OXFORD CAMBRIDGE AND RSA EXAMINATIONS

 Advanced Subsidiary General Certificate of Education

 Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

 Advanced General Certificate of Education}

MATHEMATICS

Core Mathematics 3
Thursday
8 JUNE 2006
Morning
1 hour 30 minutes
Additional materials:
8 page answer booklet
Graph paper
List of Formulae (MF1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 Find the equation of the tangent to the curve $y=\sqrt{4 x+1}$ at the point $(2,3)$.

2 Solve the inequality $|2 x-3|<|x+1|$.

3 The equation $2 x^{3}+4 x-35=0$ has one real root.
(i) Show by calculation that this real root lies between 2 and 3 .
(ii) Use the iterative formula

$$
x_{n+1}=\sqrt[3]{17.5-2 x_{n}}
$$

with a suitable starting value, to find the real root of the equation $2 x^{3}+4 x-35=0$ correct to 2 decimal places. You should show the result of each iteration.

4 It is given that $y=5^{x-1}$.
(i) Show that $x=1+\frac{\ln y}{\ln 5}$.
(ii) Find an expression for $\frac{\mathrm{d} x}{\mathrm{~d} y}$ in terms of y.
(iii) Hence find the exact value of the gradient of the curve $y=5^{x-1}$ at the point $(3,25)$.

5
(i) Write down the identity expressing $\sin 2 \theta$ in terms of $\sin \theta$ and $\cos \theta$.
(ii) Given that $\sin \alpha=\frac{1}{4}$ and α is acute, show that $\sin 2 \alpha=\frac{1}{8} \sqrt{15}$.
(iii) Solve, for $0^{\circ}<\beta<90^{\circ}$, the equation $5 \sin 2 \beta \sec \beta=3$.

The diagram shows the graph of $y=\mathrm{f}(x)$, where

$$
\mathrm{f}(x)=2-x^{2}, \quad x \leqslant 0
$$

(i) Evaluate ff(-3).
(ii) Find an expression for $\mathrm{f}^{-1}(x)$.
(iii) Sketch the graph of $y=\mathrm{f}^{-1}(x)$. Indicate the coordinates of the points where the graph meets the axes.

7 (a) Find the exact value of $\int_{1}^{2} \frac{2}{(4 x-1)^{2}} \mathrm{~d} x$.
(b)

The diagram shows part of the curve $y=\frac{1}{x}$. The point P has coordinates $\left(a, \frac{1}{a}\right)$ and the point Q has coordinates $\left(2 a, \frac{1}{2 a}\right)$, where a is a positive constant. The point R is such that $P R$ is parallel to the x-axis and $Q R$ is parallel to the y-axis. The region shaded in the diagram is bounded by the curve and by the lines $P R$ and $Q R$. Show that the area of this shaded region is $\ln \left(\frac{1}{2} \mathrm{e}\right)$.

8 (i) Express $5 \cos x+12 \sin x$ in the form $R \cos (x-\alpha)$, where $R>0$ and $0^{\circ}<\alpha<90^{\circ}$.
(ii) Hence give details of a pair of transformations which transforms the curve $y=\cos x$ to the curve $y=5 \cos x+12 \sin x$.
(iii) Solve, for $0^{\circ}<x<360^{\circ}$, the equation $5 \cos x+12 \sin x=2$, giving your answers correct to the nearest 0.1°.

The diagram shows the curve with equation $y=2 \ln (x-1)$. The point P has coordinates $(0, p)$. The region R, shaded in the diagram, is bounded by the curve and the lines $x=0, y=0$ and $y=p$. The units on the axes are centimetres. The region R is rotated completely about the \boldsymbol{y}-axis to form a solid.
(i) Show that the volume, $V \mathrm{~cm}^{3}$, of the solid is given by

$$
\begin{equation*}
V=\pi\left(\mathrm{e}^{p}+4 \mathrm{e}^{\frac{1}{2} p}+p-5\right) . \tag{8}
\end{equation*}
$$

(ii) It is given that the point P is moving in the positive direction along the y-axis at a constant rate of $0.2 \mathrm{~cm} \mathrm{~min}^{-1}$. Find the rate at which the volume of the solid is increasing at the instant when $p=4$, giving your answer correct to 2 significant figures.

