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1 The points A (1, 3) and B (4, 21) lie on the curve y = x2 + x + 1.

(i) Find the gradient of the line AB. [2]

(ii) Find the gradient of the curve y = x2 + x + 1 at the point where x = 3. [2]

2 (i) Evaluate 27
−2

3. [2]

(ii) Express 5
√

5 in the form 5n. [1]

(iii) Express
1 − √

5

3 + √
5

in the form a + b
√

5. [3]

3 (i) Express 2x2 + 12x + 13 in the form a(x + b)2 + c. [4]

(ii) Solve 2x2 + 12x + 13 = 0, giving your answers in simplified surd form. [3]

4 (i) By expanding the brackets, show that

(x − 4)(x − 3)(x + 1) = x3 − 6x2 + 5x + 12. [3]
(ii) Sketch the curve

y = x3 − 6x2 + 5x + 12,

giving the coordinates of the points where the curve meets the axes. Label the curve C1. [3]

(iii) On the same diagram as in part (ii), sketch the curve

y = −x3 + 6x2 − 5x − 12.

Label this curve C2. [2]

5 Solve the inequalities

(i) 1 < 4x − 9 < 5, [3]

(ii) y2 ≥ 4y + 5. [5]

6 (i) Solve the equation x4 − 10x2 + 25 = 0. [4]

(ii) Given that y = 2
5
x5 − 20

3
x3 + 50x + 3, find

dy
dx

. [2]

(iii) Hence find the number of stationary points on the curve y = 2
5
x5 − 20

3
x3 + 50x + 3. [2]

4721/S06



3

7 (i) Solve the simultaneous equations

y = x2 − 5x + 4, y = x − 1. [4]
(ii) State the number of points of intersection of the curve y = x2 − 5x + 4 and the line y = x − 1. [1]

(iii) Find the value of c for which the line y = x + c is a tangent to the curve y = x2 − 5x + 4. [4]

8 A cuboid has a volume of 8 m3. The base of the cuboid is square with sides of length x metres. The
surface area of the cuboid is A m2.

(i) Show that A = 2x2 + 32
x

. [3]

(ii) Find
dA
dx

. [3]

(iii) Find the value of x which gives the smallest surface area of the cuboid, justifying your answer.
[4]

9 The points A and B have coordinates (4, −2) and (10, 6) respectively. C is the mid-point of AB. Find

(i) the coordinates of C, [2]

(ii) the length of AC, [2]

(iii) the equation of the circle that has AB as a diameter, [3]

(iv) the equation of the tangent to the circle in part (iii) at the point A, giving your answer in the form
ax + by = c. [5]
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