

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

15 JUNE 2006

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

Probability & Statistics 2

Thursday

day

Afternoon

1 hour 30 minutes

4733

Additional materials: 8 page answer booklet Graph paper List of Formulae (MF1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer **all** the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 Calculate the variance of the continuous random variable with probability density function given by

$$f(x) = \begin{cases} \frac{3}{37}x^2 & 3 \le x \le 4, \\ 0 & \text{otherwise.} \end{cases}$$
[6]

- 2 (i) The random variable *R* has the distribution B(6, *p*). A random observation of *R* is found to be 6. Carry out a 5% significance test of the null hypothesis H_0 : p = 0.45 against the alternative hypothesis H_1 : $p \neq 0.45$, showing all necessary details of your calculation. [4]
 - (ii) The random variable *S* has the distribution B(n, p). H_0 and H_1 are as in part (i). A random observation of *S* is found to be 1. Use tables to find the largest value of *n* for which H_0 is not rejected. Show the values of any relevant probabilities. [3]
- 3 The continuous random variable *T* has mean μ and standard deviation σ . It is known that P(T < 140) = 0.01 and P(T < 300) = 0.8.
 - (i) Assuming that T is normally distributed, calculate the values of μ and σ . [6]

In fact, T represents the time, in minutes, taken by a randomly chosen runner in a public marathon, in which about 10% of runners took longer than 400 minutes.

- (ii) State with a reason whether the mean of *T* would be higher than, equal to, or lower than the value calculated in part (i). [2]
- 4 (i) Explain briefly what is meant by a random sample. [1]

Random numbers are used to select, with replacement, a sample of size n from a population numbered 000, 001, 002, ..., 799.

(ii) If n = 6, find the probability that exactly 4 of the selected sample have numbers less than 500.

[3]

- (iii) If n = 60, use a suitable approximation to calculate the probability that at least 40 of the selected sample have numbers less than 500. [6]
- 5 An airline has 300 seats available on a flight to Australia. It is known from experience that on average only 99% of those who have booked seats actually arrive to take the flight, the remaining 1% being called 'no-shows'. The airline therefore sells more than 300 seats. If more than 300 passengers then arrive, the flight is over-booked. Assume that the number of no-show passengers can be modelled by a binomial distribution.
 - (i) If the airline sells 303 seats, state a suitable distribution for the number of no-show passengers, and state a suitable approximation to this distribution, giving the values of any parameters. [2]

Using the distribution and approximation in part (i),

(ii) show that the probability that the flight is over-booked is 0.4165, correct to 4 decimal places,

[2]

(iii) find the largest number of seats that can be sold for the probability that the flight is over-booked to be less than 0.2. [5]

- 6 Customers arrive at a post office at a constant average rate of 0.4 per minute.
 - (i) State an assumption needed to model the number of customers arriving in a given time interval by a Poisson distribution. [1]

Assuming that the use of a Poisson distribution is justified,

(ii) find the probability that more than 2 customers arrive in a randomly chosen 1-minute interval,

[2]

- (iii) use a suitable approximation to calculate the probability that more than 55 customers arrive in a given two-hour interval, [6]
- (iv) calculate the smallest time for which the probability that no customers arrive in that time is less than 0.02, giving your answer to the nearest second. [5]
- 7 Three independent researchers, *A*, *B* and *C*, carry out significance tests on the power consumption of a manufacturer's domestic heaters. The power consumption, *X* watts, is a normally distributed random variable with mean μ and standard deviation 60. Each researcher tests the null hypothesis H_0 : $\mu = 4000$ against the alternative hypothesis H_1 : $\mu > 4000$.

Researcher A uses a sample of size 50 and a significance level of 5%.

(i) Find the critical region for this test, giving your answer correct to 4 significant figures. [6]

In fact the value of μ is 4020.

- (ii) Calculate the probability that Researcher *A* makes a Type II error. [6]
- (iii) Researcher *B* uses a sample bigger than 50 and a significance level of 5%. Explain whether the probability that Researcher *B* makes a Type II error is less than, equal to, or greater than your answer to part (ii).
- (iv) Researcher C uses a sample of size 50 and a significance level bigger than 5%. Explain whether the probability that Researcher C makes a Type II error is less than, equal to, or greater than your answer to part (ii). [2]
- (v) State with a reason whether it is necessary to use the Central Limit Theorem at any point in this question. [2]

BLANK PAGE

4

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.