# OXFORD CAMBRIDGE AND RSA EXAMINATIONS <br> <br> Advanced Subsidiary General Certificate of Education <br> <br> Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education 

 Advanced General Certificate of Education}

## MATHEMATICS

4727
Further Pure Mathematics 3

15 JUNE

Additional materials:
8 page answer booklet
Graph paper
List of Formulae (MF1)

TIME 1 hour 30 minutes

## INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.


## INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [ ] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 (a) For the infinite group of non-zero complex numbers under multiplication, state the identity element and the inverse of $1+2 \mathrm{i}$, giving your answers in the form $a+\mathrm{i} b$.
(b) For the group of matrices of the form $\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right)$ under matrix addition, where $a \in \mathbb{R}$, state the identity element and the inverse of $\left(\begin{array}{ll}3 & 0 \\ 0 & 0\end{array}\right)$.

2 (a) Given that $z_{1}=2 \mathrm{e}^{\frac{1}{6} \pi \mathrm{i}}$ and $z_{2}=3 \mathrm{e}^{\frac{1}{4} \pi \mathrm{i}}$, express $z_{1} z_{2}$ and $\frac{z_{1}}{z_{2}}$ in the form $r \mathrm{e}^{\mathrm{i} \theta}$, where $r>0$ and $0 \leqslant \theta<2 \pi$.
(b) Given that $w=2\left(\cos \frac{1}{8} \pi+\mathrm{i} \sin \frac{1}{8} \pi\right)$, express $w^{-5}$ in the form $r(\cos \theta+\mathrm{i} \sin \theta)$, where $r>0$ and $0 \leqslant \theta<2 \pi$.

3 Find the perpendicular distance from the point with position vector $12 \mathbf{i}+5 \mathbf{j}+3 \mathbf{k}$ to the line with equation $\mathbf{r}=\mathbf{i}+2 \mathbf{j}+5 \mathbf{k}+t(8 \mathbf{i}+3 \mathbf{j}-6 \mathbf{k})$.

4 Find the solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}-\frac{x^{2} y}{1+x^{3}}=x^{2} \tag{8}
\end{equation*}
$$

for which $y=1$ when $x=0$, expressing your answer in the form $y=\mathrm{f}(x)$.

5 A line $l_{1}$ has equation $\frac{x}{2}=\frac{y+4}{3}=\frac{z+9}{5}$.
(i) Find the cartesian equation of the plane which is parallel to $l_{1}$ and which contains the points $(2,1,5)$ and $(0,-1,5)$.
(ii) Write down the position vector of a point on $l_{1}$ with parameter $t$.
(iii) Hence, or otherwise, find an equation of the line $l_{2}$ which intersects $l_{1}$ at right angles and which passes through the point $(-5,3,4)$. Give your answer in the form $\frac{x-a}{p}=\frac{y-b}{q}=\frac{z-c}{r}$.

6 (i) Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+4 y=\sin x \tag{6}
\end{equation*}
$$

(ii) Find the solution of the differential equation for which $y=0$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4}{3}$ when $x=0$.
$7 \quad$ The series $C$ and $S$ are defined for $0<\theta<\pi$ by

$$
\begin{aligned}
C & =1+\cos \theta+\cos 2 \theta+\cos 3 \theta+\cos 4 \theta+\cos 5 \theta \\
S & =\quad \sin \theta+\sin 2 \theta+\sin 3 \theta+\sin 4 \theta+\sin 5 \theta
\end{aligned}
$$

(i) Show that $C+i S=\frac{\mathrm{e}^{3 \mathrm{i} \theta}-\mathrm{e}^{-3 \mathrm{i} \theta}}{\mathrm{e}^{\frac{1}{2} \mathrm{i} \theta}-\mathrm{e}^{-\frac{1}{2} \mathrm{i} \theta}} \mathrm{e}^{\frac{5}{2} \mathrm{i} \theta}$.
(ii) Deduce that $C=\sin 3 \theta \cos \frac{5}{2} \theta \operatorname{cosec} \frac{1}{2} \theta$ and write down the corresponding expression for $S$.
(iii) Hence find the values of $\theta$, in the range $0<\theta<\pi$, for which $C=S$.

8 A group $D$ of order 10 is generated by the elements $a$ and $r$, with the properties $a^{2}=e, r^{5}=e$ and $r^{4} a=a r$, where $e$ is the identity. Part of the operation table is shown below.

|  | $e$ | $a$ | $r$ | $r^{2}$ | $r^{3}$ | $r^{4}$ | $a r$ | $a r^{2}$ | $a r^{3}$ | $a r^{4}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $e$ | $e$ | $a$ | $r$ | $r^{2}$ | $r^{3}$ | $r^{4}$ | $a r$ | $a r^{2}$ | $a r^{3}$ | $a r^{4}$ |
| $a$ | $a$ | $e$ | $a r$ | $a r^{2}$ | $a r^{3}$ | $a r^{4}$ |  |  |  |  |
| $r$ | $r$ |  | $r^{2}$ | $r^{3}$ | $r^{4}$ | $e$ |  |  |  |  |
| $r^{2}$ | $r^{2}$ |  | $r^{3}$ | $r^{4}$ | $e$ | $r$ |  |  |  |  |
| $r^{3}$ | $r^{3}$ |  | $r^{4}$ | $e$ | $r$ | $r^{2}$ |  |  |  |  |
| $r^{4}$ | $r^{4}$ | $a r$ | $e$ | $r$ | $r^{2}$ | $r^{3}$ |  |  |  |  |
| - | $a r$ |  | $a r^{2}$ | $a r^{3}$ | $a r^{4}$ | $a$ |  |  |  |  |
| $a r$ | $a r$ | $a r^{2}$ | $a r^{2}$ |  | $a r^{3}$ | $a r^{4}$ | $a$ | $a r$ |  |  |
| $a r^{3}$ | $a r^{3}$ |  | $a r^{4}$ | $a$ | $a r$ | $a r^{2}$ |  |  |  |  |
| $a r^{4}$ | $a r^{4}$ |  | $a$ | $a r$ | $a r^{2}$ | $a r^{3}$ |  |  |  |  |

(i) Give a reason why $D$ is not commutative.
(ii) Write down the orders of any possible proper subgroups of $D$.
(iii) List the elements of a proper subgroup which contains
(a) the element $a$,
(b) the element $r$.
(iv) Determine the order of each of the elements $r^{3}$, $a r$ and $a r^{2}$.
(v) Copy and complete the section of the table marked $\mathbf{E}$, showing the products of the elements $a r, a r^{2}, a r^{3}$ and $a r^{4}$.

## BLANK PAGE

