Central Limit Theorem at any point in this question.

BLANK PAGE

