OXFORD CAMBRIDGE AND RSA EXAMINATIONS

 Advanced Subsidiary General Certificate of Education

 Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

 Advanced General Certificate of Education}

MATHEMATICS

Core Mathematics 1

Tuesday
6 JUNE 2006
Additional materials:
8 page answer booklet
Graph paper
List of Formulae (MF1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are not permitted to use a calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

[^0]1 The points $A(1,3)$ and $B(4,21)$ lie on the curve $y=x^{2}+x+1$.
(i) Find the gradient of the line $A B$.
(ii) Find the gradient of the curve $y=x^{2}+x+1$ at the point where $x=3$.

2 (i) Evaluate $27^{-\frac{2}{3}}$.
(ii) Express $5 \sqrt{5}$ in the form 5^{n}.
(iii) Express $\frac{1-\sqrt{5}}{3+\sqrt{5}}$ in the form $a+b \sqrt{5}$.

3 (i) Express $2 x^{2}+12 x+13$ in the form $a(x+b)^{2}+c$.
(ii) Solve $2 x^{2}+12 x+13=0$, giving your answers in simplified surd form.

4 (i) By expanding the brackets, show that

$$
\begin{equation*}
(x-4)(x-3)(x+1)=x^{3}-6 x^{2}+5 x+12 . \tag{3}
\end{equation*}
$$

(ii) Sketch the curve

$$
\begin{equation*}
y=x^{3}-6 x^{2}+5 x+12 \tag{3}
\end{equation*}
$$

giving the coordinates of the points where the curve meets the axes. Label the curve C_{1}.
(iii) On the same diagram as in part (ii), sketch the curve

$$
y=-x^{3}+6 x^{2}-5 x-12
$$

Label this curve C_{2}.

5 Solve the inequalities
(i) $1<4 x-9<5$,
(ii) $y^{2} \geq 4 y+5$.

6 (i) Solve the equation $x^{4}-10 x^{2}+25=0$.
(ii) Given that $y=\frac{2}{5} x^{5}-\frac{20}{3} x^{3}+50 x+3$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(iii) Hence find the number of stationary points on the curve $y=\frac{2}{5} x^{5}-\frac{20}{3} x^{3}+50 x+3$.

7 (i) Solve the simultaneous equations

$$
\begin{equation*}
y=x^{2}-5 x+4, \quad y=x-1 \tag{4}
\end{equation*}
$$

(ii) State the number of points of intersection of the curve $y=x^{2}-5 x+4$ and the line $y=x-1$. [1]
(iii) Find the value of c for which the line $y=x+c$ is a tangent to the curve $y=x^{2}-5 x+4$.

8 A cuboid has a volume of $8 \mathrm{~m}^{3}$. The base of the cuboid is square with sides of length x metres. The surface area of the cuboid is $A \mathrm{~m}^{2}$.
(i) Show that $A=2 x^{2}+\frac{32}{x}$.
(ii) Find $\frac{\mathrm{d} A}{\mathrm{~d} x}$.
(iii) Find the value of x which gives the smallest surface area of the cuboid, justifying your answer.

9 The points A and B have coordinates $(4,-2)$ and $(10,6)$ respectively. C is the mid-point of $A B$. Find
(i) the coordinates of C,
(ii) the length of $A C$,
(iii) the equation of the circle that has $A B$ as a diameter,
(iv) the equation of the tangent to the circle in part (iii) at the point A, giving your answer in the form $a x+b y=c$.

BLANK PAGE

[^0]: This question paper consists of 3 printed pages and 1 blank page.

