OXFORD CAMBRIDGE AND RSA EXAMINATIONS

 Advanced Subsidiary General Certificate of Education

 Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

 Advanced General Certificate of Education}

MATHEMATICS

4725

Further Pure Mathematics 1

Additional materials:
8 page answer booklet
Graph paper
List of Formulae (MF1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 The matrices \mathbf{A} and \mathbf{B} are given by $\mathbf{A}=\left(\begin{array}{ll}4 & 1 \\ 0 & 2\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{rr}1 & 1 \\ 0 & -1\end{array}\right)$.
(i) Find $\mathbf{A}+3 \mathbf{B}$.
(ii) Show that $\mathbf{A}-\mathbf{B}=k \mathbf{I}$, where \mathbf{I} is the identity matrix and k is a constant whose value should be stated.

2 The transformation S is a shear parallel to the x-axis in which the image of the point $(1,1)$ is the point $(0,1)$.
(i) Draw a diagram showing the image of the unit square under S .
(ii) Write down the matrix that represents S .

3 One root of the quadratic equation $x^{2}+p x+q=0$, where p and q are real, is the complex number $2-3 \mathrm{i}$.
(i) Write down the other root.
(ii) Find the values of p and q.

4 Use the standard results for $\sum_{r=1}^{n} r^{3}$ and $\sum_{r=1}^{n} r^{2}$ to show that, for all positive integers n,

$$
\begin{equation*}
\sum_{r=1}^{n}\left(r^{3}+r^{2}\right)=\frac{1}{12} n(n+1)(n+2)(3 n+1) \tag{5}
\end{equation*}
$$

5 The complex numbers $3-2 \mathrm{i}$ and $2+\mathrm{i}$ are denoted by z and w respectively. Find, giving your answers in the form $x+\mathrm{i} y$ and showing clearly how you obtain these answers,
(i) $2 z-3 w$,
(ii) $(\mathrm{i} z)^{2}$,
(iii) $\frac{z}{w}$.

6 In an Argand diagram the loci C_{1} and C_{2} are given by

$$
|z|=2 \quad \text { and } \quad \arg z=\frac{1}{3} \pi
$$

respectively.
(i) Sketch, on a single Argand diagram, the loci C_{1} and C_{2}.
(ii) Hence find, in the form $x+i y$, the complex number representing the point of intersection of C_{1} and C_{2}.
$7 \quad$ The matrix \mathbf{A} is given by $\mathbf{A}=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$.
(i) Find \mathbf{A}^{2} and \mathbf{A}^{3}.
(ii) Hence suggest a suitable form for the matrix \mathbf{A}^{n}.
(iii) Use induction to prove that your answer to part (ii) is correct.
$8 \quad$ The matrix \mathbf{M} is given by $\mathbf{M}=\left(\begin{array}{lll}a & 4 & 2 \\ 1 & a & 0 \\ 1 & 2 & 1\end{array}\right)$.
(i) Find, in terms of a, the determinant of \mathbf{M}.
(ii) Hence find the values of a for which \mathbf{M} is singular.
(iii) State, giving a brief reason in each case, whether the simultaneous equations

$$
\begin{aligned}
a x+4 y+2 z & =3 a \\
x+a y & =1 \\
x+2 y+z & =3
\end{aligned}
$$

have any solutions when
(a) $a=3$,
(b) $a=2$.

9 (i) Use the method of differences to show that

$$
\begin{equation*}
\sum_{r=1}^{n}\left\{(r+1)^{3}-r^{3}\right\}=(n+1)^{3}-1 \tag{2}
\end{equation*}
$$

(ii) Show that $(r+1)^{3}-r^{3} \equiv 3 r^{2}+3 r+1$.
(iii) Use the results in parts (i) and (ii) and the standard result for $\sum_{r=1}^{n} r$ to show that

$$
\begin{equation*}
3 \sum_{r=1}^{n} r^{2}=\frac{1}{2} n(n+1)(2 n+1) \tag{6}
\end{equation*}
$$

10 The cubic equation $x^{3}-2 x^{2}+3 x+4=0$ has roots α, β and γ.
(i) Write down the values of $\alpha+\beta+\gamma, \alpha \beta+\beta \gamma+\gamma \alpha$ and $\alpha \beta \gamma$.

The cubic equation $x^{3}+p x^{2}+10 x+q=0$, where p and q are constants, has roots $\alpha+1, \beta+1$ and $\gamma+1$.
(ii) Find the value of p.
(iii) Find the value of q.

BLANK PAGE

