# OXFORD CAMBRIDGE AND RSA EXAMINATIONS <br> Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education 

## MATHEMATICS

4731
Mechanics 4
Wednesday 21 JUNE 2006 Afternoon 1 hour 30 minutes
Additional materials:
8 page answer booklet
Graph paper
List of Formulae (MF1)

TIME 1 hour 30 minutes

## INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- The acceleration due to gravity is denoted by $\mathrm{g} \mathrm{m} \mathrm{s}^{-2}$. Unless otherwise instructed, when a numerical value is needed, use $g=9.8$.
- You are permitted to use a graphical calculator in this paper.


## INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [ ] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 A straight rod $A B$ of length $a$ has variable density. At a distance $x$ from $A$ its mass per unit length is $k(a+2 x)$, where $k$ is a positive constant. Find the distance from $A$ of the centre of mass of the rod.

2 A flywheel takes the form of a uniform disc of mass 8 kg and radius 0.15 m . It rotates freely about an axis passing through its centre and perpendicular to the disc. A couple of constant moment is applied to the flywheel. The flywheel turns through an angle of 75 radians while its angular speed increases from $10 \mathrm{rad} \mathrm{s}^{-1}$ to $25 \mathrm{rad} \mathrm{s}^{-1}$.
(i) Find the moment of the couple about the axis.

When the flywheel is rotating with angular speed $25 \mathrm{rad} \mathrm{s}^{-1}$, it locks together with a second flywheel which is mounted on the same axis and is at rest. Immediately afterwards, both flywheels rotate together with the same angular speed $9 \mathrm{rad} \mathrm{s}^{-1}$.
(ii) Find the moment of inertia of the second flywheel about the axis.

3 The region bounded by the $x$-axis, the lines $x=1$ and $x=2$ and the curve $y=\frac{1}{x^{2}}$ for $1 \leqslant x \leqslant 2$, is occupied by a uniform lamina of mass 24 kg . The unit of length is the metre. Find the moment of inertia of this lamina about the $x$-axis.


A uniform $\operatorname{rod} A B$, of mass $m$ and length $2 a$, is freely hinged to a fixed point at $A$. A particle of mass $2 m$ is attached to the rod at $B$. A light elastic string, with natural length $a$ and modulus of elasticity 5 mg , passes through a fixed smooth ring $R$. One end of the string is fixed to $A$ and the other end is fixed to the mid-point $C$ of $A B$. The ring $R$ is at the same horizontal level as $A$, and is at a distance $a$ from $A$. The $\operatorname{rod} A B$ and the ring $R$ are in a vertical plane, and $R C$ is at an able $\theta$ above the horizontal, where $0<\theta<\frac{1}{4} \pi$, so that the acute angle between $A B$ and the horizontal is $2 \theta$ (see diagram).
(i) By considering the energy of the system, find the value of $\theta$ for which the system is in equilibrium.
(ii) Determine whether this position of equilibrium is stable or unstable.

A uniform rectangular lamina $A B C D$ has mass 20 kg and sides of lengths $A B=0.6 \mathrm{~m}$ and $B C=1.8 \mathrm{~m}$. It rotates in its own vertical plane about a fixed horizontal axis which is perpendicular to the lamina and passes through the mid-point of $A B$.
(i) Show that the moment of inertia of the lamina about the axis is $22.2 \mathrm{~kg} \mathrm{~m}^{2}$.


The lamina is released from rest with $B C$ horizontal and below the level of the axis. Air resistance may be neglected, but a frictional couple opposes the motion. The couple has constant moment 44.1 Nm about the axis. The angle through which the lamina has turned is denoted by $\theta$ (see diagram).
(ii) Show that the angular acceleration is zero when $\cos \theta=0.25$.
(iii) Hence find the maximum angular speed of the lamina.


A ship $P$ is moving with constant velocity $7 \mathrm{~m} \mathrm{~s}^{-1}$ in the direction with bearing $110^{\circ}$. A second ship $Q$ is moving with constant speed $10 \mathrm{~m} \mathrm{~s}^{-1}$ in a straight line. At one instant $Q$ is at the point $X$, and $P$ is 7400 m from $Q$ on a bearing of $050^{\circ}$ (see diagram). In the subsequent motion, the shortest distance between $P$ and $Q$ is 1790 m .
(i) Show that one possible direction for the velocity of $Q$ relative to $P$ has bearing $036^{\circ}$, to the nearest degree, and find the bearing of the other possible direction of this relative velocity.

Given that the velocity of $Q$ relative to $P$ has bearing $036^{\circ}$, find
(ii) the bearing of the direction in which $Q$ is moving,
(iii) the magnitude of the velocity of $Q$ relative to $P$,
(iv) the time taken for $Q$ to travel from $X$ to the position where the two ships are closest together, [3]
(v) the bearing of $P$ from $Q$ when the two ships are closest together.


A uniform $\operatorname{rod} A B$ has mass $m$ and length $6 a$. It is free to rotate in a vertical plane about a smooth fixed horizontal axis passing through the point $C$ on the rod, where $A C=a$. The angle between $A B$ and the upward vertical is $\theta$, and the force acting on the rod at $C$ has components $R$ parallel to $A B$ and $S$ perpendicular to $A B$ (see diagram). The rod is released from rest in the position where $\theta=\frac{1}{3} \pi$. Air resistance may be neglected.
(i) Find the angular acceleration of the rod in terms of $a, g$ and $\theta$.
(ii) Show that the angular speed of the rod is $\sqrt{\frac{2 g(1-2 \cos \theta)}{7 a}}$.
(iii) Find $R$ and $S$ in terms of $m, g$ and $\theta$.
(iv) When $\cos \theta=\frac{1}{3}$, show that the force acting on the rod at $C$ is vertical, and find its magnitude.

