

GCE

Mathematics

Advanced GCE A2 7890 - 2

Advanced Subsidiary GCE AS 3890 - 2

Mark Schemes for the Units

June 2006

3890-2/7890-2/MS/R/06

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2006

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annersley NOTTINGHAM NG15 0DL

Telephone:0870 870 6622Facsimile:0870 870 6621E-mail:publications@ocr.org.uk

CONTENTS

Advanced GCE Mathematics (7890) Advanced GCE Pure Mathematics (7891) Advanced GCE Further Mathematics (7892)

Advanced Subsidiary GCE Mathematics (3890) Advanced Subsidiary GCE Pure Mathematics (3891) Advanced Subsidiary GCE Further Mathematics (3892)

MARK SCHEME ON THE UNITS

Unit	Content	Page
4721	Core Mathematics 1	1
4722	Core Mathematics 2	7
4723	Core Mathematics 3	13
4724	Core Mathematics 4	19
4725	Further Pure Mathematics 1	25
4726	Further Pure Mathematics 2	31
4727	Further Pure Mathematics 3	35
4728	Mechanics 1	41
4729	Mechanics 2	47
4730	Mechanics 3	51
4731	Mechanics 4	57
4732	Probability & Statistics 1	65
4733	Probability & Statistics 2	71
4734	Probability & Statistics 3	75
4735	Probability & Statistics 4	79
4736	Decision Mathematics 1	83
4737	Decision Mathematics 2	89
*	Grade Thresholds	97

Mark Scheme 4721 June 2006 4721

1	(i)	$\frac{21-3}{4-1} = \frac{18}{3} = 6$	M1		Uses $\frac{y_2 - y_1}{x_2 - x_1}$
			A1	2	6 (not left as $\frac{18}{3}$)
	(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x + 1$	B1		
		$2 \times 3 + 1 = 7$	B1	2	
2	(i)	$27^{-\frac{2}{3}} = \frac{1}{27^{\frac{2}{3}}} = \frac{1}{9}$	M1		$\frac{1}{27^{\frac{2}{3}}}$ or $27^{\frac{2}{3}}$ = 9 or 3^{-2} soi
			A1	2	$\frac{1}{9}$
	(ii)	$5\sqrt{5} = 5^{\frac{3}{2}}$	B1	1	
	(iii)	$\frac{1-\sqrt{5}}{3+\sqrt{5}} = \frac{\left(1-\sqrt{5}\right)\left(3-\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}$	M1		Multiply numerator and denominator by conjugate
		$=\frac{8-4\sqrt{5}}{4}$	B1		$\left(\sqrt{5}\right)^2 = 5$ soi
		$=2-\sqrt{5}$	A1	3	$2 - \sqrt{5}$
3	(i)	$2x^{2} + 12x + 13 = 2(x^{2} + 6x) + 13$ $= 2[(x + 3)^{2} - 9] + 13$	B1 B1 M1		a = 2 b = 3 $13 - 2b^2$ or $13 - b^2$ or $\frac{13}{2} - b^2$ (their b)
		$=2(x+3)^2-5$	A1	4	<i>c</i> = –5
	(ii)	$2(x+3)^2 - 5 = 0$	M1		Uses correct quadratic formula or completing square method
		$\left(x+3\right)^2 = \frac{3}{2}$	A1		$x = \frac{-12 \pm \sqrt{40}}{4}$ or $(x+3)^2 = \frac{5}{2}$
		$x = -3 \pm \sqrt{\frac{3}{2}}$	A1	3	$x = -3 \pm \sqrt{\frac{5}{2}}$ or $-3 \pm \frac{1}{2}\sqrt{10}$

4	(i)	(x-4)(x-3)(x+1)	B1		$x^{2} - 7x + 12$ or $x^{2} - 2x - 3$ or $x^{2} - 3x - 4$ seen
		$= (x^{2} - 7x + 12)(x + 1)$ = $x^{3} + x^{2} - 7x^{2} - 7x + 12x + 12$ = $x^{3} - 6x^{2} + 5x + 12$	M1 A1	3	Attempt to multiply a quadratic by a linear factor or attempt to list an 8 term expansion of all 3 brackets $x^3 - 6x^2 + 5x + 12$ (AG) obtained (no wrong working seen)
	(ii) (iii)		B1 B1 B1 M1 A1√	3	 +ve cubic with 3 roots (not 3 line segments) (0, 12) labelled or indicated on <i>y</i>-axis (-1, 0), (3,0), (4, 0) labelled or indicated on <i>x</i>-axis Reflect <i>their</i> (ii) in either <i>x</i>- or <i>y</i>-axis Reflect <i>their</i> (ii) in <i>x</i>-axis
5	(i)	1 < 4x - 9 < 5	M1		2 equations or inequalities both dealing
		10 < 4x < 14 2.5 < x < 3.5	A1 A1	3	 with all 3 terms 2.5 and 3.5 seen oe 2.5 < <i>x</i> < 3.5 (or '<i>x</i> > 2.5 <u>and</u> <i>x</i> < 3.5')
	(ii)	$v^2 > 4v + 5$	B1		$y^2 - 4y - 5 = 0$ soi
	(**)	$y^2 - 4y - 5 > 0$	M1		Correct method to solve quadratic
		$(y-5)(y+1) \ge 0$ $y \le -1, y \ge 5$	A1		-1, 5 (SR If both values obtained from trial and improvement, award B3)
			M1		Correct method to solve inequality
			A1	5	$y \leq -1, y \geq 5$

-					1
6	(i)	$x^{4} - 10x^{2} + 25 = 0$ Let $y = x^{2}$ $y^{2} - 10y + 25 = 0$	*M1		Use a substitution to obtain a quadratic or $(x^2 - 5)(x^2 - 5) = 0$
		$(y-5)^2 = 0$	dep*M1		Correct method to solve a quadratic
		y = 5	A1		5 (not $x = 5$ with no subsequent working)
		$\begin{array}{l} x = 5 \\ x = \pm \sqrt{5} \end{array}$	A1	4	$x = \pm \sqrt{5}$
	(ii)	$y = \frac{2x^5}{5} - \frac{20x^3}{2} + 50x + 3$	B1		$2x^4$ or - $20x^2$ oe seen
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x^4 - 20x^2 + 50$	B1	2	$2x^4 - 20x^2 + 50$ (integers required)
	(iii)	$2x^{4} - 20x^{2} + 50 = 0$ $x^{4} - 10x^{2} + 25 = 0$	M1		<i>their</i> $\frac{dy}{dx} = 0$ seen (or implied by correct
		which has 2 roots	A1	2	answer) 2 stationary points www in any part
7	(i)	$y = x^2 - 5x + 4$ $y = x - 1$			
		$x^2 - 5x + 4 = x - 1$	M1		Substitute to find an equation in <i>x</i> (or <i>y</i>)
		$x^{2}-6x+5=0$ (x 1)(x 5) = 0	M1		Correct method to solve quadratic
		(x-1)(x-3) = 0 x = 1 $x = 5y = 0$ $y = 4$	A1 A1	4	x = 1, 5 y = 0, 4 (N.B. This final A1 may be awarded in part (ii) if y coordinates only seen in part (ii))
					SR one correct (x,y) pair www B1
	(11)	2 points of intersection	B1	1	
	(iii)	EITHER $x^2 - 5x + 4 = x + c$ has 1 solution	M1		$x^2 - 5x + 4 = x + c$ has 1 soln seen or implied
		$x^{2} - 6x + (4 - c) = 0$ $b^{2} - 4ac = 0$	M1		Discriminant = 0 or $(x - a)^2 = 0$ soi
		36 - 4(4 - c) = 0	A1		36 - 4(4 - c) = 0 or $9 = 4 - c$
		c = -5 OR	A1	4	<i>c</i> = – 5
		$\frac{dy}{dx} = 1 = 2x - 5$ $x = 3 y = -2$	M1		Algebraic expression for gradient of curve = non-zero gradient of line
		-2 = 3 + c	A1		2x - 5 = 1
		<i>c</i> = -5	A1 A1	4	x = 3 c = -5 SR c = -5 without any working B1

8	(i)	Height of box = $\frac{8}{x^2}$	*B1		Area of 1 vertical face = $\frac{8}{x^2} \times x$
		4 vertical faces = $4 \times \frac{8}{x}$ = $\frac{32}{x}$	*B1		$=\frac{8}{x}$
		Total surface area = $x^2 + x^2 + \frac{32}{x}$	B1 dep on both **		Correct final expression
		$A = 2x^2 + \frac{32}{x}$		3	
	(ii)	$\frac{\mathrm{d}A}{\mathrm{d}x} = 4x - \frac{32}{x^2}$	B1 B1 B1	3	$4x$ kx^{2} $-32x^{2}$
	(iii)	$4x - \frac{32}{x^2} = 0$	M1		$\frac{\mathrm{d}A}{\mathrm{d}x} = 0$ soi
		$4x^3 = 32$ $x = 2$	A1		<i>x</i> = 2
			M1 A1	4	Check for minimum Correctly justified
					SR If $x = 2$ stated www but with no evidence of differentiated expression(s) having been used in part (iii) B1

9	(i)	$\left(\frac{4+10}{2}, \frac{-2+6}{2}\right)$	M1		Uses $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$
		(7, 2)	A1	2	(7, 2) (integers required)
	(ii)	$\sqrt{(7-4)^2 + (2-2)^2}$	M1		Uses $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
		$=\sqrt{3^2 + 4^2}$ $= 5$	A1	2	5
	(iii)	$(x-7)^{2} + (y-2)^{2} = 25$	В1√		$(x-7)^2$ and $(y-2)^2$ used (their
			B1√		$r^2 = 25$ used (<i>their</i> r^2)
			B1	3	$(x-7)^2 + (y-2)^2 = 25$ cao
					Expanded form: -14x and -4y used $B1$
					$r = \sqrt{g^2} + f^2 - c$ used B1 $$
					$x^{2} + y^{2} - 14x - 4y + 28 = 0$ B1 cao
					By using ends of diameter: (x - 4)(x - 10) + (y + 2)(y - 6) = 0
					Both x brackets correct B1 Both y brackets correct B1
					Final equation fully correct B1
	(iv)	Gradient of <i>AB</i> = $\frac{62}{10 - 4} = \frac{4}{3}$	B1		oe
		Gradient of tangent = $-\frac{3}{4}$	B1√		
		4			
			M1		Correct equation of straight line through A, any non-zero gradient
		$y - 2 = -\frac{3}{4}(x - 4)$	A1		
		3x + 4y = 4	A1	5	<i>a ,b, c</i> need not be integers

Mark Scheme 4722 June 2006

1		$(3x-2)^4 = 81x^4 - 216x^3 + 216x^2 - 96x + 16$	M1 A1 A1 A1	4	Attempt binomial expansion, including attempt at coeffs. Obtain one correct, simplified, term Obtain a further two, simplified, terms Obtain a completely correct expansion
2	(i)	$u_2 = -1, u_3 = 2, u_4 = -1$	B1 B1	2	For correct value –1 for u_2 For correct values for both u_3 and u_4
	(ii)	Sum is $(2+(-1))+(2+(-1))++(2+(-1))$ i.e. $50\times(2+(-1))=50$	M1 M1 A1	3	For correct interpretation of Σ notation For pairing, or $50 \times 2 - 50 \times 1$ For correct answer 50
3		$y = 4x^{\frac{1}{2}} + c$	M1 A1	5	For attempt to integrate For integral of the form $kx^{\frac{1}{2}}$
		Hence $5 = 4 \times 4^{\frac{1}{2}} + c \Longrightarrow c = -3$	A1 M1 A1√		For $4x^{\overline{2}}$, with or without + <i>c</i> For relevant use of (4, 5) to evaluate <i>c</i> For correct value –3 (or follow through on integral
		So equation of the curve is $y = 4x^{\frac{1}{2}} - 3$	A1	6	of form $kx^{\frac{1}{2}}$) For correct statement of the equation in full (aef)
4	(i)	Intersect where $x^2 + x - 2 = 0 \Rightarrow x = -2, 1$	M1 A1	2	For finding <i>x</i> at both intersections For both values correct
	(ii)	Area under curve is $\left[4x - \frac{1}{3}x^3\right]_{-2}^{1}$	M1 M1		For integration attempt with any one term correct For use of limits – subtraction and correct order
		i.e. $\left(4-\frac{1}{3}\right)-\left(-8+\frac{8}{3}\right)=9$	A1		For correct area of 9
		Area of triangle is $4\frac{1}{2}$ Hence shaded area is $9 - 4\frac{1}{2} = 4\frac{1}{2}$	M1 A1 A1	6	Attempt area of triangle ($\frac{1}{2}bh$ or integration) Obtain area of triangle as 4 $\frac{1}{2}$ Obtain correct final area of 4 $\frac{1}{2}$
		OR Area under curve is $\int_{-1}^{1} (2 - x - x^2) dx$	M1 M1		Attempt subtraction – either order For integration attempt with any one term correct
		$= \left[-\frac{1}{3}x^3 - \frac{1}{2}x^2 + 2x \right]_{-2}^{1}$ = $\left(-\frac{1}{3} - \frac{1}{2} + 2 \right) - \left(\frac{8}{3} - 2 - 4 \right)$	A1 M1		Obtain $\pm \left[-\frac{1}{3}x^3 - \frac{1}{2}x^2 + 2x \right]$ For use of limits – subtraction and correct order
		$= 4\frac{1}{2}$	A1 A1		Obtain $\pm 4 \frac{1}{2}$ - consistent with their order of subtraction Obtain 4 $\frac{1}{2}$ only, following correct method only
				<u>8</u>	

5	(i)	$\sin^2 x = 1 - \cos^2 x \Longrightarrow 2\cos^2 x + \cos x - 1 = 0$	M1		For transforming to a quadratic in cos x
		Hence $(2\cos x - 1)(\cos x + 1) = 0$	M1		For solution of a quadratic in cos x
		$\cos x = \frac{1}{2} \Longrightarrow x = 60^{\circ}$	A1		For correct answer 60°
		$\cos x = -1 \Longrightarrow x = 180^{\circ}$	A1	4	For correct answer 180° [Max 3 out of 4 if any extra answers present in range, or in radians] SR answer only is B1, B1 justification – ie graph or substitution is B2, B2
	(ii)	$\tan 2x = -1 \Longrightarrow 2x = 135 \text{ or } 315$	M1 M1		For transforming to an equation of form $tan2x = k$ For correct solution method, i.e. inverse tan followed by division by 2
		Hence $x = 67.5^{\circ}$ or 157.5°	A1		For correct value 67.5
			A1	4	For correct value 157.5
		OR $\sin^2 2x = \cos^2 2x$ $2\sin^2 2x = 1$ $2\cos^2 2x = 1$ $\sin 2x = \pm \frac{1}{2}\sqrt{2}$ $\cos 2x = \pm \frac{1}{2}\sqrt{2}$ Hence $x = 67.5^\circ$ or 157.5°	M1 M1 A1 A1	8	Obtain linear equation in cos 2 <i>x</i> or sin 2 <i>x</i> Use correct solution method For correct value 67.5 For correct value 157.5 [Max 3 out of 4 if any extra answers present in range, or in radians] SR answer only is B1, B1 justification – ie graph or substitution is B2, B2
6	(i)	(a) $100 + 239 \times 5 = \text{\pounds}1295$	M1	n	For relevant use of $a + (n - 1)d$
		(b) $\frac{1}{2} \times 240 \times (100 + 1295) = f167400$	 M1	.4	For relevant use of $\frac{1}{2}n(a+l)$ or equivalent
		$(2)_{2} (2)_{2} (2) (100 + 12)_{3} = 210,100$	A1	2	For correct value 167400
	(ii)	$100r^{239} = 1500 \implies r = 1.01139$	B1 M1 A1		For correct statement of $100r^{239} = 1500$ Attempt to find <i>r</i> For correct value 1.01
		Hence total is $\frac{100(1.01139^{240} - 1)}{1.01139 - 1} = \pounds 124359$	M1 A1	5	For correct value 124359 (3 s.f. or better)
				9	

7	(i)	$AC^{2} = 11^{2} + 8^{2} - 2 \times 11 \times 8 \times \cos 0.8$ = 62.3796	M1 A1 A1	3	Attempt to use the cosine formula Correct unsimplified expression Show the given answer correctly
	(ii)	Area of sector = $\frac{1}{2} \times 7.90^2 \times 1.7 = 53.0$	M1		Attempt area of sector using $(\frac{1}{2})r^2\theta$
		Area of triangle = $\frac{1}{2} \times 7.90^2 \times \sin 1.7 = 30.9$	M1		Attempt area of $\triangle ACD$, using $(\frac{1}{2})r^2 \sin \theta$, or equiv
		Hence shaded area = 22.1 cm^2	A1	3	Obtain 22.1
	(iii)	(arc) $DC = 7.90 \times 1.7 = 13.4$	M1		Use $r\theta$ to attempt arc length
			A1		Obtain 13.4
		(line) $DC^{2} = 7.90^{2} + 7.90^{2} - 2 \times 7.90 \times 7.90 \times \cos 1.7$ DC = 11.9 Hence perimeter = 25.3cm	M1 A1	4	Attempt length of line <i>DC</i> using cosine rule or equiv.
				10	
8	(i)	$f(2) = 12 \Longrightarrow 4a + 2b = 6$	M1		For equating f(2) to 12
		$f(-1) = 0 \Longrightarrow a - b = 12$	A1 M1		For correct equation $4a + 2b = 6$ For equating $f(-1)$ to 0
			A1		For correct equation $a - b = 12$
		Hence $a = 5, b = -7$	M1		For attempt to find a and b
			A1	6	For both values correct
	(11)	Quotient is $2x^2 + x - 9$	B1		For correct lead term of 2x ²
					For completely correct quotient
		Demoinder is 0	M1		For attempt at remainder – either division or $f(-2)$
		Kemainuer is ö	A1	5	For correct remainder
				11	

	1		1	1	
9	(i)				
		1	M1		Attempt sketch of any exponential graph, in at
		· · · · · · · · · · · · · · · · · · ·	A1		least first quadrant Correct graph – must be in both guadrants
			B1	3	For identification of (0, 1)
	(ii)	$A \approx \frac{1}{2} \times 0.5 \times \left\{ 1 + 2 \left(0.5^{\frac{1}{2}} + 0.5 + 0.5^{\frac{3}{2}} \right) + 0.5^{2} \right\}$	B1		State, or imply, at least three correct y-values
		~1.09	M1 A1		For correct use of trapezium rule, inc correct <i>h</i> For correct unsimplified expression
		~ 1.07	A1	4	For the correct value 1.09, or better
	(iii)	$\left(\frac{1}{2}\right)^x = \frac{1}{6} \Longrightarrow x \log_{10} \frac{1}{2} = \log_{10} \frac{1}{6}$	M1		For equation $\left(\frac{1}{2}\right)^x = \frac{1}{6}$ and attempt at logs
		$x = \frac{\log_{10} \frac{1}{6}}{\log_{10} \frac{1}{6}} = \frac{-\log_{10} 6}{\log_{10} 6}$	A1		Obtain $x \log(\frac{1}{2}) = \log(\frac{1}{6})$, or equivalent
		$\log_{10} \frac{1}{2} - \log_{10} 2$			
		Hence $=\frac{\log_{10} 2 + \log_{10} 5}{\log_{10} 2}$	M1		For use of log 6 = log 2 + log 3
		$\log_{10} 2$	Δ1	4	For showing the given answer correctly
		$=1+\frac{1}{\log_{10} 2}$			
		OR			
		$\left(\frac{1}{2}\right)^x = \frac{1}{6} \Longrightarrow 2^x = 6$			For equation $2^{x} = 6$ and attempt at logs
		$\Rightarrow x \log_{10} 2 = \log_{10} 6$	M1 A1		Obtain $x \log 2 = \log 6$ or equivalent
		$x = \frac{\log_{10} \sigma}{\log_{10} 2}$	/		
		$\log_{10} 2 + \log_{10} 3$			
		$=\frac{\log_{10} 2}{\log_{10} 2}$	M1		For use of log 6 = log 2 + log 3
		$-1 + \frac{\log_{10} 3}{\log_{10} 3}$	A1		For showing the given answer correctly
		$\log_{10} 2$			
		OR			
		$\left(\frac{1}{2}\right)^{x} = \frac{1}{6} \Longrightarrow 2^{x} = 6$	M1		Attempt to rearrange equation to $2^n = 3$
		$(x-1)\log_{10} 2 = \log_{10} 3$	A1		Obtain $2^{x-1} = 3$
		Hence $r = 1 + \frac{\log_{10} 3}{\log_{10} 3}$	M1		For attempt at logs
		$\log_{10} 2$	A1		For showing the given answer correctly
		OR			
		$\mathbf{x} = \frac{\log_{10} 2 + \log_{10} 3}{\log_{10} 2}$			
		$= \underline{\log_{10} 6}$	M1		Use $\log 2 + \log 3 = \log 6$
		$\frac{\log_{10} 2}{r \log_{10} 2} = \log_{10} 6$	A1		Obtain <i>x</i> log 2 = log 6
		$\log_{10} 2^x = \log_{10} 6$	M1		Attempt to remove logarithms
		$2^{x} = 6$			
		$(1)^{x}$ 1			
		$\left(\frac{1}{2}\right) = \frac{1}{6}$	A1		Show $\left(\frac{1}{2}\right)^x = \frac{1}{6}$ correctly
				<u>11</u>	

12

Mark Scheme 4723 June 2006

1		Differe	ntiate to obtain $k(4x+1)^{-\frac{1}{2}}$	M1		any non-zero constant k
		Obtain	$2(4x+1)^{-\frac{1}{2}}$	A 1		or equiv, perhaps unsimplified
		Obtain	$\frac{2}{3}$ for value of first derivative	A1		or unsimplified equiv
		Attemp	t equation of tangent through (2, 3)	M1		using numerical value of first derivative provided derivative is of form $k'(4x+1)^n$
		Obtain	$y = \frac{2}{3}x + \frac{5}{3}$ or $2x - 3y + 5 = 0$	A1	5	or equiv involving 3 terms
2		Either:	Attempt to square both sides	M1		producing 3 terms on each side
			Obtain $3x^2 - 14x + 8 = 0$	A1		or inequality involving < or >
			Obtain correct values $\frac{2}{3}$ and 4	A1		
			Attempt valid method for solving inequality	M1		implied by correct answer or plausible incorrect answer
			Obtain $\frac{2}{3} < x < 4$	A1	5	or correctly expressed equiv;
			5			allow ≤ signs
		<u>Or</u> :	Attempt solution of two linear equations or inequalities	M 1		one eqn with signs of 2 <i>x</i> and <i>x</i> the same, second eqn with signs different
			Obtain value $\frac{2}{3}$	A1		
			Obtain value 4 Attempt valid method for solving inequality	В1 M1		implied by correct answer or
			Obtain $\frac{2}{3} < x < 4$	A 1	(5)	plausible incorrect answer or correctly expressed equiv; allow ≤ signs
	(i)	Attemn	t evaluation of cubic expression at 2 and 3	M1		
5	(1)	Obtain	-11 and 31	A1		
		Conclu	de by noting change of sign	A11	3	or equiv; following any calculated values provided negative then positive
	(ii)	Obtain Attemp Obtain	correct first iterate of correct process to obtain at least 3 iterates 2.34	B1 M1 A1	3	using x_1 value such that $2 \le x_1 \le 3$ using any starting value now answer required to 2 d.p. exactly; $2 \rightarrow 2.3811 \rightarrow 2.3354 \rightarrow 2.3410$; $2.5 \rightarrow 2.3208 \rightarrow 2.3428 \rightarrow 2.3401$; $3 \rightarrow 2.2572 \rightarrow 2.3505 \rightarrow 2.3392$

4	(i)	State 1	$n y = (x - 1) \ln 5$		В	1	whether following $\ln y = \ln 5^{x-1}$ or not; brackets needed
		Obtain	$x = 1 + \frac{\ln y}{\ln 5}$		В	12	AG; correct working needed;
			111.5				missing brackets maybe now implied
	(ii)	Differer	ntiate to obtain sing	le term of form $\frac{k}{y}$	M1 ar	пу со	onstant k
		Obtain	$\frac{1}{y \ln 5}$	·	Α	12	or equiv involving y
	(iii)	Substitu	ute for <i>y</i> and attem	pt reciprocal	М	1	or equiv method for finding derivative without using part (ii)
		Obtain	25 ln 5		Α	12	or exact equiv
5	(i)	State s	$\sin 2\theta = 2\sin\theta\cos\theta$	θ	В	1 1	or equiv; any letter acceptable here (and in parts (ii) and (iii))
	(ii)	Attempt	t to find exact value	e of cos α	М	1	using identity attempt or right- angled triangle
		Obtain	$\frac{1}{4}\sqrt{15}$		Α	1	or exact equiv
		Substitu	ute to confirm $\frac{1}{8}\sqrt{1}$	5	Α	13	AG
	(iii)	State or	r imply sec $\beta = \frac{1}{\cos \beta}$	$\overline{\beta}$	В	1	
		Use ide Obtain	ntity to produce eq sin β = 0.3 and her	uation involving sin nce 17.5	η <i>β</i> Μ Α	1 1 3	and no other values between 0 and 90; allow 17.4 or value rounding to 17.4 or 17.5
6	(i)	<u>Either</u> :	Obtain f(–3) = –7 Show correct proce Obtain <i>–</i> 47	ess for compn of fu	B nctionsM A	1 1 1 3	maybe implied
		<u>Or</u> :	Show correct proce Obtain $2 - (2 - x^2)^2$ Obtain -47	ess for compn of fu	nctions M A A	1 1 1 (3	using algebraic approach or equiv 3)
	(ii)	Attempt Obtain	t correct process for either one of $x = \pm$	or finding inverse $\sqrt{2-y}$ or both	M A	1 1	as far as $x = \dots$ or equiv or equiv perhaps involving x
		Obtain	correct $-\sqrt{2-x}$	v	Α	13	or equiv; in terms of <i>x</i> now
	(iii)	Draw gi Draw (r	raph showing atten nore or less) correc	npt at reflection in y ct graph	/ = x M A	1 1	with end-point on <i>x</i> -axis and no
		Indicate	e coordinates 2 and	$1 - \sqrt{2}$	Α	13	minimum point in third quadrant accept –1.4 in place of $-\sqrt{2}$
7	(a)	Obtain	integral of form $k($	$(4x-1)^{-1}$	М	1	any non-zero constant k

June 2006

4723

		Obtain $-\frac{1}{2}(4x-1)^{-1}$ Substitute limits and attempt evaluation	A1 M1	or equiv; allow + c for any expression of form $k'(4x-1)^n$
		Obtain $\frac{2}{21}$	A1 4	or exact equiv
	(b)	Integrate to obtain $\ln x$ Substitute limits to obtain $\ln 2a - \ln a$ Subtract integral attempt from attempt at area	B1 B1	
		of appropriate rectangle Obtain $1 - (\ln 2a - \ln a)$	M1 A1	or equiv or equiv
		Show at least one relevant logarithm property Obtain $1 - \ln 2$ and hence $\ln(\frac{1}{2}e)$	M1 A1 6	at any stage of solution AG ; full detail required
8	(i)	State $R = 13$	B1	or equiv
		R sin $\alpha = k'$, tan $\alpha = k''$	M1	or equiv; allow sin / cos
		Obtain 67.4	A1 3	allow 67 or greater accuracy
	(ii)	Refer to translation and stretch	M1	in either order; allow here equiv terms such as 'move', 'shift'; with both transformations involving constants
		State translation in positive <i>x</i> direction by 67.4	A1 √	or equiv; following their α ; using correct terminology now
		State stretch in <i>y</i> direction by factor 13	A1√ 3	or equiv; following their <i>R</i> ; using correct terminology now
	(iii)	Attempt value of $\cos^{-1}(2 \div R)$	M1	
		Obtain 81.15	A1 √	following their <i>R</i> ; accept 81
		Obtain 148.5 as one solution	A1	accept 148.5 or 148.6 or value rounding to either of these
		Add their α value to second value		
		Correctly attempted Obtain 346.2	м1 А1 5	accept 346.2 or 346.3 or value rounding to either of these; and no other solutions

	Obtain $x = e^{\frac{1}{2}y} + 1$ State or imply volume involves $\int \pi x^2$ Attempt to express x^2 in terms of <i>y</i>
	Obtain $k \int (e^{y} + 2e^{\frac{1}{2}y} + 1) dy$
	Integrate to obtain $k(e^{y} + 4e^{\frac{1}{2}y} + y)$ Use limits 0 and <i>p</i>
	Obtain $\pi(e^{p} + 4e^{\frac{1}{2}p} + p - 5)$
(ii)	State or imply $\frac{dp}{dt} = 0.2$
	Obtain $\pi(e^p + 2e^{\frac{1}{2}p} + 1)$ as derivative of <i>V</i> Attempt multiplication of values or expressions for $\frac{dp}{dt}$ and $\frac{dV}{dp}$
	Obtain $0.2\pi(e^4 + 2e^2 + 1)$
	Obtain 44

A1	or equiv
B1	
* M1	dep *M ; expanding to produce at least 3 terms
A1	any constant <i>k</i> including 1; allow if dy absent
A1	
M1	<pre>dep *M *M; evidence of use of 0 needed</pre>
A1 8	AG; necessary detail required
B1	maybe implied by use of 0.2 in
	product
B1	
M1	
A1 √	following their $\frac{\mathrm{d}V}{\mathrm{d}p}$ expression
A1 5	or greater accuracy

Mark Scheme 4724 June 2006

1	$\frac{\mathrm{d}}{\mathrm{d}x}(xy) = x\frac{\mathrm{d}y}{\mathrm{d}x} + y$	B1		s.o.i. e.g. $2x \frac{dy}{dx} + y$
	$\frac{d}{dr}(y^2) = 2y\frac{dy}{dr}$	B1		
	Substitute (1,2) into their differentiated equation	M1 dep a	at	Or attempt to solve their diff equation for $\frac{dy}{dx}$
	and attempt to solve for $\frac{dy}{dx}$. [Allow subst of (2,1)]	least 1 x	B 1	and then substitute (1,2)
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -2$	A1	4	
2 (i)	$1 + (-2)(-3x) + \frac{(-2)(-3)}{1.2}(-3x)^2 (+ \dots \text{ ignore})$	M1		State or imply; accept $-3x^2 \& -9x^2$
	= 1 + 6x	B1		Correct first 2 terms
	$\dots + 27x^2$	A1	3	Correct third term
(ii)	$(1+2x)^2(1-3x)^{-2}$	M1		For changing into suitable form, seen/implied
	Attempt to expand $(1+2x)^2$ & select (at least) 2	M1		Selection may be after multiplying out
	relevant products and add 55 (Accept $55x^2$)	A2 √	4	If (i) is $a + bx + cx^2$, f.t. $4(a + b) + c$
	<u>SR 1</u> For expansion of $(1 + 2x)^2$ with 1 error, A1v	1		
	<u>SR 2</u> For expansion of $(1 + 2x)^2 \& > 1$ error, A0			
	<u>Alternative Method</u> For correct method idea of long division $1 \dots +10x \dots +55x^2$	M1 A1,A1,A	.1(4)	
3 (i)	$\frac{A}{x} + \frac{B}{3-x} & \text{ c-u rule or } A(3-x) + Bx \equiv 3-2x$	M1		Correct format + suitable method
	$\frac{1}{r}$	A1		seen in (i) or (ii)
	$-\frac{1}{3-x}$	A1	3	ditto; $\frac{1}{x} - \frac{1}{3-x}$ scores 3 immediately
(ii)	$\int \frac{1}{x} (\mathrm{d}x) = \ln x \text{ or } \ln x $	B1		
	$\int \frac{1}{3-x} (dx) = -\ln(3-x) \text{ or } -\ln 3-x $	B1		Check sign carefully; do not allow $\ln(x-3)$
	Correct method idea of substitution of limits ln 2 (+ ln 1 - ln 1) - ln 2 = 0	M1 A1	4	Dep on an attempt at integrating Clearly seen; WWW AG
	If ignoring PFs, $\ln x(3 - x)$ immediately As before	B2 M1,A1	(4)	$\ln x(x-3) \to 0$
(iii)	Suitable statement or clear implication e.g. Equal amounts (of area) above and below (axis) or graph crosses axis or there's a root	B1	1	

4	(i) W = M W U	Vorking out $\mathbf{b} - \mathbf{a}$ or $\mathbf{a} - \mathbf{b}$ or $\mathbf{c} - \mathbf{a}$ or $\mathbf{a} - \mathbf{c}$ $\pm (-3\mathbf{i} - \mathbf{j} - \mathbf{k})$ or $\pm (-2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$ Iethod for finding magnitude of <u>any</u> vector Iethod for finding scalar product of <u>any</u> 2 vectors ising $\cos \theta = \frac{a.b}{ a b }$ AEF for <u>any</u> 2 vectors	M1 A1 M1 M1 M1)))	Irrespective of label If not scored ,these 1 st 3 marks can be awarded in part (ii)
	<u>[</u> A	$\frac{ BC }{ BC } = \sqrt{6}$	B1		
	С	osine rule used π	M1		'Recognisable' form
	4	$5.3^{\circ}, 0.79(0), \frac{1}{3.97} $ (45.289378, 0.7904487)	A1	6	Do not accept supplement (134.7 etc)
	(ii) ¹	Use of $\frac{1}{2} \left \overrightarrow{AB} \right \overrightarrow{AC} \right \sin \theta$	M1		Accept $\left \frac{1}{2} \overrightarrow{AB} \ge \overrightarrow{AC} \right $
	3	5.54 (3.5355) or $\frac{5\sqrt{2}}{2}$	A1	2	Accept from correct supp (134.7 etc)
5	(i)	$\frac{\mathrm{d}A}{\mathrm{d}t}$ or kA^2 seen	M1		
		$\frac{\mathrm{d}A}{\mathrm{d}t} = kA^2$	A1	2	
	(ii)	Separate variables + attempt to integrate	*M1		Accept if based on $\frac{dA}{dt} = kA^2$ or A^2
		$-\frac{1}{A} = kt + c \text{or} -\frac{1}{kA} = t + c \text{or} -\frac{1}{A} = t + c$	A1		
		Subst one of $(0,0)$, $(1,1000)$ or $(2,2000)$ into eqn. Subst another of $(0,)$, $(1,1000)$ or $(2,2000)$ into eqn Substitute $A = 3000$ into eqn with k and c subst	dep*M dep*M dep*M	[1 [1 [1	Equation must contain k and/or c This equation must contain k and c
		$t = \frac{7}{3}$ ISW	A1	6	Accept 2.33, 2h 20 m
6	(i)	Attempt to connect du and dx e.g. $\frac{du}{dx} = e^x$	M1		But not $du = dx$
		Use of $e^{2x} = (e^x)^2$ or $(u-1)^2$ s.o.i.	A1		
		Simplification to $\int \frac{u-1}{u} (du)$ WWW	A1	3	AG
	(ii)	Change $\frac{u-1}{u}$ to $1-\frac{1}{u}$ or use parts	M1		If parts, may be twice if $\int \ln x dx$ is involved
		$\int \frac{1}{u} du = \ln u$	A1		Seen anywhere in this part
		Either attempt to change limits or resubstitute Show as $e+1 - \ln(e+1) - \{2 \text{ or } (1+1)\} + \ln 2$	M1 (in A1	dep)	Expect new limits e+1 & 2
		WWW show final result as $e - 1 - ln\left(\frac{e+1}{2}\right)$	A1	5	AG

4724 Mark Scheme	June 2006
7 (i) Produce at least 2 of the 3 relevant eqns in λ and μ M1 e.g. 1 + Solve the 2 eqns in $\lambda \& \mu$ as far as $\lambda = \dots$ or $\mu = \dots$ M1 1^{st} solution: $\lambda = -2$ or $\mu = 3$ A1 2^{nd} solution: $\mu = 3$ or $\lambda = -2$ f.t. A1 $$ Substitute their λ and μ into 3^{rd} eqn and find ' <i>a</i> ' M1 Obtain $a = 2$ $\&$ clearly state that <i>a</i> cannot be 2 A1 6 (ii) Subst their λ or $\mu (\& \text{poss } a)$ into either line eqn M1	$3\lambda = -8 + \mu, \ -2 + \lambda = 2 \ -2 \ \mu$
 Point of intersection is -5 i -4 j N.B. In this question, award marks irrespective of labelling of parts 8 (i) Integration method 	any format <u>No f.t. here</u>
Attempt to change $\cos^2 6x$ into $f(\cos 12x)$ M1	2
$\cos^{-}6x = \frac{1}{2}(1 + \cos 12x)$ AI with $\cos x = \frac{1}{2}(1 + \cos 12x)$	$5^{-}6x$ as the subject of the formula Accent $\frac{1}{x}\left(x+\frac{1}{x}\sin 12x\right)$
$J = \frac{1}{2}x + \frac{1}{24} \sin 12x + c$ Differentiation method	Accept $\frac{1}{2}(x + \frac{1}{12} \sin 12x)$
Differentiate RHS producing $\frac{1}{2} + \frac{1}{2}\cos 12x$ (E) B1	
Attempt to change $\cos 12x$ into $f(\cos 6x)$ M1 Accept -	$+/-2\cos^2 6x + /-1$
Simplify (E) WWW to $\cos^2 6x$ + satis finish A1 3	
(ii) Parts with $u = x$, $dv = \cos^2 6x$ *M1	
$x(\frac{1}{2}x + \frac{1}{24}\sin 12x) - \int (\frac{1}{2}x + \frac{1}{24}\sin 12x)dx$ A1 Correct	expression only
$\int \sin 12x dx = -\frac{1}{12} \cos 12x \qquad B1 \qquad Clear into$	dication somewhere in this part
Correct use of limits to <u>whole</u> integral dep*M1 Accept (() (-0)
$\frac{\pi^2}{288} - \frac{\pi^2}{576} - \frac{1}{288} - \frac{1}{288}$ A1 AE unsi	mp exp. Accept 12x24,sin π here
$\frac{\pi^2}{576} - \frac{1}{144}$ +A1 6 Tolerate S R If final marks are A0 + A0 allow SR A1 for 0.01/0	e.g. $\frac{2}{288}$ here

(i) $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ 9 M1 Used, not just quoted $\frac{\mathrm{d}x}{\mathrm{d}t} = -4\sin t$ or $\frac{\mathrm{d}y}{\mathrm{d}t} = 3\cos t$ *B1 dep*A1 3 Also $\frac{-3\cos t}{4\sin t}$ provided B0 not awarded $\frac{dy}{dx} = -\frac{3\cos t}{4\sin t} \text{ or } \frac{3\cos t}{-4\sin t}$ ISW SR: M1 for Cartesian eqn attempt + B1 for $\frac{d}{dx}(y^2) = 2y\frac{dy}{dx}$ + A1 as before(must be in terms of t) (ii) $y - 3\sin p = \left(\operatorname{their} \frac{\mathrm{d}y}{\mathrm{d}x}\right)(x - 4\cos p)$ **M1** Accept *p* or *t* here <u>or</u> $y = \left(\text{their } \frac{dy}{dx} \right) x + c$ & subst cords to find c Ditto $4y\sin p - 12\sin^2 p = -3x\cos p + 12\cos^2 p$ Correct equation cleared of fractions A1 $\underline{\text{or}} c = \frac{12\sin^2 p + 12\cos^2 p}{4\sin p}$ $3x \cos p + 4y \sin p = 12$ WWW **3** AG Only *p* here. Mixture earlier \rightarrow A0 A1 (iii) Subst x = 0 and y = 0 separately in tangent eqn to find R & S **M1** Accept $\frac{12}{4 \sin p}$ and/or $\frac{12}{3 \cos p}$ Produce $\frac{3}{\sin p}$ and $\frac{4}{\cos p}$ A1 Use $\Delta = \frac{1}{2} \left(\frac{3}{\sin p} \cdot \frac{4}{\cos p} \right) = \frac{12}{\sin 2p}$ WWW A1 3 AG (iv) Least area = 12**B1** $p = \frac{1}{4}\pi$ as final or only answer **B2 3** These B marks are independent. S.R. $45^{\circ} \rightarrow B1$; S.R. $[-12 \text{ and e.g.} - \pi / 4 \rightarrow B1]$

Mark Scheme 4725 June 2006

1.		B1		Two elements correct
	i) $\begin{pmatrix} 7 & 4 \\ 0 & -1 \end{pmatrix}$	B1	2	All four elements correct
	(ii) $\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$	B1		$\mathbf{A} - \mathbf{B}$ correctly found
	<i>k</i> = 3	B1	2	Find <i>k</i>
			4	
2	(i)	M1		For 2 other correct vertices
		A1	2	For completely correct diagram
	(ii) (1 - 1)	B1 B1	2	Each column correct
	$\begin{pmatrix} n \end{pmatrix} \begin{pmatrix} 0 & 1 \end{pmatrix}$		4	
3.	(i) 2+3i	B1	1	Conjugate seen
	(ii)	M1		Attempt to sum mosts on consider stamps in
				Attempt to sum roots or consider x terms in expansion or substitute $2 - 3i$ into equation
		M1		and equate imaginary parts
	p = -4	A1		Correct answer
				Attempt at product of roots or consider last term in expansion or consider real parts
	<i>q</i> = 13		4	Correct answer
			5	
1				

4725

4.	$\Sigma r^3 + \Sigma r^2$	M1		Consider the sum as two separate parts
	$\Sigma r^{2} = \frac{1}{6}n(n+1)(2n+1)$	A1		Correct formula stated
	$\Sigma r^3 = \frac{1}{4}n^2(n+1)^2$	A1		Correct formula stated
	$\frac{1}{12}n(n+1)(n+2)(3n+1)$	M1		Attempt to factorise and simplify or expand both expressions
		211	5	verification
			5	
5.	(i) -7i	B1	•	Real part correct
		B1	2	Imaginary part correct
	(ii) 2+3i	B1		iz stated or implied or $i^2 = -1$ seen
	-5 + 12i	B1 B1	3	Real part correct
	-5 + 121	DI	5	inaginary part concer
	1	M1		Multiply by appingate
	(iii) $\frac{1}{5}(4-7i)$ or equivalent	A1		Real part correct
	5	A1	3	Imaginary part correct
			8	N.B. Working must be shown
6	(i) Cirala Cantra Oradius 2	D1 D1		Skatah shawing correct factures
0	One straight line	B1 B1		Sketch showing correct reatures
	Through O with +ve slope	B1		
	In 1 st quadrant only	B1	5	
	(ii) $1 + i\sqrt{3}$	M1		Attempt to find intersections by trig, solving equations or from graph
		A1	2 7	Correct answer stated as complex number

7.	(i)	M1		Attempt at matrix multiplication
	$\mathbf{A}^2 = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{A}^3 = \begin{pmatrix} 8 & 0 \\ 0 & 1 \end{pmatrix}$	A1 A1	3	Correct A ² Correct A ³
	(ii) $\mathbf{A}^n = \begin{pmatrix} 2^n & 0 \end{pmatrix}$	B1	1	Sensible conjecture made
	(0 1 <i>)</i> (iii)	B1 M1 A1 A1	4 8	State that conjecture is true for $n = 1$ or 2 Attempt to multiply \mathbf{A}^n and \mathbf{A} or vice versa Obtain correct matrix Statement of induction conclusion
8.	(i)	M1		Correct expansion process shown
	$a\begin{bmatrix} a & 0 \\ 2 & 1 \end{bmatrix} - 4\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} + 2\begin{bmatrix} 1 & a \\ 1 & 2 \end{bmatrix}$	A1		Obtain correct unsimplified expression
	a^2-2a	A1	3	Obtain correct answer
	(ii)	M1		Solve their det $\mathbf{M} = 0$
	a = 0 or $a = 2$	A1A1ft	3	Obtain correct answers
	(iii) (a)	B1 B1		Solution, as inverse matrix exists or M non- singular or det $\mathbf{M} \neq 0$
	(b)	B1 B1	4	Solutions, eqn. 1 is multiple of eqn 3
			10	

9.				
	(i)	M1 A1		Show that terms cancel in pairs Obtain given answer correctly
	(ii)	M1 A1		Attempt to expand and simplify Obtain given answer correctly
	(iii) $(n+1)^{3} - 1 - \frac{3}{2}n(n+1) - n$ $\frac{1}{2}n(n+1)(2n+1)$	B1 B1 M1 A1 A1	2	Correct Σr stated $\Sigma 1 = n$ Consider sum of three separate terms on RHS Required sum is LHS – two terms Correct unsimplified expression Obtain given answer correctly
	2		2	
			6 10	

10	(i) $\alpha + \beta + \gamma = 2$ $\alpha\beta\gamma = -4$	B1 B1		Write down correct values
	$\alpha\beta + \beta\gamma + \gamma\alpha = 3$	B1	3	
	(ii)	M1		Sum new roots
	$\alpha + 1 + \beta + 1 + \gamma + 1 = 5$	A1ft		Obtain numeric value using their (i)
	<i>p</i> = -5	A1ft	3	<i>p</i> is negative of their answer
	(iii)	M1*		Expand three brackets
		A1		$\alpha\beta\gamma + \alpha\beta + \beta\gamma + \gamma\alpha + \alpha + \beta + \gamma + 1$
		DM1		Use their (i) results
		A1ft		Obtain 2
	<i>q</i> = -2	A1ft	5	q is negative of their answer
		M2 A1 M1 A2 A1 A1	11	Alternative for (ii) & (iii) Substitute $x = u - 1$ in given equation Obtain correct unsimplified equation for u Expand Obtain $u^3 - 5u^2 + 10u - 2 = 0$ State correct values of p and q .

Mark Scheme 4726 June 2006

- 1 Correct expansion of sin x Multiply their expansion by (1 + x)Obtain $x + x^2 - x^3/6$
- 2 (i) Get $\sec^2 y \frac{dy}{dx} = 1$ or equivalent $\frac{dx}{dx}$ Clearly use 1 + $\tan^2 y = \sec^2 y$ Clearly arrive at A.G.

(ii) Reasonable attempt to diff. to $\frac{-2x}{(1+x^2)^2}$ Substitute their expressions into D.E. Clearly arrive at A.G.

- 3 (i) State y = 0 (or seen if working given)
 - (ii) Write as quad. in x²
 Use for real x, b²-4ac≥0
 Produce quad. inequality in y
 Attempt to solve inequality
 Justify A.G.

- 4 (i) Correct definition of cosh *x* or cosh 2*x* Attempt to sub. in RHS and simplify Clearly produce A.G.
 - (ii) Write as quadratic in cosh *x* Solve their quadratic accurately Justify one answer only Give ln($4 + \sqrt{15}$)

5 (i) Get $(t + \frac{1}{2})^2 + \frac{3}{4}$

(ii) Derive or quote $dx = \frac{2}{1+t^2} dt$ Derive or quote sin $x = 2t/(1 + t^2)$ Attempt to replace all x and dxGet integral of form A/ (B t^2 +Ct+D) Use complete square form as tan⁻¹(f(t)) Get A.G.

- B1 Quote or derive $x \frac{1}{6}x^3$
- M1 Ignore extra terms
- A1 $\sqrt{}$ On their sin *x*; ignore extra terms; allow 3!
- SC Attempt product rule M1 Attempt f(0), f'(0), f''(0) ... (at least 3) M1 Use Maclaurin accurately cao A1
- M1
- M1 May be implied
- A1
- M1 Use of chain/quotient rule
- M1 Or attempt to derive diff. equⁿ.
- A1
- SC Attempt diff. of $(1+x^2)dy = 1$ M1,A1 dx Clearly arrive at A.G. B1
- B1 Must be = ; accept *x*-axis; ignore any others
- M1 $(x^2y x + (3y-1) = 0)$
- M1 Allow >; or < for no real x
- M1 $1 \ge 12y^2 4y$; $12y^2 4y 1 \le 0$
- M1 Factorise/ quadratic formula
- A1 e.g. diagram / table of values of y
- SCAttempt diff. by product/quotientM1Solve dy/dx = 0 for two real xM1Get both $(-3, -1/_6)$ and $(1, 1/_2)$ A1Clearly prove min./max.A1Justify fully the inequality e.g.B1
- B1
- M1 or LHS if used
- A1
- M1 ($2\cosh^2 x 7\cosh x 4 = 0$)
- A1√ Factorise/quadratic formula
- B1 State cosh $x \ge 1/\text{graph}$; allow ≥ 0 A1 cao; any one of $\pm \ln(4 \pm \sqrt{15})$ or
 - decimal equivalent of In ()
- B1 cao
- B1
- B1
- M1
- A1 $\sqrt{}$ From their expressions, C \neq 0
- M1 From formulae book or substitution
- A1
6 (i) Attempt to sum areas of rectangles Use G.P. on $h(1+3^{h}+3^{2h}+...+3^{(n-1)h})$

Simplify to A.G.

(ii) Attempt to find sum areas of different rect. Use G.P. on $h(3^{h}+3^{2h}+...+3^{nh})$

Simplify to A.G.

- (iii) Get 1.8194(8), 1.8214(8) correct
- 7 (i) Attempt to solve *r*=0, tan θ = $\sqrt{3}$ Get θ = - $\frac{1}{3}\pi$ only
 - (ii) $r = \sqrt{3} + 1$ when $\theta = \frac{1}{4}\pi$
 - (iii)

- M1 $(h.3^{h} + h.3^{2h} + ... + h.3^{(n-1)h})$
- M1 All terms not required, but last term needed (or 3^{1-h}); or specify *a*, *r* and *n* for a G.P.
- A1 Clearly use *nh* = 1
- M1 Different from (i)
- M1 All terms not required, but last term needed; G.P. specified as in (i), or deduced from (i)
- A1
- B1,B1 Allow $1.81 \le A \le 1.83$
- M1 Allow $\pm \sqrt{3}$
- A1 Allow -60°
- B1,B1 AEF for r, 45° for θ
- B1 Correct *r* at correct end-values of θ ; Ignore extra θ used

- B1 Correct shape with r not decreasing
- (iv) Formula with correct *r* used Replace $tan^2\theta = sec^2\theta - 1$ Attempt to integrate <u>their</u> expression

Get θ + $\sqrt{3}$ ln sec θ + $\frac{1}{2}$ tan θ Correct limits to $\frac{1}{4}\pi$ + $\sqrt{3}$ ln $\sqrt{2}$ + $\frac{1}{2}$

- 8 (i) Attempt to diff. using product/quotient Attempt to solve d*y*/d*x* =0 Rewrite as A.G.
- (ii) Diff. to f '(x) = $1 \pm 2 \operatorname{sech}^2 x$ Use correct form of N-R with their expressions from correct f(x) Attempt N-R with x_1 = 2 from previous M1 Get x_2 = 1.9162(2) (3 s.f. min.) Get x_3 = 1.9150(1) (3 s.f. min.)
- (iii) Work out e_1 and e_2 (may be implied)

- M1 r^2 may be implied
- B1
- M1 Must be 3 different terms leading to any 2 of $a\theta$ + b ln (sec θ /cos θ) + c tan θ
- A1 Condone answer x2 if 1/2 seen elsewhere
- A1 cao; AEF
- M1
- M1
- A1 Clearly gain A.G.
- B1 Or $\pm 2 \operatorname{sech}^2 x 1$
- M1
- M1 To get an x_2
- A1 A1 cao

B1√ -0.083(8), -0.0012 (allow ± if both of same sign); e_1 from 0.083 to 0.085

Use $e_2 \approx k e_1^2$ and $e_3 \approx k e_2^2$ Get $e_3 \approx e_2^3 / e_1^2 = -0.0000002$ (or 3)

- 9 (i) Rewrite as quad. in e^y Solve to $e^y = (x \pm \sqrt{x^2 + 1})$ Justify one solution only
- (ii) Attempt parts on sinh *x*. sinh^{*n*-1}*x* Get correct answer Justify $\sqrt{2}$ by $\sqrt{(1+\sinh^2 x)}$ for cosh *x* when limits inserted Replace cosh² = 1+ sinh²; tidy at this stage Produce I_{n-2} Gain A.G. <u>clearly</u>
- (iii) Attempt $4I_4 = \sqrt{2} 3I_2$, $2I_2 = \sqrt{2} I_0$ Work out $I_0 = \sinh^{-1}1 = \ln(1 + \sqrt{2}) = \alpha$ Sub. back completely for I_4 Get $\frac{1}{8}(3 \ln(1+\sqrt{2}) - \sqrt{2})$

M1 A1 $\sqrt{\pm}$ if same sign as B1 $\sqrt{}$ SC B1 only for $x_4 - x_3$

M1 Any form A1 Allow $y = \ln($) B1 $x - \sqrt{x^2 + 1} < 0$ for all real xSC Use $C^2 - S^2 = 1$ for $C = \pm \sqrt{1 + x^2}$ M1 Use/state cosh $y + \sinh y = e^y$ A1 Justify one solution only B1

M1

A1 $(\cosh x . \sinh^{n-1}x - \int \cosh^2 x . (n-1) \sinh^{n-2}x dx)$

B1 Must be clear

M1

A1 A1

- M1 Clear attempt at iteration (one at least seen)

B1 Allow *I*₂ M1

A1 AEEF

Mark Scheme 4727 June 2006

1	(a) Identity = $1 + 0i$	B1		For correct identity. Allow 1
	Inverse = $\frac{1}{1+2i}$	B1		For $\frac{1}{1+2i}$ seen or implied
	$= \frac{1}{1+2i} \times \frac{1-2i}{1-2i} = \frac{1}{5} - \frac{2}{5}i$	B1	3	For correct inverse AEFcartesian
	(b) Identity = $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	B1		For correct identity
	Inverse = $\begin{pmatrix} -3 & 0 \\ 0 & 0 \end{pmatrix}$	B1	2	For correct inverse
		5	5	
2	(a) $(z_1 z_2 =) 6 e^{\frac{5}{12}\pi i}$	B1 B1		For modulus = 6 For argument = $\frac{5}{12}\pi$
	$\left(\frac{z_1}{z_2} = \frac{2}{3}e^{-\frac{1}{12}\pi i} = \right)\frac{2}{3}e^{\frac{23}{12}\pi i}$	M1 A1	4	For subtracting arguments For correct answer
	(b) $\left(w^{-5}\right) 2^{-5} \operatorname{cis}\left(-\frac{5}{8}\pi\right)$	M1 A1		For use of de Moivre For $-\frac{5}{8}\pi$ seen or implied
	$=\frac{1}{32}\left(\cos\frac{11}{8}\pi + i\sin\frac{11}{8}\pi\right)$	A1 7	3	For correct answer (allow 2^{-5} and $cis \frac{11}{8}\pi$)

3	EITHER $c-a = \pm [11, 3, -2]$	B1	For vector joining lines
	$(c-a) \times [8, 3, -6]$	M1*	For attempt at vector product of $\mathbf{c}-\mathbf{a}$ and $[8, 3, -6]$
	$\mathbf{n} = \pm [-12, 50, 9]$	A1 √	For obtaining n . f.t. from incorrect $c-a$
	$d = \frac{ \mathbf{n} }{ [8, 3, -6] }$	M1 (dep*)	For dividing $ \mathbf{n} $ by magnitude of $[8, 3, -6]$
	$=\frac{\sqrt{2725}}{\sqrt{109}}$	A1	For either magnitude correct
	(d =) 5	A1	For correct distance CAO
	OR $\mathbf{c} - \mathbf{a} = \pm [11, 3, -2]$	B1	For vector joining lines
	$(\mathbf{c} - \mathbf{a}) \cdot [8, 3, -6]$	M1*	For attempt at scalar product of $\mathbf{c} - \mathbf{a}$ and $[8, 3, -6]$
	$\cos \theta = \pm \frac{109}{\sqrt{134}\sqrt{109}} = \pm \sqrt{\frac{109}{134}}$	A1 √	For correct $\cos\theta$ AEF . f.t. from incorrect $c-a$
	$d = \sqrt{134}\sin\theta$	M1 (dep*)	For using trigonometry for perpendicular distance
		A1	For correct expression for <i>d</i> in terms of θ
	$OR_{c-2} = +[11, 3, -2]$	R1	For vector ioining lines
	$(\mathbf{c} - \mathbf{a}) \cdot [8, 3, -6]$	M1*	For attempt at scalar product of $c-a$ and $[8, 3, -6]$
	$x = \frac{109}{\sqrt{109}} = \sqrt{109}$	A1 √	For finding projection of $c-a$ onto [8, 3, -6]
		N/1	t.t. from incorrect $c-a$
	$d = \sqrt{134 - 109}$	(dep*) A1	For using Pythagoras for perpendicular distance
	(d =) 5	Δ1	For correct expression for <i>d</i>
	OR CP = +[-11 + 8t - 3 + 3t 2 - 6t]	R1	For finding a vector from $C(12, 5, 3)$
	$\bigcup_{i=1}^{n} \bigcup_{j=1}^{n} \bigcup_{i=1}^{n} \bigcup_{j=1}^{n} \bigcup_{j=1}^{n} \bigcup_{j=1}^{n} \bigcup_{i=1}^{n} \bigcup_{j=1}^{n} \bigcup_{i=1}^{n} \bigcup_{j=1}^{n} \bigcup_{i=1}^{n} \bigcup_{j=1}^{n} \bigcup_{j=1}^{n} \bigcup_{j=1}^{n} \bigcup_{i=1}^{n} \bigcup_{j=1}^{n} \bigcup_{j$	D1	to a point on the line
	CP \cdot [8, 3, -6] = 0	M1*	For using scalar product for perpendicularity
	$t = \pm 1$ OR $P = (9, 5, -1)$	A1 √	For correct point. f.t. from incorrect CP
	$d = \sqrt{3^2 + 0^2 + 4^2}$	M1 (dep*)	For finding magnitude of CP
		À1 Ó	For correct expression for d
	(d =) 5	A1 6	For correct distance CAO
			SR Ubtain CP = $\begin{bmatrix} 11 & 2 \\ -11 & 2 \end{bmatrix}$ $\begin{bmatrix} 12 & 2 \\ -12 & -12 \end{bmatrix}$ P1
			$\mathbf{Verify} \begin{bmatrix} 3 & 0 & 4 \end{bmatrix} \begin{bmatrix} 8 & 3 & -6 \end{bmatrix} = \mathbf{I} \begin{bmatrix} 5 & 0 & 4 \end{bmatrix} \begin{bmatrix} 8 & 3 & -6 \end{bmatrix} = \mathbf{M} \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$
			$\sqrt{2^2 \cdot 2^2 \cdot 4^2} = E$
			$a = \sqrt{5^{-} + 0^{-} + 4^{-}} = 5$ INT (dep") AT AT (maximum 5 / 6)
		6	

	1	
4 Integrating factor $e^{\int -\frac{x^2}{1+x^3}dx}$	M1	For correct process for finding integrating factor
$= e^{-\frac{1}{3}\ln(1+x^3)} = \left(1+x^3\right)^{-\frac{1}{3}}$	A1	For correct IF, simplified (here or later)
$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \left(y \left(1 + x^3 \right)^{-\frac{1}{3}} \right) = \frac{x^2}{\left(1 + x^3 \right)^{\frac{1}{3}}}$	M1	For multiplying through by their IF
$\Rightarrow y(1+x^3)^{-\frac{1}{3}} = \frac{1}{2}(1+x^3)^{\frac{2}{3}}(+c)$	M1	For integrating RHS to obtain $A(1+x^3)^k OR \ln A(1+x^3)^k$
	A1	For correct integration (+ <i>c</i> not required
$\Rightarrow 1 = \frac{1}{2} + c \Rightarrow c = \frac{1}{2}$	M1 A1 √	For substituting (0, 1) into GS (including $+ c$)
$\rightarrow y = \frac{1}{(1+x^3)} + \frac{1}{(1+x^3)^{\frac{1}{3}}}$	A1	For correct solution AFF in form $y = f(x)$
$ \rightarrow y - \frac{1}{2} \begin{pmatrix} 1+x \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1+x \end{pmatrix} $	8	y = 1(x)
5 (i) EITHER $\mathbf{a} = [2, 3, 5], \mathbf{b} = \pm [2, 2, 0]$	B1	For stating 2 vectors in the plane
$\mathbf{n} = \mathbf{a} \times \mathbf{b} = \pm k \left[-10, 10, -2 \right]$	M1 A1 √	For finding perpendicular to plane For correct n . f.t. from incorrect b
Use (2, 1, 5) <i>OR</i> (0, –1, 5)	M1	For substituting a point into equation $ax+by+cz = d$ where $[a, b, c]$ = their n
\Rightarrow 5x - 5y + z = 10	A1	For correct cartesian equation AEF
OR $\mathbf{a} = [2, 3, 5], \ \mathbf{b} = \pm [2, 2, 0]$	B1	For stating 2 vectors in the plane
e.g. $\mathbf{r} = [2, 1, 5] + \lambda [2, 2, 0] + \mu [2, 3, 5]$	M1	For stating parametric equation of plane
$[x, y, z] = [2 + 2\lambda + 2\mu, 1 + 2\lambda + 3\mu, 5 + 5\mu]$	A1√	For writing 3 equations in x , y , z
	M1	For eliminating λ and μ
\Rightarrow 5x - 5y + z = 10	A1 5	For correct cartesian equation AEF
(ii) $[2t \ 3t - 4 \ 5t - 9]$	B1 1	For stating a point A on 1, with parameter
(, [20, 50, 1, 50, 7]		t AEF
(iii) $\pm [2t+5, 3t-7, 5t-13]$	M1	For finding direction of l_2 from A and (–
$\pm [2t+5, 3t-7, 5t-13] \cdot [2, 3, 5] = 0$	M1	5,3, 4) For using scalar product for perpendicularity with any vector involving
$\Rightarrow t = 2$	A1	<i>t</i> For correct value of <i>t</i>
$\frac{x+5}{9} = \frac{y-3}{1} = \frac{z-4}{2} OR$	A1 4	For a correct equation AEFcartesian
$\frac{x-4}{x-4} = \frac{y-2}{x-4} = \frac{z-1}{x-4}$		
9 -1 -3		
		SR For $2p+3q+5r=0$ and no further
		progress award B1
	10	

· · · · · · · · · · · · · · · · · · ·	i	
6 (i) $(m^2 + 4 = 0 \Rightarrow) m = \pm 2i$	B1	For correct solutions of auxiliary equation (may be implied by correct CF)
$CF = A\cos 2x + B\sin 2x$	B1	For correct CF (AFtrig but not $Ae^{2ix} + Be^{-2ix}$ only)
$PI = p \sin x \left(+ q \cos x \right)$	B1	State a trial PI with at least $p \sin x$
$-p\sin x (-q\cos x) + 4p\sin x (+4q\cos x) = \sin x$	M1	For substituting PI into DE
$\Rightarrow p = \frac{1}{3}, q = 0$	A1	For correct <i>p</i> and <i>q</i> (which may be implied)
$\Rightarrow y = A\cos 2x + B\sin 2x + \frac{1}{3}\sin x$	B1 √ 6	For using GS = CF + PI, with 2 arbitrary constants in CF and none in PI
$(\mathbf{ii}) \ (0,0) \Rightarrow A = 0$	B1 √	For correct equation in <i>A</i> and/or <i>B</i> f.t. from their GS
$\frac{dy}{dt} = 2B\cos 2x + \frac{1}{2}\cos x \Longrightarrow \frac{4}{2} = 2B + \frac{1}{2}$	M1	For differentiating their GS and
dx 3 3 3		substituting values for x and $\frac{dy}{dx}$
$A = 0, \ B = \frac{1}{2}$	A1	For correct A and B
		Allow $A = -\frac{1}{4}i$, $B = \frac{1}{4}i$ from
		$CF A \mathrm{e}^{2\mathrm{i}x} + B \mathrm{e}^{-2\mathrm{i}x}$
$\Rightarrow y = \frac{1}{2}\sin 2x + \frac{1}{3}\sin x$	A1 4	For stating correct solution CAO
	10	
7 (i) $C + iS = 1 + e^{i\theta} + e^{2i\theta} + e^{3i\theta} + e^{4i\theta} + e^{5i\theta}$	M1	For using de Moivre, showing at least 3 terms
$e^{6i\theta}-1$	M1	For recognising GP
$-\frac{1}{e^{i\theta}-1}$	A1	For correct GP sum
$=\frac{e^{3i\theta}-e^{-3i\theta}}{e^{\frac{1}{2}i\theta}-e^{-\frac{1}{2}i\theta}}\cdot\frac{e^{3i\theta}}{e^{\frac{1}{2}i\theta}}=\frac{e^{3i\theta}-e^{-3i\theta}}{e^{\frac{1}{2}i\theta}-e^{-\frac{1}{2}i\theta}}e^{\frac{5}{2}i\theta}$	A1 4	For obtaining correct expression AG
$\frac{1}{100} c_{1} = \frac{2i\sin 3\theta}{2i\sin 3\theta} = \frac{5}{2}i\theta$	M1	For expressing numerator and
$(11) C + 13 = \frac{1}{2i\sin\frac{1}{2}\theta} \cdot C^2$	A1	For $k \sin 3\theta$ and $k \sin \frac{1}{2}\theta$
$\text{Re} \Rightarrow C = \sin 3\theta \cos \frac{5}{2}\theta \csc \frac{1}{2}\theta$	Δ1	For correct expression AG
$Im \Rightarrow S = \sin 3\theta \sin \frac{5}{2}\theta \csc \frac{1}{2}\theta$		For correct expression
$\frac{1}{2} = \frac{1}{2} = \frac{1}$		
(iii) $C = S \implies \sin 3\theta = 0$, $\tan \frac{2}{2}\theta = 1$	M1	For either equation deduced AEF
$\theta = \frac{1}{2}\pi \frac{2}{2}\pi$		Ignore values outside $0 < \theta < \pi$
$0 = \frac{1}{3}\pi, \frac{1}{3}\pi$		For both values correct and no extras
$\Theta = \frac{1}{10}n, \frac{1}{2}\pi, \frac{1}{10}\pi$	AZ 4	Allow A1 for any 1 value OR all correct
		with extras
	12	

8 (i) $r^4 . a \neq a . r^4$	B1	1	For stating the non-commutative product in the given table, or justifying another correct one
(ii) Possible subgroups order 2, 5	B1 B1	2	For either order stated For both orders stated, and no more (Ignore 1)
(iii) (a) $\{e, a\}$	B1		For correct subgroup
(b) $\{e, r, r^2, r^3, r^4\}$	B1	2	For correct subgroup
(iv) order of $r^3 = 5$	B1		For correct order
$(ar)^2 = ar.ar = r^4a.ar = e$	M1		For attempt to find $(ar)^m = e OR$
			$(ar^2)^m = e$
\Rightarrow order of $ar = 2$	A1		For correct order
$(ar^2)^2 = ar^2ar.r = ar^2r^4a.r = ara.r = e$			
\Rightarrow order of $ar^2 = 2$	A1	4	For correct order
(v) $\frac{ar ar^2 ar^3 ar^4}{ar ar^2 r^3}$			If the border elements $ar ar^2 ar^3 ar^4$ are not written, it will be assumed that the products arise from that order
ar^2 r^4 e r r^2	B1		For all 16 elements of the form e or r^m
ar^3 r^3 r^4 e r	B1		For all 4 elements in leading diagonal = e
ar^4 r^2 r^3 r^4	B1		For no repeated elements in any
	D 4		completed row of column
	B1	5	For all elements correct
		J	

Mark Scheme 4728 June 2006

1		Momentum before = $3M - 1200 \times 3$	B1		Ignore g if included; accept
		Momentum after = 1200×5	B1		
					(or loss of momentum of loaded wagon = 3 <i>M</i> B1 gain of momentum of unloaded wagon = 1200(5 + 3) B1)
		3 <i>M</i> – 3600 = 6000	M1		Equation with all terms; accept with g
		3(1200 + m) - 3600 = 6000	A1		For any correct equation in <i>m</i> , <i>M</i>
		<i>m</i> = 2000	A1	5	
2	(i)		M1		For resolving forces in the i direction or for relevant use of trigonometry
		$2.5 = 6.5 \sin \theta$	A1		0
		θ = 22.6°	A1	3	AG Accept verification
	(ii)		M1		For resolving forces in the j direction or for using Pythagoras or relevant trigonometry.
		$R = 6.5 \cos 22.6^{\circ}$	A1		
		<i>R</i> = 6	A1	3	

3	(i)		B1 B1 B1		Line segment <i>AB</i> (say) of +ve slope from origin Line segment <i>BC</i> (say) of steeper +ve slope and shorter time interval than those for <i>AB</i> . <i>SR</i> : If the straight line segments are joined by curves, this B1 mark is not awarded Line segment <i>CD</i> (say) of less steep slope compared with <i>BC</i> .
		Time intervals 80, 40, 40 <i>t</i> = 80, 120, 160	B1 B1		(An (x, t) graph is accepted and the references to more/less steep are reversed.) May be implied; any 2 correct
	(ii)	Line joining (0, 0) and (160, 360)	B1 ft 6	6	
	(iii)	<i>v</i> = 360/160	M1 M1		Woman's velocity (= 2.25) For equation of man's displacement in relevant
		s = 120 + 4.5(t - 80)	A1		interval
		2.25 <i>t</i>	M1		Woman's displacement, awarded even if <i>t</i> is interpreted differently in man's expression
		$t = 106 \frac{2}{3}$ (107) SR Construction method	A1 8	5	Accept also 106.6, 106.7 but not 106
		Plotting points on graph	M1		Candidates reading the
		<i>t</i> between 104 and 109 inclusive	AI		graph, then dividing this distance by the woman's speed to find t , also get v = 360/160 M1 as above for the woman's velocity.
4	(i)	Displacement is 20 m	B1 ´	1	20+c (from integration) B0
	(11)	$s(t) = 0.01t^3 - 0.15t^2 + 2t$ (+A) 10 - 15 + 20 + A = 20 Displacement is	M1 A1 M1		For using $s(t) = \int v(t)dt$ Can be awarded prior to cancelling For using $s(10) = cv$ (20)
		$0.01t^3 - 0.15t^2 + 2t + 5$	A1 4	4	AG
	(iii)	a = 0.06t - 0.3 0.06t - 0.3 = 0.6 t = 15	M1 A1 DM1		For using $a(t) = dv/dt$ For starting solving $a(t) = 0.6$ depends on previous M1
		Displacement is 35 m	B1 (5	

5	(i)		M1		For using $F = 5$ and $F = \mu R$
		R = mg	M1		
		<i>m</i> = 2.55	A1	3	Accept 2.5 or 2.6
	(ii)a	$P\cos\alpha = 6$	B1		
			M1		For resolving vertically with 3
					distinct forces
		$R = P\sin \alpha + 25$	A1ft		Or $P \sin \alpha + (cv m)g$
		0.2R = 6	B1		For using $F = 6$ and $F = \mu R$.
					Can be implied by
					$0.2(P\sin \alpha + 25) = 6$
		$0.2(P\sin \alpha + 25) = 6$	M1		For an equation in
					$P \sin \alpha$ (=5)after elimination of
		$\alpha = 30.8^{\circ}$	۸1		R
	(ii)b	$\alpha = 39.0$ $D^2 = 6^2 \pm 5^2$	M1		Eor eliminating or substituting
	(II)D	r = 0 + 3 or Pcos 39.8° = 6			for α with $cy(6)$. Evidence is
		or $P \sin 39.8^\circ = 5$			needed that 5 is the value of
					$P \sin \alpha$ (rather than the original
					frictional force)
		<i>P</i> = 7.81	A1	8	Accept a r t 7.8
6	(i)	10500 + 3000 + 1500	M1		For summing 3 resistances
		Driving force below 15000	A1		Accept generalised case or
		gives retardation		2	specific instance
	(ii)	35000 – 15000 = 80000a	M1		Newton's second law for
		Acceleration is 0.25 mm^{-2}		0	whole train
	/!!!>	Acceleration is 0.25 ms ⁻	AI		AG Accept verification
	(111)		IVIT		For applying Newton's second
					out of the relevant 3
		35000 - 10500 - 8500 =	A1		
		0.25 <i>m</i>			
		Mass is 64000 kg	A1	3	
	(iv)		M1		For applying Newton's second
					law with all appropriate forces
		-15000 – 15000 = 80000 <i>a</i>	A1		a = -0.375
		OR			
		-3000-10500-15000=(80000)			
		- 111)a	М1		For applying Newton's second
					law to B only, only 1 force
		-1500 = <i>ma</i>	A1		Or cv(<i>a</i>)
		Mass is 4000 kg	A1	5	
	(v)	$-15000 - 10500 \pm T$	[Follow through $cv (m_E, a)$, or
		= 64000(-	B1ft		accept use of <i>m</i> _E , <i>a</i>
		0.375)			
		$I = \pm 1500 \Rightarrow$ forward force	D4	0	
		OR (working with A and R)	ы	2	
		-1500 - 3000 + T			Follow through $c_{1}(m_{-}, a)$ or
		= (80000 - 64000)(-	B1ft		accept use of $m_{\rm -}$ a
		0.375)	B1		
		$T = \pm 1500 \rightarrow$ forward force			
		on <i>E</i> of 1500			
-		•	•		·

	<i>a</i> = (∓)4ms ⁻²	A1		
	$-mgsin15^{\circ} - F = ma$	M1		For applying Newton's second law with 2 forces
	$-0.1 \times 9.8 \sin 15^{\circ} - F = 0.1 \times (-4)$	A1		
	R = 0.1gcos15°	B1		
	$0.146357 \dots = \mu 0.946607$	M1		For using $F = \mu R$
	Coefficient is 0.155	A1	7	Anything between 0.15 and 0.16 inclusive
(ii)	$mgsin15^\circ > \mu mgcos15^\circ$ (or tan 15° > μ)	M1		For comparing weight component with frictional force (or tan 'angle of friction' with μ)
	➔ particle moves down	A1	2	Awarded if conclusion is correct even though values are wrong
(iii)	$(6 + 0) \div 2 = s \div 1.5$ s = 4.5	M1 A1		For using $(u + v) \div 2 = s \div t$
	<i>mg</i> sin15º – <i>F</i> = <i>ma</i>	M1		For using Newton's second law with 2 forces
	0.25364 0.146357 = 0.1 <i>a</i>	A1		Values must be correct even if not explicitly stated. Note that the correct value of friction may legitimately arise from a wrong value of μ and a wrong
	2			value of R
	v [∠] = 2(1.07285)4.5	M1		For using <i>v</i> ² = 2 <i>as</i> with any value of <i>a</i>
	Speed is 3.11 ms ⁻¹	A1	6	Accept anything rounding to 3.1 from correct working

Mark Scheme

June 2006

4728

Mark Scheme 4729 June 2006

1		mgh = 35 x 9.8 x 4	M1			
		-	A1			
		mgh/t = 1372/10	M1		watch out for extras	
		137 W	A1	4	or 0.137 kW	4
2		$v^2 = 2gh$	M1		kinematics or energy	2
		u=√4g or √39.2 or 6.26	A1		speed of impact (±)	
		v=√2.8g or √27.44 (5.24)	A1		speed of rebound (±)	
		I = ? 0.3(6.26 + 5.24)	M1		must be sum of mags. of vels.	
		3.45 Ns	A1√	5	✓ must be positive	5
3	(i)	d = 2.25	B1	_	3/8x6 OG (be generous)	
		h = 1.125 or 1.12 or 1.13	B1	2	norizontal distance	
	(ii)	$T_1 + T_2 = 12$ resolving	M1		if not then next M1 ok	
	(")	vertically				
		$T_4 x 6 \cos 30^\circ = 12 x h$	M1		or mom(A)T ₂ x6cos30°=	
		(their h)	A1		$12(6\cos 30^\circ - h)$	
		mom(O) (their h ok for A1)			(
		$T_1 = 2.60 \text{ N}$ or $3\sqrt{3}/2$	A1		or T ₂ = 9.40	
		$T_2 = 9.40 \text{ N} \int (12 - T_1)$	A1 √	5	or T₁=2.60 or √(12—T₂)	7
		above 🗸 depends on at leas	t one c	of th	e M marks (T _s > 0)	
4	(i)	P = 13500 W	B1	1	or 13.5 kW	
	(ii)	500 = 13500/v	M1			
		$v = 27 \text{ ms}^{-1}$	A1	2		
	(111)	15000/25 - 500 = 950a			2 parts to F	
		a = 0.105 or $2/19$		3	AU 101 900a $r = 1.00/050$	
	(iv)	15000/26_500 _	M1	<u> </u>	$\frac{01}{2} \operatorname{ports} \operatorname{to} \mathrm{E}$	
	(1)	$950.9.8 \sin 5^\circ = 950a$	A1		$\Delta 0$ for $900a$	
		a = (-) 773 ms ⁻²	A1	3	s c accept 0 77	9
						•
5	(i)	$\overline{x} = 9$	B1		ignore any working	
		c of m of Δ 4 cm above BD	B1			
					8 cm below C/see their diagram	
		(324 + 108) (m) \overline{y} =	M1		$432 \overline{y} = 108 x 8 + 18^2 (12 + 9)$	
		324(m)x9 + 108(m)x(18+4)			from C	
		432 y	A1		left hand side	
		324 x 9 (18 ² x 9)	A1		1 st term on right hand side 2916	
		108 x (18 +4)	A1	-	2 ^m term on right hand side 2376	
		y = 12.25	A1	/	5292÷432 or 49/4	
	(11)	$\tan \theta = 5.75/9$	M1	<u> </u>	must be/9	
		1 - 37 = 37 = 0	Λ1 <i>Γ</i>	12	$1.1 \tan^{-1} ((18 \text{ their } \overline{y})/0) \text{ or } 180^{\circ}$	19

6	(i)	T = 4 9 N	B1		B0 for 0.5g	6
Ŭ	(.)	$T = 0.3 \times 0.2 \times \omega^2$	M1		or $0.3v^2/0.2$ and $\omega = v/0.2$	ľ
			A1			
		$\omega = 9.04 \text{ rads}^{-1}$	A1	4		
	(ii)	$\cos\theta = \sqrt{0.6/0.8} \ (0.968)$	B1		$(\theta=14.5^{\circ})$ angle to vert. or equiv.	
		Tcosθ = 0.5 x 9.8	M1		angle consistent with diagram	
			A1		can be their angle	
		T = 5.06 N	A1	4		
	(iii)	$Tsin\theta = 0.5 x v^2/0.2$	M1		must be a component of T	
		1	A1	_	$(\sin\theta = \frac{1}{4})$ can be their angle	
		v = 0.711 ms ⁻¹	A1	3		11
7	(i)	vsin50°	B1		initial vertical component	
		0=v ² sin ² 50°-2x9.8x13 (must	M1		or mx9.8x13 = $\frac{1}{2}$ m(vsin50°) ²	
		$v = 20.8 \text{ ms}^{-1}$	A1	3	sin/cos mix ok for above M1	
	(ii)	$45 = v \cos 50^{\circ} t$	M1		see alternative below	
	()	t = 3.36 . Itheir v (3.13 for	Δ1.		other methods include other t _s	
		v=22.4)	7.1.			
		s = vsin50° x t - ½ x 9.8 x t ²	M1		ignore ht adjustments	
			A1		can be their v and their t	
		s = -1.6 to -2.0 inclusive	A1		can be implied from next A1	
		(-1.00)	Δ1	6		
	(iii)	$y = y \sin 50^\circ$ 0.8vt	M1	<u>.</u>	or $v^2 = 2q(15$ -their ans to ii)	
	(111)	$v_{v} = 47.0$ (the is $v_{v} t = 47.0$				
		$v_v = -17.0 \ \text{v}$ their $v_{,l}(-13.5)$	AIV			
		speed= $\sqrt{(v_v^2+(v\cos 50^\circ)^2)}$	M1		or $\frac{1}{2}$ mv ² – mgx1.68 =	
		speed = 21.6 ms ⁻¹ \checkmark their v	A1√	4	¹ ⁄₂mx20.8 ² (4 marks) M1/A1√ s,v /M1	13
		and v_v			solve/ A1	
		(19.7 for v = 22.4)				
	(ii)	$y = xtan\theta - gx^2/2v^2cos^2\theta$	B1		Alternative 1 st 5 marks	
		y=45tan50°-	M1		substitute v and 50° and x=45	
		9.8.45 ² /2.v ² cos ² 50°				
			A1		can be their v	
		calculate y	M1			
		y = -1.6 to -2.0 inclusive	A1		should be – 1.68	

8	(i)	10 = 4 + m.x	M1		conservation of momentum	
		$e = \dots$ or rationale for x	M1			
		= 2				
		m = 3	A1	3		
	(ii)	v = 6	B1			
		e = 4/5 or 0.8	M1		allow sign errors for M mark	
			A1	3	watch out for lost minuses	
	(iii)	10 - 5 = 2x + y (5 = -2a	M1	[
		+ b)				
		(-5 = 2c + d)				
			A1			
		e = 0.8 = (y-x)/10	M1		look for consistency	
		y = x + 8 (a + b = 8) (c	A1			
		– d = 8)				
		x = -1 (a=1) (c=1)	A1		or 1 in opp. direction to 1st	
		y = 7 (b=7) (d=-7)	A1			
		$\frac{1}{2} \cdot 2 \cdot 5^{2} + \frac{1}{2} \cdot 1 \cdot 5^{2} - \frac{1}{2} \cdot 2 \cdot 1^{2} - \frac{1}{2} \cdot 1^{2} - \frac{1}{2} \cdot 1^{2} - \frac{1}{2} \cdot 2 \cdot 1^{2} - \frac{1}{2} \cdot 1^{2} - \frac{1}{2} \cdot 2 \cdot 1^{2} - \frac{1}{2} \cdot 1^{2} - \frac{1}{2$	M1		K.E. lost. Must be 4 parts	
		$\frac{1}{2}.1.7^{2}$				
		12 J	A1	8	(37.5 – 25.5)	14

 ± 1 in 3^{rd} sig. fig. except where stated

Mark Scheme 4730 June 2006

1	(i)		M1		For using I = Δ (mv) in the direction of the original motion (or equivalent from use of relevant vector diagram).
		$20\cos\theta = 0.4x25$	A1		
		Direction at angle 120° to original motion	A1	3	Accept $\theta = 60^{\circ}$ with θ correctly identified.
	(ii)		M1		For using I = Δ (mv) perp. to direction of the original motion (or equivalent from use of relevant vector diagram).
		$20\sin 60^{\circ} = 0.4v$	A1ft		-
		Speed is 43.3 ms ⁻¹	A1	3	
2			M1		For applying Newton's 2 nd Law.
			M1		For using a = v(dv/dx).
		$2v(dv/dx) = -(2v + 3v^2)$	A1		
			M1		For separating variables and attempting to integrate.
		$2/3\ln(2 + 3v) = -x$ (+C)	A1ft		ft absence of minus sign,
		[2/3ln14 = C]	M1		For using $v(0) = 4$.
		$[2/3\ln 2 = -x + 2/3\ln 14]$	M1		For attempting to solve $v(x)$ = 0 for x.
		Comes to rest after travelling 1.30m	A1	8	AG

3	(i)		M1		For taking moments about C for the whole structure.
		1.4R = 0.35x360 + 1.05x200	A1		
		Magnitude is 240N	A1		AG
		-	M1		For taking moments about A for the rod AB.
		0.7x240 = 0.35x200 + 1.05T	A1		
		Tension is 93.3N	A1	6	
	OR				
	(i)		M1		For taking moments about A for AB and AC.
		$0.7R_B = 70 + 1.05T \text{ and}$ $0.7R_c = 126 + 126 + 126$	A1		
		1.05T			
			M1		For eliminating T or for adding the equations, and then using
		$0.7(560 - R_B) - 0.7R_B = 126 - 70 \text{ or}$ 0.7x560 = 70 + 126 + 2.1T	A1		$R_B + R_C = 500$. For a correct equation in R_B only or T only
		Magnitude is 240N	Δ1		AG
		Tension is 93 3N	A1	6	
	(ii)	Horizontal component is 93.3 N	B1ft		
		Y = 240 - 200	M1		For resolving forces vertically.
		Vertical component is 40 N downwards	A1	3	-

4	(i)		M1		For using Newton's 2 nd Law
					perp. to string with a = L $\ddot{\theta}$.
		$L(m)\ddot{\theta} = -(m)gsin\theta$ or	A1		
		$(m)\ddot{s} = -$			
		(m)gsin(s/L)	_ /		
		$\hat{\theta} \approx -k\theta$ or \ddot{s} = -ks [and motion	B1		
		is therefore approx. simple			
		narmonicj	М1		For using T = $2\pi/n$ and k =
					V^2 or $T = 2\pi \sqrt{L/2}$ for
					w of $I = 2\pi \sqrt{L/g}$ for
		Period is 3 14s	Δ1	5	
	(ii)		M1		For using
	()				$\dot{\theta}^2 = n^2 (\theta_0^2 - \theta^2)$ or the
					principle of conservation of
					energy
		$\dot{\theta}^2 = 4(0.1^2 - 0.06^2)$ or	A1		
		$\frac{1}{2}$ m(2.45 $\dot{\theta}$) ² =			
		2.45mg(cos0.06 -			
		$\cos(0.1)$		~	(0.4500) from an annu
		Angular speed is 0.16 rad s 1.	A1	3	(0.1599 from energy method)
	OR	(in the case for which (iii) is			
	(;;)	attempted before (II))	M1		
	(11)	$[\theta = -0.2 \sin 2t]$	1VI I A 1 FI		For using $\theta = d(A\cos nt)/dt$
		θ = -0.2sin(2x0.464)		~	
	/;;;)	Angular speed is 0.16 rad s	M1	3	For using $h = A \cos nt \cos nt$
	(111)				Asin($\pi/2 - nt$) or for using
					θ = Asin nt and T =t _{0.1} - t _{0.05}
		$0.06 = 0.1\cos 2t \text{ or } 0.1\sin(\pi/2 - 1)$	A1ft		ft angular displacement of
		2t)			0.04 instead of 0.06
		or $2T = \pi/2 -$			
		sin ⁻ '0.6 Time teken is 0.464a	۸1	2	
			AI	3	

5			M1		Σmv conserved in i direction
		2x12cos60° – 3x8 = 2a + 3b	A1		
			M1		For using NEL
		For LHS of equation below	A1		
		0.5(12cos60° + 8) = b - a	A1		Complete equation with signs of a and b consistent with previous equation
			M1		For eliminating a or b.
		Speed of B is 0.4ms ⁻¹ in i direction	A1		, i i i i i i i i i i i i i i i i i i i
		a = -6.6	A1		
		direction is	BJ		or implied in subsequent
		12sin60°			work.
		Speed of A is 12.3ms⁻¹	B1ft		
			M1		For using $Q = \tan^{-1}(\tan^{-1} \cos^{-1} $
		Direction is at 122 4° to the i	Λ1ft	1	$\theta = \tan^{-1}(\text{Jcomp}/\pm 1 \text{ comp})$
		direction	Am	2	θ correctly identified.
6	(i)	T = 1470x/30	B1		,
		[49x = 70x9.8]	M1		For using T = mg
		x = 14	A1		
	(11)	Distance fallen is 44m $PE \log_2 = 70q(20 \pm 14)$	A1ft	4	
	(11)	$FE asin = 1470 \times 14^{2} / (2 \times 30)$	B1ft		
		$[\frac{1}{2}70v^2 = 30184 - 4802]$	M1		For a linear equation with terms representing KE, PE and EE changes.
		Speed is 26.9ms ⁻¹	A1	4	AG
	OR				
	(11)	[0.5 v ² = 14g – 68.6 + 30g]	M1		For using Newton's 2 nd law (vdv/dx = g - 0.7x), integrating $(0.5 v^2 = gx - 0.35x^2 + k)$, using $v(0)^2 = 60g \Rightarrow k = 30g$, and substituting x = 14.
		For 14g + 30g	B1ft		
		For $+68.6$	B1ft	4	Accept in unsimplified form.
	(iii)	PE loss = 70g(30 + x)	B1ft	4	AG
	(,	EE gain = $1470x^2/(2x30)$	B1ft		
		$[x^2 - 28x - 840 = 0]$	M1		For using PE loss = KE
					gain to obtain a 3 term
		Extension is 46.2m	Δ1	4	quadratic equation.
	OR				
	(iii)		M1		For identifying SHM with $n^2 =$
			N / 4		1470/(70x30)
		A 260/ 107	A1		For using V _{max} = Aff
		$A = 20.9 / \sqrt{0.7}$	Λ1	Л	
			AT	4	

7	(i)	$\frac{1}{2} 0.3 v^2 + \frac{1}{2} 0.4 v^2$	B1		
		\pm 0.3g(0.6sin $ heta$)	B1		
		± 0.4 g (0.6θ)	B1		
		$[0.35v^2 = 2.352\theta - 1.764\sin\theta]$	M1		For using the principle of conservation of energy.
		$v^2 = 6.72 \theta - 5.04 \sin \theta$	A1	5	AG
	(ii)		M1		For applying Newton's 2^{nd} Law radially to P and using $a = v^2/r$
		$0.3(v^2/0.6) = 0.3gsin\theta - R$	A1		
		$[\frac{1}{2}(6.72\theta - 5.04\sin\theta) =$	M1		For substituting for v ² .
		0.3gsin θ - R]			
		Magnitude is (5.46sin $ heta$ –	A1		AG
		3.36θ)N			
		$[5.46\cos\theta - 3.36 = 0]$	M1		For using dR/d θ = 0
		Value of θ is 0.908	A1	6	
	(iii)	$[T - 0.3g\cos\theta = 0.3a]$ [0.4g - T = 0.4a]	M1 M1		For applying Newton's 2 nd Law tangentially to P For applying Newton's 2 nd Law to Q
					[If $0.4g - 0.3g\cos\theta = 0.3a$ is seen, assume this derives from
					$T - 0.3g\cos\theta = 0.3a$
					M1 and $T = 0.4a$ M01
		Component is 5.6 – 4.2 $\cos\theta$	A1	3	and 1 – 0.49 Moj
	OR			-	
	(iii)	$0.4g - 0.3g\cos\theta = (0.3 + 0.4)a$	B2		
		Component is $5.6 - 4.2\cos\theta$	B1	3	
	OR				_
	(iii)	$[2v(dv/d\theta) = 6.72 - 5.04\cos\theta]$	M1		For differentiating v^2 (from (i)) w.r.t. θ
		2 (0.6a) = 6.72 - 5.04 $\cos\theta$	M1		For using v(dv/d θ) = ar
		Component is 5.6 – 4.2 $\cos\theta$	A1	3	

Mark Scheme 4731 June 2006

1	$\int x\rho \mathrm{d}x = \int_0^a k(a+2x) x \mathrm{d}x$	M1	for $\int \dots (a+2x)x dx$
	$= k \left[\frac{1}{2} a x^{2} + \frac{2}{3} x^{3} \right]_{0}^{a} \left(= \frac{7}{6} k a^{3} \right)$	A1	
	$\int \rho dx = k \int_0^a (a+2x) dx = k \left[a x + x^2 \right]_0^a$	B1	for $\ldots \left[a x + x^2 \right]_0^a$
	$=2ka^2$		
	$\overline{x} = \frac{\frac{7}{6}ka^3}{2ka^2}$	M1	Dependent on first M1
	$=\frac{7}{12}a$	A1	Accept 0.583 <i>a</i>
		5	
2 (i)	$I = \frac{1}{2} \times 8 \times 0.15^2$ (= 0.09 kg m ²)	B1	
	Using $\omega_2^2 = \omega_1^2 + 2\alpha\theta$		
	$25^2 = 10^2 + 2\alpha \times 75$ $\alpha = 3.5 \text{ rad s}^{-2}$	M1A1	
	Couple is $I\alpha = 0.09 \times 3.5$ = 0.315 N m	M1 A1 ft 5	ft from wrong / and / or $ lpha$, but ft requires M1M1
	OR Increase in KE is $\frac{1}{2} \times 0.09 \times (25^2 - 10^2)$		
	M1A1 ft $= 23.625 \text{ J}$		WD by couple is $L \times 75$
	M1		ft requires M1M1
	Couple is $\frac{23.625}{75} = 0.315 \text{ Nm}$ A1 ft		
(ii)	By conservation of angular momentum $(0.09 + I_2) \times 9 = 0.09 \times 25$	M1 A1 ft	Using angular momentum
	$I_2 = 0.16 \text{ kg m}^2$	A1 3	

3	$\int_{-1}^{2} \frac{1}{r} dr = \left[-\frac{1}{r} \right]^{2}$		
	$\int_{1} \frac{1}{x^{2}} \frac{dx}{dx} = \left[-\frac{1}{x} \right]_{1}$	MIT	
	$=\frac{1}{2}$	A1	
	Mass per unit area $\rho = 48 \text{ kg m}^{-2}$	B1	
	$I = \int \frac{4}{3} (\rho \ y \ \delta x) (\frac{1}{2} \ y \)^2$	M1	For integral of y^3
	$=\int \frac{1}{3}\rho y^3 dx$	A1	
	$=\frac{1}{3}\rho \int_{1}^{2} \frac{1}{x^{6}} dx$	A1 ft	
	$=\frac{1}{3}\rho\left[-\frac{1}{5x^5}\right]_1^2$	A1	For correct integration of $\frac{1}{r^6}$
	$=\frac{31}{480}\rho = \frac{31}{480} \times 48$		λ.
	$= 3.1 \text{ kg m}^2$		
		A1 8	
4 (i)	$RC = 2a\cos\theta$	B1	or $RC^2 = 2a^2 + 2a^2\cos 2\theta$
	$EPE = \frac{5mg}{2\pi} (2a\cos\theta)^2$	M1	
	$GPE = mga\sin 2\theta + 2mg(2a\sin 2\theta)$	M1	One term sufficient for M1
	$V = 10mga\cos^2\theta + 5mga\sin 2\theta$	A1	
	$\frac{\mathrm{d}V}{\mathrm{d}\theta} = -20mga\cos\theta\sin\theta + 10mga\cos2\theta$	B1	Correct differentiation of $\cos^2 \theta$ (or $\cos 2\theta$) and $\sin 2\theta$
	For equilibrium, $10mga(\cos 2\theta - \sin 2\theta) = 0$ $\tan 2\theta = 1$	M1	For using $\frac{\mathrm{d}V}{\mathrm{d}\theta} = 0$
	$ heta = rac{1}{8}\pi$	A1 7	Accept $22\frac{1}{2}^{\circ}$, 0.393
(ii)	$\frac{\mathrm{d}^2 V}{\mathrm{d}\theta^2} = -20mga\cos 2\theta - 20mga\sin 2\theta$	B1 ft	
	When $\theta = \frac{1}{8}\pi$, $\frac{\mathrm{d}^2 V}{\mathrm{d}\theta^2}$ (= $-20\sqrt{2}$ mga) < 0	M1	Determining the sign of V"
	Hence the equilibrium is unstable	A1 3	Correctly shown
	OR Other method for determining whether V has a maximum or a minimum M1 Correct determination A1 ft Equilibrium is unstable A1		Correctly shown

5 (i)	$I = \frac{1}{3}(20)(0.3^2 + 0.9^2) + 20 \times 0.9^2$ = 22.2 kg m ²	M1 M1 A1 (ag) 3	MI of lamina about any axis Use of parallel (or perp) axes rule Correctly obtained
	OR $I = \frac{1}{3} \times 20 \times 0.3^2 + \frac{4}{3} \times 20 \times 0.9^2$ M1M1 = 22.2 kg m ² A1		As above
(ii)	Total moment is $20 \times 9.8 \times 0.9 \cos \theta - 44.1$ Angular acceleration is zero when moment is zero $\cos \theta = \frac{44.1}{20 \times 9.8 \times 0.9} = 0.25$	M1 M1 A1 (ag) 3	
(iii)	Maximum angular speed when $\cos \theta = 0.25$ $\theta = 1.318$ Work done against couple is 44.1×1.318 By work energy principle, $\frac{1}{2}I\omega^2 = 20 \times 9.8 \times 0.9 \sin \theta - 44.1\theta$ $\omega = 3.19 \text{ rad s}^{-1}$	M1 A1 M1 A1 ft A1 5	Equation involving work, KE and PE

6 (i)	As viewed from P		
	Q Tax record		
	$\sin \alpha = \frac{1790}{7400}$ $\alpha = 14.0^{\circ}$	M1	
	Bearing of relative velocity is $50 - \alpha = 036^{\circ}$ or $50 + \alpha = 064^{\circ}$	A1 (ag) B1 ft 3	For 64 or ft $50 + \alpha$
(ii)	Velocity diagram	B1	Correct diagram <i>(may be</i> <i>implied)</i>
	$\frac{\sin \beta}{7} = \frac{\sin 106}{10}$ $\beta = 42.3^{\circ}$ Bearing of \mathbf{v}_Q is $36 + \beta = 078.3^{\circ}$	M1 A1 A1 4	Correct triangle must be intended Accept 78°
(iii)	$\frac{w}{\sin 31.7} = \frac{10}{\sin 106}$ w = 5.47 m s ⁻¹	M1 A1 2	If cosine rule is used, M1 also requires an attempt at solving the quadratic
	Alternative for (ii) and (iii) $\begin{pmatrix} w \sin 36 \\ w \cos 36 \end{pmatrix} = \begin{pmatrix} 10 \sin \theta \\ 10 \cos \theta \end{pmatrix} - \begin{pmatrix} 7 \sin 110 \\ 7 \cos 110 \end{pmatrix}$ Obtaining an equation in θ only, and solvingitM1 $\theta = 78.3^{\circ}$ A2Obtaining an equation in w only, and solvingitM1 $w = 5.47 \text{ m s}^{-1}$ A1		e.g. $10\sin\theta - 7.2654\cos\theta = 8.3173$ or A1A1 if another angle found first

4731

Mark Scheme

June 2006

(iv)	$QC = \sqrt{7400^2 - 1790^2} = 7180 \text{ m}$ Time taken is $\frac{7180}{5.468}$ = 1310 s	M1 M1 A1 ft 3	(Or M2 for other complete method for finding the time) For attempt at relative distance $\div w$ (not awarded for 7400 $\div w$) or 21.9 minutes ft is 7180 $\div w$
(v)	Bearing of <i>CP</i> is $90 + 36 = 126^{\circ}$	B1 1	

7 (i)	$I = \frac{1}{3}m(3a)^2 + m(2a)^2$	M1	Using parallel axes rule
	$=7ma^2$	A1	
	$mg(2a\sin\theta) = I\alpha$	M1	
	$\alpha = \frac{2g\sin\theta}{7\pi}$	A1	
	/ <i>u</i>	4	
(ii)	By conservation of energy	M1	Equation involving KE and PE
	$\frac{1}{2}I\omega^2 = mg(2a\cos\frac{1}{3}\pi - 2a\cos\theta)$	A1	Need to see how $\frac{1}{3}\pi$ is used
	$\frac{1}{2}ma^2\omega^2 = mga(1 - 2\cos\theta)$		
	$\omega = \sqrt{\frac{2g(1 - 2\cos\theta)}{7a}}$	A1 (ag)	Correctly obtained
<i>/</i> ····		3	
(111)	$mg\cos\theta - R = m(2a\omega^2)$	A1	For radial acceleration $r \omega^2$
	$R = mg\cos\theta - \frac{4}{7}mg(1 - 2\cos\theta)$		
	$=\frac{1}{7}mg(15\cos\theta-4)$	A1	
	<i>`</i>	M1	For transverse acceleration $r\alpha$
	$mg\sin\theta - S = m(2a\alpha)$	A1	
	$S = mg\sin\theta - \frac{4}{7}mg\sin\theta$		
	$=\frac{3}{7}mg\sin\theta$	A1	
		0	
	OR $S(2a) = I_G \alpha = (3ma^2)\alpha$ M1A	1	Must use I_G
	$S = \frac{1}{7}mg\sin\theta$		
(iv)	When $\cos\theta = \frac{1}{3}$, $\sin\theta = \frac{\sqrt{8}}{3}$, $\tan\theta = \sqrt{8}$		
	$R = \frac{1}{7}mg$, $S = \frac{\sqrt{8}}{7}mg$	M1	
	Angle with <i>R</i> is $\tan^{-1} \frac{S}{R} = \tan^{-1} \sqrt{8} = \theta$		
	so the resultant force is vertical	A 1	
	Magnitude is $\sqrt{R^2 + S^2}$	M1	
	$=\frac{1}{7}mg\sqrt{1+8}=\frac{3}{7}mg$	A1	
		4	
	OR When resultant force is <i>F</i> vertically		
	$S = F \sin \theta$, hence $F = \frac{3}{7}mg$ M1A	1	
	$R = F \cos \theta$, SO		
	$\frac{1}{7}mg(15\cos\theta - 4) = \frac{3}{7}mg\cos\theta \qquad M$	1	
	$\cos\theta = \frac{1}{3}$ A	1	
	OR Horizontal force is $R\sin\theta - S\cos\theta$		
	$= \frac{1}{7}mg(15\cos\theta - 4)\sin\theta - \frac{3}{7}mg\sin\theta\cos\theta M$	1	
	$=\frac{1}{7}mg\sin\theta(12\cos\theta-4)$		
	$= 0$ when $\cos\theta = \frac{1}{3}$ A	1	

Vertical force is $R\cos\theta + S\sin\theta$ = $\frac{1}{7}mg \times \frac{1}{3} + \frac{3}{7}mg \times \frac{8}{9} = \frac{3}{7}mg$	M1A1		

Mark Scheme 4732 June 2006

1(i)	Negative, because (grad or coeff of x in 1^{st}			Neg because x incr & y decr
	equn or x-value or reg coeff or B or -0.6) is			
	negative	B1	1	
	C			
(ii)	$x = -1.6 \ge 7.0 + 21$	M1		Sub $y=7.0$ in 2^{nd} eqn. Allow 1 sign error
	x = 9.8			If sub in both must choose 2nd
		A1	2	
(111)	y = -0.6(-1.6y + 21) + 13 or similar	MI		Obtain correct eqn in 1 variable.
	= -5 = -10	A 1 A 1	2	Allow I num I error
	x = 5, y = 10	AIAI	3	Allow without bars
Total		6		
	In qus 2 & 3 "prod" means	"product	of tw	vo probabilities"
2(i)	$^{7}/_{7}$ or 0.571 (3 sfs)	B1	1	
()	5/ 4/ 3/ 5/	N/1N/1		M1: one correct and on add one two and t
(11)	$/_{8} X /_{7} + /_{8} X /_{8}$	MIMI		M1: one correct prod or add any two prods
	$-\frac{265}{100}$ or 0.502 (3 sfs)	Δ 1	3	
	-7448 of 0.392 (3 SIS)	AI	3	
(iii)	$\frac{3}{6} \mathbf{x}^{5}/_{0} + \frac{5}{6} \mathbf{x}^{3}/_{7}$	M1M1		M1: one correct prod or add any two prods
(111)	/8 A /8 · /8 A //	10111011		M1: all correct
	$=\frac{225}{448}$ or 0.502 (3 sfs)	A1	3	
Total		7		
3(i)	7!	M1M1		M1: 7!/(a factorial); or $ \div (3! \times 2(!))$
	3! x 2(!)			M1: all correct
	= 420	A1	3	
(11)	$\frac{5!}{2(1)}$	M1		M1: 5! seen (not part of a C) or $5 \ge 4!$
	2(!)	A 1	•	or 120 seen or $\dots \div 2(!)$ alone
	= 60	AI	2	
(iii)	$1 \frac{4}{2} \times \frac{3}{2}$ or $1 \frac{4}{2} \times \frac{7}{2}$ or $1 \frac{4}{2} \times \frac{7}{2}$	M1M1		M1:1 prod or 1 $\sqrt{10}$ or 1 $\frac{40}{10}$ (or Da)
(111)	$r = \frac{1}{7} \frac{x}{6} \frac{6}{6} \frac{0}{11} \frac{1}{6} \frac{-2}{2} \frac{2}{5} \frac{0}{11} \frac{1}{6} \frac{1}{2} \frac{1}{7} \frac{1}{2}$	10111011		or add 3 prods or add 2 correct prods
	or ${}^{3}C_{2} / {}^{7}C_{2} + {}^{3}C_{1}x^{4}C_{1} / {}^{7}C_{2}$			or ${}^{3}C_{2}/{}^{7}C_{2}$ or ${}^{3}C_{1}x^{4}C_{1}/{}^{7}C_{2}$
	$\mathbf{G}_{\mathbf{Z}} = \mathbf{G}_{\mathbf{Z}} + \mathbf{G}_{\mathbf{Z}} + \mathbf{G}_{\mathbf{Z}} + \mathbf{G}_{\mathbf{Z}}$			or add > 5 out of 7 correct prods
				M1: all correct
	$= \frac{5}{7}$ or 0.714 (3 sfs)	A1	3	
Total		8		

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding Penalise 2 sfs only once in paper.

Mark Scheme

4(i)	0.4207 or 0.421 (3 sfs)	B1		or 1 – 0.6167 or 0.3833 (3 sfs)
	or $0.8^{25} + 25x0.8^{24}x0.2 +^{25}C_4x0.4^{21}x0.2^4$			or 1- (6 correct terms, 0 to 5)
	0.579(3)	B1	2	
(;;)	10^{-10} x (1.0.27) ⁷ x 0.27 ³	M1		
(11)	$C_3 X (1-0.27) X 0.27$ = 0.261 (3.sfs)		2	
	- 0.201 (5 \$1\$)	AI	2	
(iii)	Allow "=" thro'out			or 1 - ${}^{n}C_{0} \ge 0.27^{0} \ge 0.73^{n} > 0.95$ oe
	$1 - 0.73^n > 0.95$			allow incorrect sign M1
	$0.73^9 = 0.059$ or $0.73^n < 0.05$	M1		must be correct
	$0.73^{10} = 0.043$ $n \log 0.73 < \log 0.05$ oe	M1		ft (1-0.27) from (ii) for M1M1
				10 with incorrect sign in wking: SCB2
				10 with just $0.73^9 = 0.059$: M1M1A1
	<i>n</i> = 10	A1	3	
Total		7		
5(i)	$\frac{1}{3} + \frac{1}{4} + p + q = 1$ oe	B1		
	$0 \ge \frac{1}{3} + 1 \ge \frac{1}{4} + 2p + 3q = \frac{1}{4}$ oe	B1		
		N/1		dia in a second di si second
	equalize coeffs, eg mult eqn (1) by 2 or 3 Or make n er a subject of (i) or (ii)	IVI I		allow one error. It their equits
	$n = \frac{1}{2} a = \frac{1}{2} a = \frac{1}{2} a$	A 1 A 1	5	subst of subtrained y
	p = 74, q = 76 oc	AIAI	3	
(ii)	$\Sigma x^2 p$ (not /4 or /3 etc) (= 2 ³ / ₄)	M1		\geq 2 non-zero terms correct. dep +ve result
	$-(1^{1}/_{4})^{2}$	M1		indep if +ve result
				or $x-1^{1}/_{4})^{2}p$
				$(\geq 2 \text{ (non-0) terms correct}): M2$
				ft (i) $(0 \le p, q \le 1)$ or letters p, q both M1s
	$= 1.1875$ or $1^3/_{16}$ oe	A1		cao
	$sd = \sqrt{(their \ 1.1875)} = 1.09 \ (3 \ sfs)$	B1f	4	dep 1st M1 &/(+ve no.) eg $\sqrt{2.75} = 1.66$
Total		9		

6(i)(a)	Ranks: 2 4 7 5 3 1 6 6 4 1 3 5 7 2	M1	\geq 5 ranks correct in each set			
	7 1 6 3 2 5 4 1 7 2 5 6 3 4	A1	all correct			
	Σd^2	M1	dep ranks attempted even if opp orders,			
	(= 60)		allow arith errors			
	$r = 1 - \frac{6 \times 60}{6}$	M1	Correct formula with $n = 7$, dep 2^{nd} M1			
	7×48					
			calc <i>r</i> for ranks:			
			$S_{xx} = S_{yy} = 140 - 28^2/7.$ $S_{xy} = 110 - 28^2/7$ (= 28) (= -2)			
			corr subst in one corr S (any version):M1			
			corr subst in $r = S_{xy} / \sqrt{(S_{xx}S_{yy})}$:M1			
	$= -\frac{1}{14}$ or -0.071 (3 dps)	A1 5				
			-0.07 without wking: M1A1M2A0			
			No mks unless $ r_s < 1$			
(b)	Little (or no) connection (agreement,		ft their r_s			
	rel'nship) between dist and commission		Must refer to context.			
	Allow disagreement		Not "little corr'n between dist and			
		B1ft 1	com"			
			not "strong disagreement"			
			Ignore other comment			
(c)	Unchanged. No change in rank	B1B1 2				
(ii)(a)	= -1	B1 1	indep			
(b)	Close to -1 or, eg ≈ -0.9	B1	cao			
			not referring to "corr'n" rether then			
			allow "nog" not nog corr'n or nog skow			
			anow neg, not neg con n or neg skew			
Total		10				
7(i)				Correct (149 5)	With 150	Tot =
----------	---	----------	----	--	-------------------------------	-----------------------------
, (-)	Midpoints attempted > 2 classes	M1		<u>context (11).5)</u>	<u></u>	$\frac{100}{2000}$
	$\sum xf/100 \text{ or } \sum xf/\sum f \text{ attempted } > 2 \text{ terms}$	M1				2000
	x within class, not class width			2720 5/100	2725/100	Allow
	Mean = 27.2 (to 3 sfs) (not 27.25)			2720.3/100	2723/100	Ma
	art 27.2 from fully correct wking	A1				IMIS
	$\sum x^2 f$ or $\sum x - \overline{x}^2 f \ge 2$ terms	M1				& poss
	$\sqrt{(\sum x^2 f / 100 - \overline{x}^2)}$ or $\sqrt{((\sum x - \overline{x})^2 f / 100)}$ or					As
	$1/\Sigma f$	M1				
	fully corr method, not \sqrt{neg}			27.2	27.25	
		A1	6	240702.25	242050	
	= 40.5 to 41.1 (3 sfs)		-	40.82	40.96	
		 		allow class widths	s for 2nd M1 or	nly
(ii)	Recog LQ in 1^{st} class $\underline{\&}$ UQ in 3^{rd} class	B1				
	<u>Graph</u> : <u>Interp</u> :					
	Attempt $25(.25)^{th}$ value $LQ = 3.0$ to 4.3			1 .1 1		
	Attempt $75(.75)^{\text{at}}$ value $UQ = 27$ to 29	MI		both nec'y		
	Subtract	M1		dan D1ar M1		
	Subtract $IOP = 23 \text{ or } 24 \text{ or } 25$		4	integer den M2		
(iji)(a)	$10^{11} = 2501240125$	D1	4			
(III)(a)	Increase	B1 B1	1	Ignoro "	nrahahlur" ata	
(0)	No change	B1	1	Ignore	probably ele	
Total			13			
Total			10			
8(i)	Geometric.	B1				
~ /	Each attempt (or result or try) indep	B1	2	In context. Not "event	ts,. trials, outcome	s". Ignore
				extra		
(ii)(a)	$(^{2}/_{2})^{3} \mathbf{x}^{1}/_{2}$	M2		$(^{2}/_{2})^{2}x^{1}/_{2}$ or $(^{2}/_{2})^{4}x^{4}$	¹ / ₂ .	
(11)(w)				allow other nu	merical " <i>p</i> " (0<	<p<1):m1< th=""></p<1):m1<>
	$= \frac{8}{81}$ or 0.0988 (3 sfs)	A1	3		I IIIIII	r /·
(b)	$(^{2}/_{3})^{3}$	M1		not $(^{2}/_{3})^{3}$ x		
	$1 - (^2/_3)^3$	M1		or $\frac{1}{3} + \frac{2}{3}x^{1}/3 + \frac{2}{3}x$	$(x_3)^2 x_1^{1/3}$	M2
				$1 - (^2/_3)^4$ or $1 - (^{"}$	$(q'')^4$	M1
				or 3 terms, with 2	correct	M1
				or 3 correct terms	+1 extra	M1
				or $p'' + qp'' + qq'' $		MI M1
	$= \frac{19}{2}$ or 0.704 (2 sfs)	A 1	2	or $1 - \text{sum of } 3 \text{ co}$	orrect terms	MII $\frac{1}{1}$
	$= 7_{27} \text{ or } 0.704 (3818)$	AI	3	p r	neans num var	ue, not 7_3
(iii)	3	B1f	1	or ¹ /		
(III)		DII	1	01 / p		
(iv)	$1 - \frac{19}{27}$ (1 - 0.7037) or 0.2963	M1		ft (b) for M1M1 n	nust see metho	d if ft
	$(\frac{8}{27})^2 x^{19}/_{27}$ 0.2963 ² x 0.7037	M1		Allow figs rounde	ed to 2 sfs for N	/1M1
	1217					
	$= \frac{1210}{19683}$ = 0.0618 (3 sfs)	A1	3	cao. allow art 0.06	518 or 0.0617	
			10			
Total			12			

Total 72 marks

Mark Scheme 4733 June 2006

1		$x = x \int_{-\infty}^{4} x = x \int_{-\infty}^{1} x^{4} \int_{-\infty}^{4} f$	M1		Integrate <i>x</i> f(<i>x</i>), limits 3 & 4 [can be implied]
		$\mu - \frac{3}{37} \int_{3} x^{3} dx = \frac{3}{37} \left[\frac{4}{4} \right]_{3} $			$\left[\frac{525}{148} \text{ or } 3.547\right]$
		$3\frac{81}{148}$]	M1		Attempt to integrate $x^2 f(x)$. limits 3 & 4
		Γ 5] ⁴	A1		Correct indefinite integral, any form
		$\frac{3}{37}\int_{3}^{4} x^{4} dx = \frac{3}{37}\left \frac{x^{5}}{5}\right $	A1		$\frac{2343}{185}$ or in range [12.6, 12.7] [can be implied]
			M1		Subtract their μ^2
		$= 12\frac{125}{185}$ OI 12.005	A1	6	Answer, in range [0.0575, 0.084]
		$\sigma^2 = 12\frac{123}{185} - 3\frac{81}{148}^2 = 0.0815$			
2	(i)	Find $P(R \ge 6)$ or $P(R < 6)$	M1		Find P(= 6) from tables/calc, OR RH critical
		= 0.0083 or 0.9917	A1		region
			D 4		$P(\geq 6)$ in range [0.008, 0.0083] or $P(< 6) =$
		Compare with 0.025 [can be from	B1		0.9917
		N]	01.1	4	OR CR is 6 with probability
			AIV		0.0083/0.9917 Explicitly compare with 0.025 for 0.075 if
		Sidleuj Reject H.			consistent
					OR state that result is in critical region
					Correct comparison and conclusion $\sqrt{0}$ on their p
	(ii)	n = 9 P(< 1) = 0.0385 [> 0.025]	M1		At least one or $n = 8$ P(< 1) = 0.0632
	()	n = 10 P(< 1) = 0.0233 [< 0.025]	A1		Both of these probabilities seen, don't need
		Therefore $n = 9$	B1	3	0.025
					Answer <i>n</i> = 9 only, indep't of M1A1, <i>not</i> from P(=
					1)
3	(i)	(140 – μ)/σ = –2.326	M1		One standardisation equated to Φ^{-1} , allow "1–",
		(300 – μ)/σ = 0.842	B1		σ^{2}
			A1√		Both 2.33 and 0.84 at least, ignore signs
		Solve to obtain:			Both equations completely correct, $$ on their z
		$\mu = 257.49$		6	Solve two simultaneous equations to find one
		σ = 50.51		0	
					μ value, in range [207, 200]
	(ii)	Higher	B1		"Higher" or equivalent stated
	(")	as there is positive skew	B1	2	Plausible reason allow from normal calculations
4	(i)	Each element equally likely to be	B1	1	One of these two. "Selections independent"
-	(1)	selected (and all selections		-	alone is insufficient, but don't need this. An
		independent) OR each possible			example is insufficient.
		sample equally likely			
	(ii)	B(6, 5/8)	M1		B(6, 5/8) stated or implied, allow e.g. 499/799
		${}^{6}C_{4} p^{4} (1-p)^{2}$	M1		Correct formula, any p
		= 0.32187	A1√	3	Answer, a.r.t. 0.322, can allow from wrong <i>p</i>
	(111)	N(37.5, 225/16)	B1		Normal, mean 37.5, or 37.47 from 499/799,
		$\frac{39.5 - 37.5}{2} = 0.5333$	M1 dor		499/000 14 0625 or 3 75 seen allow 14 07/14 1 or 2 75
		3.75		J	Standardise wrong or no co, no, and no \sqrt{n}
		1	den M	1	Correct or \sqrt{nng} signs can be reversed
		$r = \Psi(0.0000)$ = 0 297	A1		Tables used answer < $0.5 \ n = 5/8$
		- 4.231	6		Answer, a.r.t. 0.297
					SR: $np < 5$: Po(np) stated or implied.
					B1

5	(i)	B(303, 0.01)	B1		B(303, 0.01) stated, allow <i>p</i> = 0.99 or 0.1
			54		Allow Bin implied clearly by parameters
		≈ Po(3.03)	BJ	2	(ii) Po(3.03) stated or implied, can be recovered from
	(ii)	$303^2 - 04465$	M1		Correct formula, ± 1 term or "1 – " or both
	. ,	$e^{-3.03}\left(1+3.03+\frac{3.03}{2}\right)=0.4105$	A1	2	Convincingly obtain 0.4165(02542) [Exact:
		AG			0.41535]
	(iii)	302 seats $\Rightarrow \mu$ = 3.02	M1		Try smaller value of μ
		$e^{-3.02}(1+3.02) = 0.1962$	M1		Formula, at least one correct term
		a 4aaa a	AI		Correct number of terms for their μ
		0.196 < 0.2		F	0.1962 [or 0.1947 from exact]
		So 302 seats.		D	Answer 302 only
	SR:	B(303, 0.99): B1B0; M0; M1 then N(2)	298.98,2.	40	98) or equiv, standardise: M1A1 total 4/9
	ЗΝ.	$\rho = 0.1$. B(303, 0.1), N(30.3,	21.21) D		$0,$ Standardise 2 with <i>np</i> $\propto \sqrt{npq}$, with $0,$
	SR	6/9	πρανημ	эq,	solve quadratic for \sqrt{n} , $n = 339$. IN TWITWITAT, total
	••••	B(303, 0.01) ≈ N(3.03, 2.9997): B1E	0: M0A0	: M	1A0
6	(i)	Customers arrive independently	B1 1	1	Valid reason in context, allow "random"
	(ii)	1 – 0.9921	M1		Poisson tables, "1 –", or correct formula \pm 1 term
		= 0.0079	A1 2	2	Answer, a.r.t. 0.008 [1 – 0.9384 = 0.0606: M1A0]
	(iii)	N(48, 48)	B1		Normal, mean 48
		z = 55.5 - 48	B1√		Variance or SD same as mean $$
		$\sqrt{48}$	M1 dep		Standardise, wrong or no cc, $\mu = \lambda$
		= 1.0825	A1		Correct cc, $\sqrt{\lambda}$
		$1 - \Phi(1.0825)$	dep M1	•	Use tables, answer < 0.5
		= 0.1394	A1	6	Answer in range [0.139, 0.14]
	(iv)	$e^{-\lambda} < 0.02$	M1		Correct formula for P(0), OR P(0 λ = 4) at least
		$\lambda > -\ln 0.02$	M1		In used OR λ = 3.9 at least by T & I
		= 3.912	A1 M4		3.91(2) seen OR λ = 3.91 at least by T & I
		0.4t = 3.912: $t = 9.78$ minutes		_	Divide λ by 0.4 or multiply by 150, any distribution
		t = 9 minutes 47 seconds	AI S	5	587 seconds ± 1 sec [inequalities not needed]

7	(i)	$\frac{c - 4000}{60 / \sqrt{50}} = 1.645$ Solve <i>c</i> = 4014 [4013.958] Critical region is > 4014	M1 B1 A1√ M1 A1 A1√ 6	Standardise unknown with $\sqrt{50}$ or 50 [ignore RHS] z = 1.645 or -1.645 seen Wholly correct eqn, $$ on their z [1 - 1.645: M1B1A0] Solve to find c Value of c, a.r.t. 4014 Answer "> 4014", allow \geq , $$ on their c, needs M1M1
	(ii)	Use "Type II is: accept when H ₀ false" $\frac{4020 - 4014}{60 / \sqrt{50}}$ = 0.7071 [0.712 from 4013.958] 1 - Φ (0.7071) = 0.240 [0.238 from 4013.958]	M1dep depM1 A1√ A1 M1 A1 6	Standardise 4020 and 4014 $$, allow 60 ² , cc With $\sqrt{50}$ or 50 Completely correct LHS, $$ on their c z-value in range [0.707, 0.712] Normal tables, answer < 0.5 Answer in range [0.2375, 0.2405]
	(iii)	Smaller Smaller cv, better test etc	B1 B1 2	"Smaller" stated, no invalidating reason Plausible reason
	(iv)	Smaller Smaller cv, larger prob of Type I etc	B1 B1 2	"Smaller" stated, no invalidating reason Plausible reason
	(v)	No, parent distribution known to be normal	B2 2	"No" stated, convincing reason SR: If B0, "No", reason that is not invalidating: B1

Mark Scheme 4734 June 2006

June 2006

1		Add two Poisson distributions With mean 17 $P(27)=e^{-17}17^{27}/27!$ or $P(\le 27)-P(\le 26)$ 0.00634 or 0.0063, 0.0064 from tables	M1 A1 M1 A1	4	Use for M1A1	mula or table 0.0052 from N(17,17)
2		$H_0:p_1=p_2=p_3=p_4$, ($H_1:$ They are not all equal)	B1		Indication	on of equality of proportions
		Expected values under $H_0=150$ $X^2 = (12^2+23^2+15^2+20^2)/150$ =8.653 Critical value with 2 d f = 7.815	B1 M1 B1	A1	At least	one correct term Accept art 8.65 or 8.66
		$(X^2 > 7.185 \text{ so})$ reject H ₀ and accept the proportions are different.	at	B1√	6	ft critical value
3		Assume population of differences has a distribution.	normal			
		or sample random $H_0: \mu_B - \mu_A = 0, H_1: \mu_B - \mu_A > 0$ $t = (23.43-22.84) / \sqrt{(0.548/10)}$	B1 B1 M1	A 1	Either a	assumption.
	1.812,1	-2.520 CV=1.833 2.52 > CV so reject H₀ .734	B1 M1	AI	Seen Allow fr	om CV 2.262 (2-tail),
		Accept that there is evidence that mean has reduced.	time A1 √	7	ft wrong	3 CV
4	(i)	EITHER: $\int_{q_3}^4 \frac{1}{12} x dx = \frac{1}{4}$ or $\int_1^2 \frac{4}{3x^3} dx$	$+\int_{2}^{q_{3}}\frac{1}{12}$	$xdx = \frac{3}{4}$	- M1*	
		$[x^{2}/24]$ OR $[-2/(3x^{2}) + [x^{2}/24]$ (16- $q_{3}^{2})/24=1/4$ or $1/3 + q_{3}^{2}/24 = \frac{3}{4}$ $q_{3}=\sqrt{10}$ If they find F(x): M1A1, M1A1	A1 dep *M1 A1	4	Either Form e Accept	quation and attempt to solve to 3 SF
	(ii)	$E(X^2) = \int_{1}^{2} \frac{4}{3x} dx + \int_{2}^{4} \frac{x^3}{12} dx$				
		$E(X) = \int_{1}^{2} \frac{4}{3x^{2}} dx + \int_{2}^{4} \frac{x^{2}}{12} dx$	M1		Either c	correct
		$\left[\frac{4}{3}\ln x\right]_{1}^{2} + \left[\frac{x^{4}}{48}\right]_{2}^{4}$	A1			
		$\left[\frac{-4}{3x}\right]_{1}^{2} + \left[\frac{x^{3}}{36}\right]_{2}^{4}$	A1			
		a= E(X ²)/E(X) a=2.6659, 2.67	M1 A1	5	Or exac	ct value, (3ln2)/5 + 9/4 or equiv.

_

5	(i)	(48×72/150) or (48/150)(72/150)×150	M1 A1	2	Multiply and divide relevant values All correct
	(ii)	No, no expected value less than 5		B1	1
	(iii)	H ₀ :Volume and day are independent (H ₁ :Volume and day are not independent Critical value for 4 df=13.28 Test statistic > 13.28, reject H ₀ Accept that volume and day are not independent	nt) B1 M1	B1	Attributes specified
		independent	AI	4	
	(iv)	Choose Friday Highest volume	B1	B1	2 Not reference to E values
6	(i)	(a) No 0.43 belongs to relevant interval	B1	B1	Must be with reason
		0.43 is outside relevant interval	B1	3	
	(ii)	$H_0:p_R = p_{T_1} H_1:p_R \neq p_T$ Estimate of $p = 74/165$ Variance estimate of difference	B1 B1		Proportions
		$=(\frac{74}{165})(\frac{91}{165})(\frac{1}{80}+\frac{1}{85})$	B1		May be implied by later work
		$z = (28/80 - 46/85)/\sigma_{est}$ = -2.468	M1 A1	A1	Standardising Completely correct expression + or - , 2.47
		Compare correctly with CV -2.468<-2.326, or 2.468 > 2.326 Reject H_0 and accept that the	M1		
		proportions differ on the island.	A1	8	Conclusion in context
7	(i)	$T_1 \sim N(2.2, 0.75^2), T_2 \sim N(1.8, 0.70^2)$ Use $T_2 - \frac{1}{2} T_1$ normal $\mu = 0.7$	M1 A1		Or $\frac{1}{2}T_1 - T_2$
		σ ² =0.7 ² + ¼×0.75 ² (0.630625) (0- μ)/σ	A1 M1		From reasonable σ^2 not just sum
		-0.881 Probability 0.189	A1	A1	+ or - 6
(ii)	Use s	um of 5 Ts M1			
		$\mu = 9.4$ $\sigma^2 = 25225$	Α1 Δ1		
		$z = (10 - \mu)/\sigma$	M1	Stand	lardising, must be σ
		Probability 0.6473,0.647	A1	5	<u>,</u>
	(iii)	Calculation of variance B1	1		

June 2006

$s_B^2 = \frac{1}{49}(630.194 - \frac{176.35^2}{50})$ 8 (i) Any equivalent formula M1 =0.1675A1 May be implied by later work H₀: $\mu_B - \mu_A = 0$, H₁: $\mu_B - \mu_A > 0$ B1 aef $z=0.115/\sqrt{(0.049/40+0.1675/50)}$ Standardising but not from pooled M1 variance estimate =1.700A1 art 1.70 z > 1.645, reject H₀ Compare correctly with 1.645 M1 A1 $\sqrt{7}$ and accept that $\mu_B > \mu_A$ ft their calculated z_____ $z = 0.09 / \sqrt{(0.004575)}$ (ii) M1 Correct form = 1.331 A1 H₀ not rejected for $\alpha < 9.16$ M1 A1 Accept $< 9.2, \le 9.2$. M1 for correct 4 method for 9.2, A1 for inequality _____ -----(iii) (a) Not necessary B1 Ignore any reason (b) Not necessary since samples large enough for CLT to be applied (normality of sample means giving normality of difference) Mention of CLT implied by M1 "sample large" Sample mean (approx) normal. A1 3 (Do not award if population or sample said to be normal)

Mark Scheme

June 2006

Mark Scheme 4735 June 2006

1	(i)	(a) True (b) False			B0 for 0,1 correct, B1 for 2 correct,
		(c) True	B2	2	B2 for 3 correct.
	(ii)	Var(2X-Y)= 4Var(X)+Var(Y)-4Cov(X,Y)	M1 A1		Using formula
		6=11-4COV(X,Y) Cov(X,Y)=5/4	A1	4	cao
2		EITHER: sample is random OR twin pa chosen independently	nirs B1		
		$H_0: m_F = m_S$, $H_1: m_F > m_S$ Use of B(60,0.5)	B1	M1	For both using medians
		Normal approx with μ =30, σ^2 =15		A1	Both
		EITHER: z=(36.5-30)/√15 =1.678	M1 A2		Standardising A1 if correct apart from missing or wrong cc
		OR:CR is (X-30-0.5)/ √15 >1.645 X≥37	A2	M1	Setting up inequality A1 if correct apart from missing or wrong c.c.
		EITHER: 1.678> 1.645 OR: Sample value 37 in CR There is evidence that the first-born	M1		Correct comparison
		male twins are taller than the second -born twin in a majority of cases. OR: p-value: 0.0467 > 1.645	A1 M1		Conclusion in context
		Completion NB: Exact Bin (60,0.5) p-value is 0.046	A1 23 from g	9 graphica	al calculator: full credit
3	(i)	P(C)=P(C F)P(F)+P(C F')P(F') =0.98×0.05 + 0.04×0.95	A1	M1	Use of formula
		0.087 AG	A1 	3	
	(ii)	$P(F C) = \frac{0.05 \times 0.98}{0.05 \times 0.98 + 0.95 \times 0.04}$	M1A1		
		=0.5632		A1	3 art 0.563 or 49/87
	 (iii)	P(F C')=P(C' F)P(F) / P(C')	M1		Conditional prob.
		0.02×0.05/0.913 [0.001095] 5000×above = 5.476., 5.48.	M1A1√	A1 4	ft a conditional prob.

4 (i)
$$M_{x}(t) = \int_{a}^{b} \frac{1}{b-a} e^{a^{t}} dt$$
 M1 Correct integral with limits

$$= \left[\frac{e^{a^{t}}}{(b-a)t}\right]_{a}^{b^{t}}$$
B1 Correct integral

$$= \frac{e^{b^{t}} - e^{a^{t}}}{(b-a)t} AG$$
A1 3
(ii) Product of mgfs M1

$$\left(\frac{1-e^{-t}}{t}\right)\left(\frac{e^{t}-1}{t}\right)$$
A1 2
(iii) $M_{s}(t) = \left(\frac{e^{\frac{1}{2}t} - e^{-\frac{1}{2}t}}{t}\right)^{2}$ M1 Square of $M_{v}(t)$

$$= (e^{\frac{1}{2}} 2+e^{\frac{1}{2}t})e^{t^{2}}$$
A1dep Correctly shown
S and T have identical distributions B1 4
5 (i) $\frac{t^{3}C_{4}}{715}$ M1 Use of formula

$$\frac{1}{1234,1235,1236,1237,1245,1246, B2 B1 for 5 or 6 77715}$$
(ii) $\frac{1}{345}$ B1 $M = \frac{B1}{M_{1} M_{2} m_{2} m_{1} M_{1} M_{2} m_{2} m_{2} m_{1} M_{2} m_{2} m_{1} M_{2} m_{2} m_{1} M_{2} m_{2} m_{1} M_{2} m_{2} m_{2} m_{1} M_{2} m_{2} m_{1} M_{2} m_{2} m_{2} m_{1} M_{2} m_{2} m_{2} m_{1} M_{2} m_{2} m_{2} m_{2} m_{1} M_{2} m_{2} m_{2} m_{2} m_{2} m_{1} M_{2} m_{2} m_{2} m_{2} m_{1} M_{2} m_{2} m_{2} m_{2} m_{2} m_{2} m_{1} M_{2} m_{2} m_{2} m_{2} m_{2} m_{2} m_{1} M_{2} m_{2}$

(i)	$G'(t)=[0.8(1-0.2t)+0.16t]/(1-0.2t)^2$	M1		Quotient or product rule	
	G'(t)=0.8/0.8 ² =5/4 AG	A1 A1	3		(::)
G(<i>t</i>)=	=0.8t $(1-0.2t)^{-1}$ M1 =0.8t $(1+0.2t+0.04t^{2}+)$ P(Y=r)=0.8 $(0.2)^{r-1}$ r=1.2.3	A1 A1 A1	Use bir 4	At least 2 correct terms	(11)
EITH	HER: $Y \sim G(0.8)$ B1 Var(Y)=(1-0.8)/0.8 ² =0.3125 OR:G''(t)=0.32/(1-0.2t) ³	M1 B1	Paramo A1	eter not required	(iii)
	Use G''(1)+ G'(1) - (G'(1)) ² 0.3125	M1 A1	3		(iv)
$\overline{G}_{T}(t)$)=0.8 ⁶ t ⁶ (1-0.2t) ⁻⁶ B1 P(<i>T</i> ≥8)=1-0.8 ⁶ (1+6×0.2) =0.42328	M1 A1	(G _Y (t)) 3	⁶ Two terms in bracket art 0.423	(10)
(i)	$E(X) = \frac{1}{2}(n+1)$ Var(X)= ¹ / _n \sum r ² - ¹ / ₄ (n+1) ² = ¹ / ₆ (n+1)(2n+1) - ¹ / ₄ (n+1) ² = ¹ / ₁₂ (n ² -1) AG	B1 M1 A1	A1 4	Use of variance formula Correctly obtained	
 (ii)	$E(N_1)=E(X_1)+E(X_2) - 1$ = $\frac{1}{2}(n+1) + \frac{1}{2}(n+1)-1$ = $n,($ so N_1 is an unbiased estimator of n)	M1 A1	2		
(iii) EITI	$P(M=r)=$ HER: $P(X_1 < r, X_2 = r) + P(X_1 = r, X_2 < r)$ $= ((r-1)/n)(1/(n-1)) + (1/n)(r-1)/(n-1)$ $= 2(r-1)/(n(n-1)) + C_1 = 2(3.4)$	M1 A1			
OR:	Choose 1 from <i>r</i> -1 and 1 from 1 $r^{-1}C_1 \times {}^{1}C_1 / {}^{n}C_2$ =(<i>r</i> -1)/[½ <i>n</i> (<i>n</i> -1)]=AG	M1 A1 A1	3		
(iv)	$E(M) = \frac{2}{n(n-1)} \sum_{r=2}^{n} r(r-1)$	M1	A 4		
	$=7_3(n+1)$ $N_2 = {}^3/_2M-1$	A1√	A1 3	ft E(<i>M</i>)	
(v)	Var(N_1) < Var(N_2) or equivalent ${}^{1/_6}(n^2 - n - 2) < {}^{9/_4}Var(M)$ Var(M) > ${}^{2/_{27}}(n^2 - n - 2)$	M1 A1 A1√	3	Stated or implied ft N_2	

Mark Scheme 4736 June 2006

1	(i)	2 4 3 3 2 5 4		
		Box 1 2 4 2 Box 2 3 3 Box 3 5	M1	For packing these seven weights into boxes with no more than 8 kg total in each box
		Box 4 4	A1 [2]	For this packing
	(ii)	5 4 4 3 3 2 2	B1	For putting the weights into decreasing order (may be implied from packing)
		Box 1 5 3 Box 2 4 4	M1	For packing the seven weights into three boxes with no more than 8 kg total in each
		Box 3 3 2 2	A1 [3]	box
				For this packing
	(111)	15×2^{-1}	N1 A1 [2]	For a correct calculation
		= 60 seconds	AT [2]	For ou or ou seconds of a minute
				7
2	(i)			Graphs may be in any order
			M1 A1 [2]	For a reasonable attempt For a graph that is topologically equivalent to one of these graphs
		graph A graph B graph C	M1 A1 [2]	For a different reasonable attempt For a graph that is topologically equivalent to one of these graphs
		other solutions:		
		or t	M1 A1 [2]	For another different reasonable attempt For a graph that is topologically equivalent to one of these graphs
	(ii)	The graphs each have four odd nodes, but Eulerian graphs have no odd nodes.	B1 [1]	For any recognition that the nodes are not all even
				7

3	(i)	Travelling salesperson	B1	[1]	Identifying TSP by name
	(ii)	A – B – E – G – F – D – C – A	M1		For starting with $A - B - E - G - \dots$
			A1		For this closed tour
		130 (minutes)	B1		For 130
		Shortest possible time < 130 minutes	B1	[4]	For less than or equal to their time, with units
	(iii)	Order of connecting: B , E , G , F , D , C	B1		For a valid vertex order (or arc order) for their starting point
			M1		For a diagram or listing showing a tree connecting the vertices <i>B</i> , <i>C</i> , <i>D</i> , <i>E</i> , <i>F</i> and <i>G</i> but not <i>A</i>
			A1		
					For a diagram showing one of these trees (vertices must be labelled but arc weights are
		20	M1 M1		not needed)
			A1	[6]	For stating or using the total weight of their tree
		Lower bound = 10 + 15 + 95 = 120 minutes			For stating or using <i>AB</i> and <i>AD</i> or 10 + 15 For 120 or calculating 25 + their 95, with
					units
	(iv)	A – B – E – G – F – C – D – A	M1		For a reasonable attempt
		or this in reverse	A1	[2]	For a valid tour of weight 125
					13

4	(i)	<u>x ≤ 2</u>	B1		Strict inequalities used, penalise first time
		y <u>></u> 1	B1		only
		y <u><</u> 2x	B1		All inequalities reversed, penalise first time
		<u>x+y≤4</u>	B1	[4]	only
	(ii)	(2, 1), (2, 2)	B1		Both of these
		(½, 1)	B1		This vertex in any exact form
		$(1\frac{1}{3}, 2\frac{2}{3})$	B1	[3]	This vertex in any exact form or correct to 3 sf
	(iii)	$\begin{array}{ccc} x & y & P = x + 2y \\ 2 & 1 & 4 \end{array}$			
		2 2 6	M1		Evidence of checking value at any vertex or
		$\frac{1}{1/2}$ $\frac{1}{2}$ $\frac{1}{2}$			using a sliding profit line
		$1\frac{1}{3}$ $2\frac{2}{3}$ $6\frac{2}{3}$			0 01
		$x = 1 \frac{1}{2}$ $y = 2\frac{2}{2}$	A1		Their x and y values at maximum in any
		(may be given in coordinate form)			exact form or correct to 3 sf
		$P = 6^{\frac{2}{3}}$	A1	[3]	Their maximum <i>P</i> value in any exact form or
				,	correct to 3 sf
	(iv)	x y Q = 2 x - y			
			N / /		Evidence of checking value of environmentary or
					Evidence of checking value at any vertex of
		$\frac{1}{2}$ 1 0 11/ 22/ 0			using a simility profit life
		Q = 0			
			A1		0 (cao)
		(<i>x</i> , <i>y</i>) can be any point on the line segment			
		joining ($\frac{1}{2}$, 1) and ($1\frac{1}{3}$, $2\frac{2}{3}$)	A1	[3]	The edge of the feasible region where $y = 2x$
					No follow through
	(V)	$P = Q \Longrightarrow 2x - y = x + 2y$			For considering $P = Q$, or equivalent
		$\Rightarrow x = 3y$		[3]	For explanation of why there are no solutions
		$y = \frac{1}{3}x$ lies entirely in the shaded region		[3]	
					16

5	(i)	2 <i>x</i> - 5	y + 2z	+ s =	10							
		2x + 3z + t = 30					B1	[1]	Slack variables used correctly			
	(ii)	Р	Х	У	z	s	t			M1		For overall structure correct, including two
		1	-1	2	3	0	0	0)		slack variable columns and column for RHS	
		0	2	-5	2	1	1 0	10		Α1	[2]	For a completely correct initial tableau with
		0	2	0	3	0	1	30		7.11	[-]	no extra constraints added (condone
												variations in order of rows or columns)
	(iii)	Pivot	on x co	olumr	since	e it is	the c	only co	olumn			
		with a	negat	ive va	alue i	n the	obje	ctive	row	B1		For negative in objective row, top row, pay-
		10÷2	2 = 5		5 < 1	5 SO	pivot	on thi	s row	R1	[2]	Off row, or equivalent
	(iv)		2 = 15		 ງ.ງ					 	[4]	For dealing with the pivot row correctly
	(1V)	Newr	- 2 w 2 -	row	∠ ÷ ∠ 1 + n/	ew ro	w 2			B1	[2]	For dealing with the other rows correctly
		New	row 3 =	row	3 – 2	× nev	w row	/ 2			[-]	May be coded by rows of table
		1	0 -	0.5	4	0.5	5 0	5	1	M1		For updating their pivot row correctly
		0	1 -	2 5	1	0.5	5 0	5	1	M1		For a reasonable attempt at updating other
		0	0	5	1		1	20		A1	[3]	rows
		Ŭ	•	•	-			20	J			For correct values in tableau (condone
												follow through errors in initial tableau or pivot
												choice.
		x = 5,	<i>y</i> = 0,	<i>z</i> = 0						B1		For reading off <i>x</i> , <i>y</i> and <i>z</i> from their tableau
		<i>P</i> = 5								B1		For reading off <i>P</i> from their tableau
		Not th	ne max	imum	feasi	ble va	alue o	f P sir	nce	B1	[3]	'No' seen or implied and a correct reason
		there	IS Still a	a neg	ative	value	e in th	е				42
		onlec	uve ro	w								10

Mark Scheme 4737 June 2006

1	(i)	4+4+8+7+6 = 29 litres per second	B1 [1]	For 29
	(ii)	4-1-2+3+3+5 = 12 litres per second	M1 A1	For using upper and lower capacities correctly
		0 - 5 - 4 + 3 + 0 + 5 = -1	M1	For showing how 12 (given) was worked
		So minimum flow across cut is 0	A1	out
			[4]	For a substantially correct calculation For 0, from an appropriate calculation
	(iii)	Flow in arc $CE \ge 2$ and flow in arc $CF \ge 2$	M1	For any reasonable attempt (eg $CE = 2$,
		3,	A1	CF = 3)
		so at least 5 litres per second must flow		For correct reasoning
		into C	M1	
				For identifying \leq 4 in and \geq 3 out or
		At most 4 litres per second flow into A, of	A1	equivalent
		which at least 1 flows out to B and 2 flow	[4]	For a correct conclusion
		can flow along AD		
	(iv)	Either a diagram or a description of a	M1	For a flow of 11 litres per second from S
		flow of 11 litres per second.		to T
		Arcs AD, AE, BE, CE, CF must all be at	A1	
		their minimum capacities.	A1	Flow satisfies all lower capacities
			[3]	Flow satisfies all upper capacities
	(v)	11 <u><</u> maximum flow <u><</u> 12	B1	11 as lower bound
			101 101	12 as upper bound (max flow = $12 \Rightarrow$
			[4]	U, DI)
				14
		1		

2	(i)	The route for which the minimum weight						For identifying route minima
		on the route is greatest						For identifying what has been
							[4]	('maximised ('maximises the minimum' \Rightarrow B0 B1)
	(ii)	Ctago Ctat Action Marking Mavimin						
		Stage	e	Action	vvorking	Maximin	54	
			0	0		18	B1 B1	Stage and state columns completed
		1	1	0		15	[2]	Action column completed correctly
			2	0	min(16.18)	15		
				U	= 16	10	-	
			0	1	min(13,15) = 13		M1 A1	For calculating minima for stage 2 state 0 For maximin values identified (may be
		2		2	min(14,15) = 1 4		M1	implied from working seen for stage 3) For calculating minima for stage 2 state 1
				0	 min(19.18)	18	A1	For maximin values identified (may be
			1 1	÷	=18		M1	For calculating minima for stage 3 For maximin value identified (Forwards working scores M0, M0, M0)
				1	min(13,15)		A1	
				n	=13		[6]	
				2	= 15			
		3	0	0	min(20,16)	16	-	For first correct route
				4	=16		B1	For second correct route
				I	= 16		B1	For 16 tonnes (with units)
							[3]	
		Maximin routes: (3; 0) – (2; 0) – (1; 0) –						
		(0; 0)				. 0)		
		(3; 0) - (2; 1) - (1; 0) - (0; 0)			; 0) –			
		Maximum load = 16 tonnes						
	(iii)	i) 18 tonnes					B1	For 18
		(3; 0) -	- (2; 0) – (2; ′	1) – (1; 0) – (0;	0)	B1	For this route
							[2]	45

3	(i)	3	M1	For 3 (allow -3)
	()	Y	A1	For Y (cao)
			[2]	
	(ii)	5 > 3, -2 > -4, 5 > -1 and 6 > 0	M1	For an appropriate comparison, or implied
		or using signs of differences +2, +2, +6, +6	A1	For all four comparisons seen
			M1	For an appropriate comparison, or implied
		3 > -25 > -6. 1 > 0. 4 > 2	A1	For all four comparisons seen
		or equivalent, or using differences		
		Reduced matrix:		
		Colin's strategy $W X Y$ $A -1 4 -3$ $B 5 -2 5$ strategy $D -5 6 -4$	B1 [5]	For correct reduced matrix, with rows and columns labelled <i>A</i> , <i>B</i> , <i>D</i> and <i>W</i> , <i>X</i> , <i>Y</i> Cao
	(iii)	Row minima are -3, -2, -5		Follow through their 3×3 reduced matrix
	()	Play-safe for Rose is B	M1	For identifying row B
		,		
		Column maxima are 5, 6, 5		
		Play-safes for Colin are W and Y	M1	For identifying columns W and Y
		Not stable	A1	For 'no' or 'not stable'
	(l)		[3]	Fan (add 52 an anvivalant
	(17)	5 is added throughout the matrix to		For add 5 or equivalent
		In this augmented reduced matrix Q_{D_1} +		
		$3n_0 + 11n_0$ is the expected number of	A1	For identifying that this is when Colin
		points won by Rose when Colin plays	[2]	plays strategy X
		strategy X		
	(v)	$p_1 = \frac{7}{48}, p_2 = \frac{27}{48}, p_3 = \frac{14}{48}$		
		$\Rightarrow m < \frac{298}{49}$ (or $6\frac{5}{24}, 6.2083, 6.21$)		
		in all three cases	IVIT	For altempting to evaluate m
		$\Rightarrow M = \frac{58}{29} (\text{or } \frac{29}{5} \frac{5}{5} 2083 21)$	Δ1	cao (in any appropriate form)
		48 (01 24, 1 24, 1 2000, 1.21)	[2]	
			[-]	14

4 (i)					ANSWERED ON INSERT
()	Activity	Duration	Immediate		
			predecessors		
	A	6	-	B1	For predecessors for activities A, B and
	В	4	-		C correct
	С	5	Α		
	D	1	A, B	B1	
	Е	5	A, D		For predecessors for activities <i>D</i> , <i>F</i>
	F	4	D	D 4	and, G correct
	G	2	C, E, F	B.1	
				[3]	For predecessors for activity E correct
/ii)					T of predecessors for activity L correct
(")		6 6	<u>C</u>		
		` *		M1	For carrying out forward pass (no more
	0-10		E.		than one independent error)
12	12	¥ •		• A1	For all early event times correct
<u> </u>		7	17		
G				N/1	For corruing out backwards pass (po
		`` ►	—		more than one independent error)
14	14			Δ1	For all late event times correct
	<u> </u>		~	-	
	Minimum o	completion ti	me = 14 hours		
	Critical act	tivities: A, D ,	<i>E</i> , <i>G</i>	B1	For 14 cao
				B1	For A, D, E, G only cao
				[6]	
(iii)	Increased	by 2 (hours)	B1	For stating that time increases by 2, or
	Becomes	16 (hours)		[1]	equivalent
(iv)	Worker	<u> </u>		B1	For a resource histogram with no
					overnanging cells
	4			M1	For a reasonable attempt, ft their start
	2	┥╎┢┩╎			times if possible
					For a completely correct histogram (cao)
		4 6	8 10 12	14	
	16		14	B1	For 3 or follow through their histogram if
	hours	· · · · · · · · · · · · · · · · · · ·		[4]	possible
	Number of	r workers rec	juired = 3		
					14

5	(i)			ANSWERED ON INSERT
U	(')	A ••		
		$\int \int $	M1	For a substantially correct attempt
			A 1	For a completely correct bipartite graph
				For a completely correct bipartile graph
			[2]	
		М 🖌 🍗		
	(ii)	C-N E-M F-K	M1	For pairing $F - K$, $C - N$, $E - M$
		A-J B-L D-O	A1	For all correct (Diagram only \oplus M1, A0)
			[2]	
	(iii)			
	. ,	J K L M N O		
		A 2 5 2 2 5 2	B1	For '5' in all the entries that should be 5
		B 2 5 2 0 5 5		
		C 5 0 5 5 2 2	B1	For '2' in all the entries that should be 2
		D 2 5 0 5 5 2		
		F 5 2 5 2 0 5	B1	For '0' in all the entries that should be 0
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	[3]	
	(iv)	Reduce rows		
	(1*)			
			M1	For a substantially correct attempt from
				their matrix
			Δ1	For a correct reduction of rows and
			/\l	columns (or columns and rows) for their
				matrix
		Columns are already reduced		
		Or reduce columns		
		Rows are already reduced	M1	
				For achieving a reduced cost matrix with
		Cannot cross out 0's using fewer than 6		a complete matching of zero cost
		lines so matching is complete	A1	(without uppecessary augmenting)
			B1	O's in correct cells (not ft)
		F_0	B1	For this matching or ft their reduced cost
				matrix
			B1	For this matching or ft their reduced cost
			B1	matrix
		First matching: Fred and Jenny	[8]	
		Second matching: Jenny and Olivia		For the names for their first matching
				For the names for their second matching

4737	Mark Scheme	June 2006		
	15			

Advanced GCE Mathematics (3890, 3892, 7890) June 2006 Assessment Series

Unit Threshold Marks

Unit		Maximum Mark	а	b	с	d	e	u
4721	Raw	72	56	48	40	33	26	0
	UMS	100	80	70	60	50	40	0
4722	Raw	72	53	45	37	29	22	0
	UMS	100	80	70	60	50	40	0
4723	Raw	72	57	49	42	35	28	0
	UMS	100	80	70	60	50	40	0
4724	Raw	72	60	52	44	37	30	0
	UMS	100	80	70	60	50	40	0
4725	Raw	72	60	52	44	37	30	0
	UMS	100	80	70	60	50	40	0
4726	Raw	72	54	47	40	33	27	0
	UMS	100	80	70	60	50	40	0
4727	Raw	72	50	43	37	31	25	0
	UMS	100	80	70	60	50	40	0
4728	Raw	72	58	50	42	35	28	0
	UMS	100	80	70	60	50	40	0
4729	Raw	72	59	51	43	36	29	0
	UMS	100	80	70	60	50	40	0
4730	Raw	72	58	50	43	36	29	0
	UMS	100	80	70	60	50	40	0
4731	Raw	72	51	44	37	30	23	0
	UMS	100	80	70	60	50	40	0
4732	Raw	72	56	49	42	35	29	0
	UMS	100	80	70	60	50	40	0
4733	Raw	72	52	44	36	29	22	0
	UMS	100	80	70	60	50	40	0
4734	Raw	72	57	49	42	35	28	0
	UMS	100	80	70	60	50	40	0
4735	Raw	72	54	47	40	33	27	0
	UMS	100	80	70	60	50	40	0
4736	Raw	72	61	53	46	39	32	0
	UMS	100	80	70	60	50	40	0

4737	Raw	72	61	53	45	38	31	0
	UMS	100	80	70	60	50	40	0

Specification Aggregation Results

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

	Maximum Mark	Α	В	С	D	E	U
3890	300	240	210	180	150	120	0
3891	300	240	210	180	150	120	0
3892	300	240	210	180	150	120	0
7890	600	480	420	360	300	240	0
7891	600	480	420	360	300	240	0
7892	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
3890	31.0	46.3	61.2	73.5	84.2	100	12438
3891	0	0	0	100	100	100	1
3892	60.6	76.8	89.2	95.3	97.6	100	1109
7890	46.9	67.7	81.9	91.5	97.6	100	9525
7891	50.0	75.0	87.5	87.5	100	100	8
7892	59.9	80.2	89.4	95.5	98.6	100	1428

For a description of how UMS marks are calculated see; www.ocr.org.uk/OCR/WebSite/docroot/understand/ums.jsp

Statistics are correct at the time of publication

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Information Bureau

(General Qualifications)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: helpdesk@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

