Mathematics

Advanced GCE A2 7890-2

Mark Schemes for the Units

June 2006

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2006
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annersley
NOTTINGHAM
NG15 0DL
Telephone: 08708706622
Facsimile: 08708706621
E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Mathematics (7890) Advanced GCE Pure Mathematics (7891) Advanced GCE Further Mathematics (7892)

Advanced Subsidiary GCE Mathematics (3890) Advanced Subsidiary GCE Pure Mathematics (3891) Advanced Subsidiary GCE Further Mathematics (3892)

MARK SCHEME ON THE UNITS

Unit	Content	Page
4721	Core Mathematics 1	1
4722	Core Mathematics 2	7
4723	Core Mathematics 3	13
4724	Core Mathematics 4	19
4725	Further Pure Mathematics 1	25
4726	Further Pure Mathematics 2	31
4727	Further Pure Mathematics 3	35
4728	Mechanics 1	41
4729	Mechanics 2	47
4730	Mechanics 3	51
4731	Mechanics 4	57
4732	Probability \& Statistics 1	65
4733	Probability \& Statistics 2	71
4734	Probability \& Statistics 3	75
4735	Probability \& Statistics 4	79
4736	Decision Mathematics 1	83
4737	Decision Mathematics 2	89
$*$	Grade Thresholds	97

Mark Scheme 4721 June 2006

\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 \& \begin{tabular}{l}
(i) \\
(ii)
\end{tabular} \& \[
\frac{21-3}{4-1}=\frac{18}{3}=6
\]
\[
\begin{aligned}
\& \frac{\mathrm{d} y}{\mathrm{~d} x}=2 x+1 \\
\& 2 \times 3+1=7
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
B1 \\
B1
\end{tabular} \& \[
2
\]
\[
2
\] \& Uses \(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\) 6 (not left as \(\frac{18}{3}\)) \\
\hline 2 \& \begin{tabular}{l}
(i) \\
(ii) \\
(iii)
\end{tabular} \& \[
\begin{aligned}
\& 27^{-\frac{2}{3}}=\frac{1}{27^{\frac{2}{3}}}=\frac{1}{9} \\
\& \begin{aligned}
\& 5 \sqrt{5}=5^{\frac{3}{2}} \\
\& \begin{aligned}
\frac{1-\sqrt{5}}{3+\sqrt{5}} \& =\frac{(1-\sqrt{5})(3-\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})} \\
\& =\frac{8-4 \sqrt{5}}{4} \\
\& =2-\sqrt{5}
\end{aligned}
\end{aligned} . \begin{array}{l}
\end{array} \\
\&
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
B1 \\
M1 \\
B1 \\
A1
\end{tabular} \& 2
1

3 \& | $\frac{1}{27^{\frac{2}{3}}}$ or $27^{\frac{2}{3}}=9$ or 3^{-2} soi $\frac{1}{9}$ |
| :--- |
| Multiply numerator and denominator by conjugate $\begin{aligned} & (\sqrt{5})^{2}=5 \text { soi } \\ & 2-\sqrt{5} \end{aligned}$ |

\hline 3 \& (i) \& $$
\begin{aligned}
2 x^{2}+12 x+13 & =2\left(x^{2}+6 x\right)+13 \\
& =2\left[(x+3)^{2}-9\right]+13 \\
& =2(x+3)^{2}-5
\end{aligned}
$$

\[
$$
\begin{aligned}
& 2(x+3)^{2}-5=0 \\
& (x+3)^{2}=\frac{5}{2} \\
& x=-3 \pm \sqrt{\frac{5}{2}}
\end{aligned}
$$

\] \& | B1 |
| :--- |
| M1 |
| A1 |
| M1 |
| A1 |
| A1 | \& 4 \& | $\begin{aligned} & a=2 \\ & b=3 \\ & 13-2 b^{2} \text { or } 13-b^{2} \text { or } \frac{13}{2}-b^{2} \text { (their } b \text {) } \\ & c=-5 \end{aligned}$ |
| :--- |
| Uses correct quadratic formula or completing square method $\begin{aligned} & x=\frac{-12 \pm \sqrt{40}}{4} \text { or }(x+3)^{2}=\frac{5}{2} \\ & x=-3 \pm \sqrt{\frac{5}{2}} \text { or }-3 \pm \frac{1}{2} \sqrt{10} \end{aligned}$ |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline 4 \& \begin{tabular}{l}
(i) \\
(ii) \\
(iii)
\end{tabular} \& \[
\begin{aligned}
\& (x-4)(x-3)(x+1) \\
\& \equiv\left(x^{2}-7 x+12\right)(x+1) \\
\& \equiv x^{3}+x^{2}-7 x^{2}-7 x+12 x+12 \\
\& \equiv x^{3}-6 x^{2}+5 x+12
\end{aligned}
\]
 \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
B1 \\
B1 \\
B1 \\
M1 \\
A1 \(\sqrt{ }\)
\end{tabular} \& 3

3

2 \& | $x^{2}-7 x+12 \text { or } x^{2}-2 x-3 \text { or } x^{2}-3 x-4 \text { seen }$ |
| :--- |
| Attempt to multiply a quadratic by a linear factor or attempt to list an 8 term expansion of all 3 brackets $x^{3}-6 x^{2}+5 x+12$ (AG) obtained (no wrong working seen) |
| +ve cubic with 3 roots (not 3 line segments) |
| $(0,12)$ labelled or indicated on y-axis |
| $(-1,0),(3,0),(4,0)$ labelled or indicated on x-axis |
| Reflect their (ii) in either x - or y-axis |
| Reflect their (ii) in x-axis |

\hline 5 \& (i) \& $$
\begin{aligned}
& 1<4 x-9<5 \\
& 10<4 x<14 \\
& 2.5<x<3.5 \\
& \\
& y^{2} \geq 4 y+5 \\
& y^{2}-4 y-5 \geq 0 \\
& (y-5)(y+1) \geq 0 \\
& y \leq-1, y \geq 5
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 } \\
& \text { A1 } \\
& \text { B1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& 3 \& | 2 equations or inequalities both dealing with all 3 terms |
| :--- |
| 2.5 and 3.5 seen oe |
| $2.5<x<3.5 \quad$ (or ' $x>2.5$ and $x<3.5$ ') $y^{2}-4 y-5=0 \text { soi }$ |
| Correct method to solve quadratic $-1,5$ |
| (SR If both values obtained from trial and improvement, award B3) |
| Correct method to solve inequality $y \leq-1, y \geq 5$ |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline 6 \& (i)

(ii)

(iii) \& \begin{tabular}{l}
$$
x^{4}-10 x^{2}+25=0
$$

Let $y=x^{2}$
$$
\begin{aligned}
& y^{2}-10 y+25=0 \\
& (y-5)^{2}=0 \\
& y=5 \\
& x^{2}=5 \\
& x= \pm \sqrt{5}
\end{aligned}
$$
$$
y=\frac{2 x^{5}}{5}-\frac{20 x^{3}}{3}+50 x+3
$$
$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x^{4}-20 x^{2}+50
$$
$$
\begin{aligned}
& 2 x^{4}-20 x^{2}+50=0 \\
& x^{4}-10 x^{2}+25=0
\end{aligned}
$$

which has 2 roots

 \&

*M1

dep*M1

A1

A1

B1

B1

M1

A1

 \& 4 \&

Use a substitution to obtain a quadratic or $\left(x^{2}-5\right)\left(x^{2}-5\right)=0$

Correct method to solve a quadratic

5 (not $x=5$ with no subsequent working)

$$
x= \pm \sqrt{5}
$$

$2 x^{4}$ or $-20 x^{2}$ oe seen

$2 x^{4}-20 x^{2}+50$ (integers required)

their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ seen (or implied by correct answer)

2 stationary points www in any part
\end{tabular}

\hline 7 \& (i) \& \[
$$
\begin{aligned}
& y=x^{2}-5 x+4 \\
& y=x-1 \\
& x^{2}-5 x+4=x-1 \\
& x^{2}-6 x+5=0 \\
& (x-1)(x-5)=0 \\
& x=1 \quad x=5 \\
& y=0 \quad y=4
\end{aligned}
$$

\] \& | M1 |
| :--- |
| M1 |
| A1 |
| A1 | \& 4 \& | Substitute to find an equation in x (or y) |
| :--- |
| Correct method to solve quadratic $\begin{aligned} & x=1,5 \\ & y=0,4 \end{aligned}$ |
| (N.B. This final A1 may be awarded in part (ii) if y coordinates only seen in part (ii)) |
| SR one correct (x, y) pair www |

\hline \& | (ii) |
| :--- |
| (iii) | \& | 2 points of intersection |
| :--- |
| EITHER $\begin{aligned} & x^{2}-5 x+4=x+c \text { has } 1 \text { solution } \\ & x^{2}-6 x+(4-c)=0 \\ & b^{2}-4 a c=0 \\ & 36-4(4-c)=0 \\ & c=-5 \end{aligned}$ |
| OR $\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=1=2 x-5 \\ & x=3 \quad y=-2 \\ & -2=3+c \\ & c=-5 \end{aligned}$ | \& | B1 |
| :--- |
| M1 |
| M1 |
| A1 |
| A1 |
| M1 |
| A1 |
| A1 |
| A1 | \& 1

4

4 \& | $\begin{aligned} & x^{2}-5 x+4=x+c \text { has } 1 \text { soln seen or } \\ & \text { implied } \\ & \text { Discriminant }=0 \quad \text { or }(x-a)^{2}=0 \text { soi } \\ & 36-4(4-c)=0 \text { or } 9=4-c \\ & c=-5 \end{aligned}$ |
| :--- |
| Algebraic expression for gradient of curve = non-zero gradient of line used $2 x-5=1$ $x=3$ $c=-5$ |
| SR $c=-5$ without any working |

\hline
\end{tabular}

8	(i) (ii) (iii) ($\begin{aligned} & \text { Height of box }=\frac{8}{x^{2}} \\ & \begin{array}{l} 4 \text { vertical faces }=4 \times \frac{8}{x} \\ \\ =\frac{32}{x} \\ \text { Total surface area }=x^{2}+x^{2}+\frac{32}{x} \\ A=2 x^{2}+\frac{32}{x} \\ \frac{\mathrm{~d} A}{\mathrm{~d} x}=4 x-\frac{32}{x^{2}} \\ 4 x-\frac{32}{x^{2}}=0 \\ 4 x^{3}=32 \\ x=2 \end{array} \end{aligned}$	B1 dep on both ** B1 B1 B1 M1 A1 M1 A1	3	$\begin{aligned} \text { Area of } 1 \text { vertical face } & =\frac{8}{x^{2}} \times x \\ & =\frac{8}{x} \end{aligned}$ Correct final expression $4 x$ $k x^{-2}$ $-32 x^{-2}$ $\frac{\mathrm{d} A}{\mathrm{~d} x}=0 \quad \text { soi }$ $x=2$ Check for minimum Correctly justified SR If $x=2$ stated $\mathbf{w w w}$ but with no evidence of differentiated expression(s) having been used in part (iii) B1

9	(i)	$\left(\frac{4+10}{2}, \frac{-2+6}{2}\right)$	M1 A1	2	Uses $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
		$(7,2)$		2	$(7,2) \quad$ (integers required)
	(ii)	$\sqrt{(7-4)^{2}+(2--2)^{2}}$	M1		Uses $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
		$\begin{aligned} & =\sqrt{3^{2}}+4^{2} \\ & =5 \end{aligned}$	A1	2	5
	(iii)	$(x-7)^{2}+(y-2)^{2}=25$	$\mathrm{B} 1 \sqrt{ }$ $\mathrm{B} 1 \sqrt{ }$		$(x-7)^{2}$ and $(y-2)^{2}$ used (their centre)
					$r^{2}=25$ used (their r^{2})
			B1	3	$(x-7)^{2}+(y-2)^{2}=25$ cao
					Expanded form: $-14 x$ and $-4 y$ used $r=\sqrt{g^{2}}+f^{2}-c$ used $\sqrt{ }$ $x^{2}+y^{2}-14 x-4 y+28=0$ B1 $\sqrt{ }$ B1 cao
					By using ends of diameter: $(x-4)(x-10)+(y+2)(y-6)=0$ Both x brackets correct B1 $\begin{array}{ll}\text { Both } y \text { brackets correct } & \text { B1 } \\ \text { Final equation fully correct } & \text { B1 }\end{array}$
	(iv)	Gradient of $A B=\frac{6--2}{10-4}=\frac{4}{3}$	B1		oe
		$\text { Gradient of tangent }=-\frac{3}{4}$	B1 $\sqrt{ }$		
			M1		Correct equation of straight line through A, any non-zero gradient
		$y--2=-\frac{3}{4}(x-4)$	A1		
		$3 x+4 y=4$	A1	5	a, b, c need not be integers

Mark Scheme 4722 June 2006

1		$(3 x-2)^{4}=81 x^{4}-216 x^{3}+216 x^{2}-96 x+16$	$\begin{aligned} & \hline \text { M1 } \\ & \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	4	Attempt binomial expansion, including attempt at coeffs. Obtain one correct, simplified, term Obtain a further two, simplified, terms Obtain a completely correct expansion
2	(i)	$u_{2}=-1, u_{3}=2, u_{4}=-1$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	2	For correct value -1 for u_{2} For correct values for both u_{3} and u_{4}
	(ii)	Sum is $(2+(-1))+(2+(-1))+\ldots+(2+(-1))$ i.e. $50 \times(2+(-1))=50$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	5	For correct interpretation of Σ notation For pairing, or $50 \times 2-50 \times 1$ For correct answer 50
3		$y=4 x^{\frac{1}{2}}+c$ Hence $5=4 \times 4^{\frac{1}{2}}+c \Rightarrow c=-3$ So equation of the curve is $y=4 x^{\frac{1}{2}}-3$	M1 A1 A1 M1 A1 $\sqrt{ }$ A1	6	For attempt to integrate For integral of the form $k x^{\frac{1}{2}}$ For $4 x^{\frac{1}{2}}$, with or without $+c$ For relevant use of $(4,5)$ to evaluate c For correct value -3 (or follow through on integral of form $k x^{\frac{1}{2}}$) For correct statement of the equation in full (aef)
4	(i)	Intersect where $x^{2}+x-2=0 \Rightarrow x=-2,1$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	For finding x at both intersections For both values correct
	(ii)	Area under curve is $\left[4 x-\frac{1}{3} x^{3}\right]_{-2}^{1}$ i.e. $\left(4-\frac{1}{3}\right)-\left(-8+\frac{8}{3}\right)=9$ Area of triangle is $41 / 2$ Hence shaded area is $9-4 \frac{1}{2}=41 / 2$ OR Area under curve is $\int_{-2}^{1}\left(2-x-x^{2}\right) d x$ $\begin{aligned} & =\left[-\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+2 x\right]_{-2}^{1} \\ & =\left(-\frac{1}{3}-\frac{1}{2}+2\right)-\left(\frac{8}{3}-2-4\right) \\ & =4 \frac{1}{2} \end{aligned}$	M1 M1 A1 M1 A1 A1 M1 M1 A1 M1 A1 A1	8	For integration attempt with any one term correct For use of limits - subtraction and correct order For correct area of 9 Attempt area of triangle ($1 / 2$ bh or integration) Obtain area of triangle as $41 / 2$ Obtain correct final area of $41 / 2$ Attempt subtraction - either order For integration attempt with any one term correct Obtain $\pm\left[-\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+2 x\right]$ For use of limits - subtraction and correct order Obtain $\pm 41 / 2$ - consistent with their order of subtraction Obtain $41 / 2$ only, following correct method only

5	(i)	$\begin{aligned} & \sin ^{2} x=1-\cos ^{2} x \Rightarrow 2 \cos ^{2} x+\cos x-1=0 \\ & \text { Hence }(2 \cos x-1)(\cos x+1)=0 \\ & \cos x=\frac{1}{2} \Rightarrow x=60^{\circ} \\ & \cos x=-1 \Rightarrow x=180^{\circ} \end{aligned}$	M1 M1 A1 A1	4	For transforming to a quadratic in $\cos x$ For solution of a quadratic in $\cos x$ For correct answer 60° For correct answer 180° [Max 3 out of 4 if any extra answers present in range, or in radians] $\mathbf{S R}$ answer only is B1, B1 justification - ie graph or substitution is B2, B2
	(ii)	```\(\tan 2 x=-1 \Rightarrow 2 x=135\) or 315 Hence \(x=67.5^{\circ}\) or \(157.5^{\circ}\) OR \(\sin ^{2} 2 x=\cos ^{2} 2 x\) \(2 \sin ^{2} 2 x=1 \quad 2 \cos ^{2} 2 x=1\) \(\sin 2 x= \pm \frac{1}{2} \sqrt{2} \quad \cos 2 x= \pm \frac{1}{2} \sqrt{2}\) Hence \(x=67.5^{\circ}\) or \(157.5^{\circ}\)```	M1 M1 A1 A1 M1 M1 A1 A1	4	For transforming to an equation of form $\tan 2 x=k$ For correct solution method, i.e. inverse \tan followed by division by 2 For correct value 67.5 For correct value 157.5 Obtain linear equation in $\cos 2 x$ or $\sin 2 x$ Use correct solution method For correct value 67.5 For correct value 157.5 [Max 3 out of 4 if any extra answers present in range, or in radians] $\mathbf{S R}$ answer only is B1, B1 justification - ie graph or substitution is B2,
				8	
6	(i)	(a) $100+239 \times 5=£ 1295$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	For relevant use of $a+(n-1) d$ For correct value 1295
		(b) $\frac{1}{2} \times 240 \times(100+1295)=£ 167400$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	2	For relevant use of $\frac{1}{2} n(a+l)$ or equivalent For correct value 167400
	(ii)	$100 r^{239}=1500 \Rightarrow r=1.01139 \ldots$ Hence total is $\frac{100\left(1.01139^{240}-1\right)}{1.01139-1}=£ 124359$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	5	For correct statement of $100 r^{239}=1500$ Attempt to find r For correct value 1.01 For relevant use of GP sum formula For correct value 124359 (3 s.f. or better)
				9	

Mark Scheme 4723 June 2006

1 Differentiate to obtain $k(4 x+1)^{-\frac{1}{2}}$
Obtain $2(4 x+1)^{-\frac{1}{2}}$
Obtain $\frac{2}{3}$ for value of first derivative
Attempt equation of tangent through $(2,3)$

Obtain $y=\frac{2}{3} x+\frac{5}{3}$ or $2 x-3 y+5=0$
2
Either: Attempt to square both sides
Obtain $3 x^{2}-14 x+8=0$
Obtain correct values $\frac{2}{3}$ and 4
Attempt valid method for solving inequality
Obtain $\frac{2}{3}<x<4$

Or: Attempt solution of two linear equations or inequalities

Obtain value $\frac{2}{3}$
Obtain value 4
Attempt valid method for solving inequality
Obtain $\frac{2}{3}<x<4$

A1
B1
M1 implied by correct answer or plausible incorrect answer
M1 any non-zero constant k
A1 or equiv, perhaps unsimplified
A1 or unsimplified equiv
M1 using numerical value of first derivative provided derivative is of form $k^{\prime}(4 x+1)^{n}$
A1 5 or equiv involving 3 terms

M1 producing 3 terms on each side
A1 or inequality involving < or >
A1
M1 implied by correct answer or plausible incorrect answer
A1 5 or correctly expressed equiv;
allow \leq signs

M1 one eqn with signs of $2 x$ and x the same, second eqn with signs different

A1 (5) or correctly expressed equiv; allow \leq signs

3 (i) Attempt evaluation of cubic expression at 2 and 3
Obtain -11 and 31
Conclude by noting change of sign
(ii) Obtain correct first iterate

Attempt correct process to obtain at least 3 iterates Obtain 2.34

M1
A1
A1 $\sqrt{ } 3$ or equiv; following any calculated values provided negative then positive

A1 3 answer required to 2 d.p. exactly; $2 \rightarrow 2.3811 \rightarrow 2.3354 \rightarrow 2.3410$; $2.5 \rightarrow 2.3208 \rightarrow 2.3428 \rightarrow 2.3401$; $3 \rightarrow 2.2572 \rightarrow 2.3505 \rightarrow 2.3392$

4 (i) State $\ln y=(x-1) \ln 5$
Obtain $x=1+\frac{\ln y}{\ln 5}$
(ii) Differentiate to obtain single term of form $\frac{k}{y} \mathbf{M} 1$

Obtain $\frac{1}{y \ln 5}$
(iii) Substitute for y and attempt reciprocal

Obtain $25 \ln 5$

5 (i) State $\sin 2 \theta=2 \sin \theta \cos \theta$
(ii) Attempt to find exact value of $\cos \alpha$

Obtain $\frac{1}{4} \sqrt{15}$
Substitute to confirm $\frac{1}{8} \sqrt{15}$
(iii) State or imply $\sec \beta=\frac{1}{\cos \beta}$

Use identity to produce equation involving $\sin \beta$
Obtain $\sin \beta=0.3$ and hence 17.5

B1 whether following $\ln y=\ln 5^{x-1}$ or not; brackets needed
B1 2 AG; correct working needed; missing brackets maybe now implied
any constant k
A1 2 or equiv involving y
M1 or equiv method for finding derivative without using part (ii)

A1 2 or exact equiv

B1 1 or equiv; any letter acceptable here (and in parts (ii) and (iii))

M1 using identity attempt or rightangled triangle
A1 or exact equiv
A1 3 AG

B1
M1
A1 3 and no other values between 0 and 90; allow 17.4 or value rounding to 17.4 or 17.5

6

6 (i) Either: Obtain $\mathrm{f}(-3)=-7$	
	Show correct process for compn of function Obtain -47
	Or: Show correct process for compn of function Obtain $2-\left(2-x^{2}\right)^{2}$
	Obtain -47
(ii)	Attempt correct process for finding inverse
	Obtain either one of $x= \pm \sqrt{2-y}$ or both
	Obtain correct $-\sqrt{2-x}$
(iii)	Draw graph showing attempt at reflection in $y=x$ Draw (more or less) correct graph
	Indicate coordinates 2 and $-\sqrt{2}$

7 (a) Obtain integral of form $k(4 x-1)^{-1}$
M1 any non-zero constant k

Obtain $-\frac{1}{2}(4 x-1)^{-1}$
Substitute limits and attempt evaluation

Obtain $\frac{2}{21}$
(b) Integrate to obtain $\ln x$

Substitute limits to obtain $\ln 2 a-\ln a$
Subtract integral attempt from attempt at area of appropriate rectangle
Obtain 1 - ($\ln 2 a-\ln a)$
Show at least one relevant logarithm property
Obtain $1-\ln 2$ and hence $\ln \left(\frac{1}{2} \mathrm{e}\right)$

A1 or equiv; allow +c
M1 for any expression of form $k^{\prime}(4 x-1)^{n}$
A1 4 or exact equiv
B1
B1
M1 or equiv
A1 or equiv
M1 at any stage of solution
A1 6 AG; full detail required

8 (i) State $R=13$
State at least one equation of form $R \cos \alpha=k$, $R \sin \alpha=k^{\prime}, \tan \alpha=k^{\prime \prime}$

Obtain 67.4
(ii) Refer to translation and stretch

State translation in positive x direction by 67.4
State stretch in y direction by factor 13
(iii) Attempt value of $\cos ^{-1}(2 \div R)$

Obtain 81.15
Obtain 148.5 as one solution
Add their α value to second value correctly attempted
Obtain 346.2

B1 or equiv
M1 or equiv; allow sin / cos muddles; implied by correct α
A1 3 allow 67 or greater accuracy
M1 in either order; allow here equiv terms such as 'move', 'shift'; with both transformations involving constants
A1 $\sqrt{ }$ or equiv; following their α, using correct terminology now
A1 $\sqrt{ } 3$ or equiv; following their R; using correct terminology now

M1
A1 $\sqrt{ }$ following their R; accept 81
A1 accept 148.5 or 148.6 or value rounding to either of these

M1
A1 5 accept 346.2 or 346.3 or value rounding to either of these; and no other solutions

9 (i) Attempt to express x in terms of y
*M1 obtaining two terms

Obtain $x=\mathrm{e}^{\frac{1}{2} y}+1$
State or imply volume involves $\int \pi x^{2}$
Attempt to express x^{2} in terms of y
Obtain $k \int\left(\mathrm{e}^{y}+2 \mathrm{e}^{\frac{1}{2} y}+1\right) \mathrm{d} y$
Integrate to obtain $k\left(\mathrm{e}^{y}+4 \mathrm{e}^{\frac{1}{2} y}+y\right)$
Use limits 0 and p
Obtain $\pi\left(\mathrm{e}^{p}+4 \mathrm{e}^{\frac{1}{2} p}+p-5\right)$
(ii) State or imply $\frac{\mathrm{d} p}{\mathrm{~d} t}=0.2$

Obtain $\pi\left(\mathrm{e}^{p}+2 \mathrm{e}^{\frac{1}{2} p}+1\right)$ as derivative of V
Attempt multiplication of values or expressions

$$
\text { for } \frac{\mathrm{d} p}{\mathrm{~d} t} \text { and } \frac{\mathrm{d} V}{\mathrm{~d} p}
$$

Obtain $0.2 \pi\left(\mathrm{e}^{4}+2 \mathrm{e}^{2}+1\right)$
Obtain 44

A1 or equiv
B1
*M1 dep *M; expanding to produce at least 3 terms

A1 any constant k including 1 ; allow if $d y$ absent

A1

M1 dep *M *M; evidence of use of 0 needed

A1 8 AG; necessary detail required

B1 maybe implied by use of 0.2 in product
B1

M1
A1 $\sqrt{ }$ following their $\frac{d V}{d p}$ expression
A1 5 or greater accuracy

Mark Scheme 4724
June 2006
$1 \quad \frac{\mathrm{~d}}{\mathrm{~d} x}(x y)=x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y$
$\frac{\mathrm{d}}{\mathrm{d} x}\left(y^{2}\right)=2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$
Substitute $(1,2)$ into their differentiated equation and attempt to solve for $\frac{\mathrm{d} y}{\mathrm{~d} x}$. [Allow subst of $\left.(2,1)\right]$ least $1 \times \mathbf{B} 1$ and then substitute $(1,2)$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-2$
2 (i) $1+(-2)(-3 x)+\frac{(-2)(-3)}{1.2}(-3 x)^{2}(+\ldots$ ignore $)$ $=1+6 x$
$\ldots+27 x^{2}$
(ii) $(1+2 x)^{2}(1-3 x)^{-2}$

Attempt to expand $(1+2 x)^{2} \&$ select (at least) 2 relevant products and add
55 (Accept 55 ${ }^{2}$)
SR 1 For expansion of $(1+2 x)^{2}$ with 1 error, A1 $\sqrt{ }$
SR 2 For expansion of $(1+2 x)^{2} \&>1$ error, A0
Alternative Method
For correct method idea of long division
$1 \ldots .+10 x \ldots \ldots+55 x^{2}$

B1 s.o.i. e.g. $2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y$
B1
M1 dep at Or attempt to solve their diff equation for $\frac{d y}{d x}$

A1 4

M1
B1
A1

M1
M1

A2 $\sqrt{ }$
4 If (i) is $a+b x+c x^{2}$, f.t. $4(a+b)+c$

$$
1 \ldots \ldots+10 x \ldots \ldots+55 x^{2}
$$

M1
A1,A1,A1(4)

3
(i) $\frac{A}{x}+\frac{B}{3-x} \& \mathrm{c}-\mathrm{u}$ rule or $A(3-x)+B x \equiv 3-2 x$
$\frac{1}{x}$
M1
Correct format + suitable method
A1 seen in (i) or (ii)
$-\frac{1}{3-x}$
(ii) $\int \frac{1}{x}(\mathrm{~d} x)=\ln x$ or $\ln |x|$

B1

$\int \frac{1}{3-x}(\mathrm{~d} x)=-\ln (3-x)$ or $-\ln |3-x|$
B1

Correct method idea of substitution of limits
M1
$\ln 2(+\ln 1-\ln 1)-\ln 2=0$
A1
Alternative Method
If ignoring PFs, $\ln x(3-x)$ immediately
As before

B2
M1,A1 (4)
(iii) Suitable statement or clear implication e.g.

Equal amounts (of area) above and below (axis)
or graph crosses axis or there's a root
B1 1
(Be lenient)

4 (i) Working out $\mathbf{b}-\mathbf{a}$ or $\mathbf{a}-\mathbf{b}$ or $\mathbf{c}-\mathbf{a}$ or $\mathbf{a}-\mathbf{c}$ $=\quad \pm(-3 \mathbf{i}-\mathbf{j}-\mathbf{k}) \quad$ or $\pm(-2 \mathbf{i}+\mathbf{j}-2 \mathbf{k})$
Method for finding magnitude of any vector
Method for finding scalar product of any 2 vectors
M1) Irrespective of label
A1) If not scored , these $1^{\text {st }} 3$ marks can be
M1) awarded in part (ii) M1 Using $\cos \theta=\frac{a . b}{|a||b|}$ AEF for $\underline{\text { any }} 2$ vectors M1
[Alternative cosine rule method $|\overrightarrow{B C}|=\sqrt{6}$
B1
Cosine rule used
'Recognisable' form
$45.3^{\circ}, 0.79(0), \frac{\pi}{3.97}$
(45.289378, 0.7904487)

A1
6 Do not accept supplement (134.7 etc)
(ii) Use of $\frac{1}{2}|\overrightarrow{A B}||\overrightarrow{A C}| \sin \theta$
$3.54(3.5355)$ or $\frac{5 \sqrt{2}}{2}$
M1
Accept $\left|\frac{1}{2} \overrightarrow{A B} \times \overrightarrow{A C}\right|$
A1
2 Accept from correct supp (134.7 etc)

5
(i) $\frac{\mathrm{d} A}{\mathrm{~d} t}$ or $k A^{2}$ seen $\frac{\mathrm{d} A}{\mathrm{~d} t}=k A^{2}$

M1
A1 2
(ii) Separate variables + attempt to integrate
*M1 Accept if based on $\frac{\mathrm{d} A}{\mathrm{~d} t}=k A^{2}$ or A^{2}
$-\frac{1}{A}=k t+c \quad$ or $\quad-\frac{1}{k A}=t+c \quad$ or $\quad-\frac{1}{A}=t+c$
Subst one of $(0,0),(1,1000)$ or $(2,2000)$ into eqn. dep*M1 Equation must contain k and/or c Subst another of $(0),,(1,1000)$ or $(2,2000)$ into eqn dep*M1 dep*M1 Substitute $A=3000$ into eqn with k and c subst
$t=\frac{7}{3} \quad$ ISW
A1 6 Accept 2.33, 2h 20 m
6 (i) Attempt to connect $\mathrm{d} u$ and $\mathrm{d} x$ e.g. $\frac{\mathrm{d} u}{\mathrm{~d} x}=\mathrm{e}^{x}$
Use of $\mathrm{e}^{2 x}=\left(\mathrm{e}^{x}\right)^{2}$ or $(u-1)^{2}$ s.o.i.
M1
A1
Simplification to $\int \frac{u-1}{u}(\mathrm{~d} u)$ WWW
A1 3 AG
(ii) Change $\frac{u-1}{u}$ to $1-\frac{1}{u}$ or use parts
$\int \frac{1}{u} \mathrm{~d} u=\ln u$
Either attempt to change limits or resubstitute
Show as $\mathrm{e}+1-\ln (\mathrm{e}+1)-\{2$ or $(1+1)\}+\ln 2$
WWW show final result as $\mathrm{e}-1-\ln \left(\frac{\mathrm{e}+1}{2}\right)$

A1 Seen anywhere in this part
M1 (indep) Expect new limits $\mathrm{e}+1 \& 2$ A1

A1 5 AG

7
(i) Produce at least 2 of the 3 relevant eqns in λ and μ Solve the 2 eqns in $\lambda \& \mu$ as far as $\lambda=\ldots$ or $\mu=\ldots$ M1 $1^{\text {st }}$ solution: $\lambda=-2$ or $\mu=3$ A1 $2^{\text {nd }}$ solution: $\mu=3$ or $\lambda=-2 \quad$ f.t. A1 $\sqrt{ }$ Substitute their λ and μ into $3^{\text {rd }}$ eqn and find ' a ' Obtain $a=2$ \& clearly state that a cannot be $2 \quad$ A1
(ii) Subst their λ or μ ($\&$ poss a) into either line eqn Point of intersection is $-5 \mathbf{i}-4 \mathbf{j}$
N.B. In this question, award marks irrespective of labelling of parts
(i) Integration method

Attempt to change $\cos ^{2} 6 x$ into $f(\cos 12 x)$

$$
\cos ^{2} 6 x=\frac{1}{2}(1+\cos 12 x)
$$

$$
\int=\frac{1}{2} x+\frac{1}{24} \sin 12 x+\mathrm{c}
$$

M1
A1
A1

Differentiation method
Differentiate RHS producing $\frac{1}{2}+\frac{1}{2} \cos 12 x--$ (E) B1
Attempt to change $\cos 12 x$ into $\mathrm{f}(\cos 6 x) \quad$ M1
Simplify (E) WWW to $\cos ^{2} 6 x+$ satis finish A1
e.g. $1+3 \lambda=-8+\mu,-2+\lambda=2-2 \mu$

6
A1

2 Accept any format
No f.t. here
with $\cos ^{2} 6 x$ as the subject of the formula
AG Accept $\frac{1}{2}\left(x+\frac{1}{12} \sin 12 x\right)$

$$
\rightarrow 12+12+1
$$

Accept $+/-2 \cos ^{2} 6 x+/-1$
(ii) Parts with $u=x, \mathrm{~d} v=\cos ^{2} 6 x$
$x\left(\frac{1}{2} x+\frac{1}{24} \sin 12 x\right)-\int\left(\frac{1}{2} x+\frac{1}{24} \sin 12 x\right) \mathrm{d} x$
*M1
$\int \sin 12 x d x=-\frac{1}{12} \cos 12 x$
Correct use of limits to whole integral
$\frac{\pi^{2}}{288}-\frac{\pi^{2}}{576}-\frac{1}{288}-\frac{1}{288}$
$\frac{\pi^{2}}{576}-\frac{1}{144}$
S.R. If final marks are A0 + A0, allow SR A1 for

A1 Correct expression only
B1 Clear indication somewhere in this part
dep*M1 Accept () (-0)
A1
+A1 6 Tolerate e.g. $\frac{2}{288}$ here
0.01/0.010/0.0101/0.0102/0.0101902

9
(i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} y}{\mathrm{~d} t}}{\frac{\mathrm{~d} x}{\mathrm{~d} t}}$

M1 Used, not just quoted
$\frac{\mathrm{d} x}{\mathrm{~d} t}=-4 \sin t \quad$ or $\quad \frac{\mathrm{d} y}{\mathrm{~d} t}=3 \cos t$
*B1
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{3 \cos t}{4 \sin t}$ or $\frac{3 \cos t}{-4 \sin t} \quad$ ISW
dep*A1 3 Also $\frac{-3 \cos t}{4 \sin t}$ provided B0 not awarded
SR: M1 for Cartesian eqn attempt +B 1 for $\frac{\mathrm{d}}{\mathrm{d} x}\left(y^{2}\right)=2 y \frac{\mathrm{~d} y}{\mathrm{~d} x} \quad+$ A1 as before(must be in terms of t)
(ii) $y-3 \sin p=\left(\right.$ their $\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right)(x-4 \cos p)$
or $y=\left(\right.$ their $\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right) x+\mathrm{c} \&$ subst cords to find c
M1 Accept p or t here
$4 y \sin p-12 \sin ^{2} p=-3 x \cos p+12 \cos ^{2} p$
A1 Correct equation cleared of fractions
or $\mathrm{c}=\frac{12 \sin ^{2} p+12 \cos ^{2} p}{4 \sin p}$
$3 x \cos p+4 y \sin p=12 \quad$ WWW
A1 3 AG Only p here. \quad Mixture earlier $\rightarrow \mathrm{A} 0$
(iii) Subst $x=0$ and $y=0$ separately in tangent eqn M1
to find $R \& S$
Produce $\frac{3}{\sin p}$ and $\frac{4}{\cos p}$
A1
Accept $\frac{12}{4 \sin p}$ and/or $\frac{12}{3 \cos p}$
Use $\Delta=\frac{1}{2}\left(\frac{3}{\sin p} \cdot \frac{4}{\cos p}\right)=\frac{12}{\sin 2 p}$
A1 3 AG
(iv) Least area $=12$
$p=\frac{1}{4} \pi$ as final or only answer
S.R. $45^{\circ} \rightarrow \mathrm{Bl}$;

B2
3 These B marks are independent.
S.R. [-12 and e.g. $-\pi / 4 \rightarrow \mathrm{Bl}$]

Mark Scheme 4725 June 2006

1.	i) $\left(\begin{array}{ll}7 & 4 \\ 0 & -1\end{array}\right)$ (ii) $\quad\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right)$ $k=3$	B1 B1 B1 B1	2 2 4	Two elements correct All four elements correct $\mathbf{A}-\mathbf{B}$ correctly found Find k
2	(i) (ii) $\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)$	M1 A1 B1 B1	2 2 4	For 2 other correct vertices For completely correct diagram Each column correct
3.	(i) $2+3 i$ (ii) $p=-4$ $q=13$	B1 M1 A1 M1 A1	1 4 5	Conjugate seen Attempt to sum roots or consider x terms in expansion or substitute $2-3 \mathrm{i}$ into equation and equate imaginary parts Correct answer Attempt at product of roots or consider last term in expansion or consider real parts Correct answer

\begin{tabular}{|c|c|c|c|c|}
\hline 4. \& \[
\begin{aligned}
\& \Sigma r^{3}+\Sigma r^{2} \\
\& \Sigma r^{2}=\frac{1}{6} n(n+1)(2 n+1) \\
\& \Sigma r^{3}=\frac{1}{4} n^{2}(n+1)^{2} \\
\& \frac{1}{12} n(n+1)(n+2)(3 n+1)
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
M1 \\
A1
\end{tabular} \& \& \begin{tabular}{l}
Consider the sum as two separate parts \\
Correct formula stated \\
Correct formula stated \\
Attempt to factorise and simplify or expand both expressions \\
Obtain given answer correctly or complete verification
\end{tabular} \\
\hline 5. \& \begin{tabular}{l}
(i) -7 i \\
(ii) \(2+3 i\)
\[
-5+12 i
\] \\
(iii) \(\frac{1}{5}(4-7 \mathrm{i})\) or equivalent
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1 \\
B1 \\
B1 \\
B1 \\
M1 \\
A1 \\
A1
\end{tabular} \& 2
3
3

3

8 \& | Real part correct Imaginary part correct |
| :--- |
| iz stated or implied or $\mathrm{i}^{2}=-1$ seen |
| Real part correct |
| Imaginary part correct |
| Multiply by conjugate |
| Real part correct |
| Imaginary part correct |
| N.B. Working must be shown |

\hline $6 .$. \& | (i) Circle, Centre O radius 2 |
| :--- |
| One straight line |
| Through O with + ve slope |
| In $1^{\text {st }}$ quadrant only |
| (ii) $1+\sqrt[i]{3}$ | \& | B1 B |
| :--- |
| B1 |
| B1 |
| B1 |
| M1 |
| A1 | \& 5

2

7 \& | Sketch showing correct features |
| :--- |
| Attempt to find intersections by trig, solving equations or from graph Correct answer stated as complex number |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 7. \& \begin{tabular}{l}
(i)
\[
\mathbf{A}^{2}=\left(\begin{array}{ll}
4 \& 0 \\
0 \& 1
\end{array}\right) \quad \mathbf{A}^{3}=\left(\begin{array}{ll}
8 \& 0 \\
0 \& 1
\end{array}\right)
\] \\
(ii) \(\quad \mathbf{A}^{\mathrm{n}}=\left(\begin{array}{ll}2^{n} \& 0 \\ 0 \& 1\end{array}\right)\) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
B1 \\
B1 \\
M1 \\
A1 \\
A1
\end{tabular} \& 3
1
1

4

8 \& | Attempt at matrix multiplication |
| :--- |
| Correct \mathbf{A}^{2} |
| Correct \mathbf{A}^{3} |
| Sensible conjecture made |
| State that conjecture is true for $n=1$ or 2 |
| Attempt to multiply \mathbf{A}^{n} and \mathbf{A} or vice versa |
| Obtain correct matrix |
| Statement of induction conclusion |

\hline 8. \& | (i) $\begin{gathered} a\left[\begin{array}{ll} a & 0 \\ 2 & 1 \end{array}\right]-4\left[\begin{array}{ll} 1 & 0 \\ 1 & 1 \end{array}\right]+2\left[\begin{array}{ll} 1 & a \\ 1 & 2 \end{array}\right] \\ a^{2}-2 a \end{gathered}$ |
| :--- |
| (ii) $a=0 \text { or } a=2$ |
| (iii) (a) |
| (b) | \& | M1 |
| :--- |
| A1 |
| A1 |
| M1 |
| A1A1ft |
| B1 B1 |
| B1 B1 | \& 3

3

4

10 \& | Correct expansion process shown |
| :--- |
| Obtain correct unsimplified expression |
| Obtain correct answer |
| Solve their $\operatorname{det} \mathbf{M}=0$ |
| Obtain correct answers |
| Solution, as inverse matrix exists or \mathbf{M} nonsingular or $\operatorname{det} \mathbf{M} \neq 0$ |
| Solutions, eqn. 1 is multiple of eqn 3 |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 10 \& \begin{tabular}{l}
\[
\begin{array}{ll}
\text { (i) } \alpha+\beta+\gamma=2 \& \alpha \beta \gamma=-4 \\
\alpha \beta+\beta \gamma+\gamma \alpha=3 \&
\end{array}
\] \\
(ii)
\[
\begin{aligned}
\& \alpha+1+\beta+1+\gamma+1=5 \\
\& p=-5
\end{aligned}
\] \\
(iii)
\[
q=-2
\]
\end{tabular} \& \begin{tabular}{l}
B1 B1 \\
B1 \\
M1 \\
A1ft \\
A1ft \\
M1* \\
A1 \\
DM1 \\
A1ft \\
A1ft \\
M2 \\
A1 \\
M1 \\
A2 \\
A1 A1
\end{tabular} \& 3

5
5

11 \& | Write down correct values |
| :--- |
| Sum new roots |
| Obtain numeric value using their (i) |
| p is negative of their answer |
| Expand three brackets $\alpha \beta \gamma+\alpha \beta+\beta \gamma+\gamma \alpha+\alpha+\beta+\gamma+1$ |
| Use their (i) results |
| Obtain 2 |
| q is negative of their answer |
| Alternative for (ii) \& (iii) |
| Substitute $x=u-1$ in given equation |
| Obtain correct unsimplified equation for u |
| Expand |
| Obtain $u^{3}-5 u^{2}+10 u-2=0$ |
| State correct values of p and q. |

\hline
\end{tabular}

Mark Scheme 4726 June 2006

1 Correct expansion of $\sin x$ Multiply their expansion by $(1+x)$
Obtain $x+x^{2}-x^{3} / 6$

2 (i) Get $\sec ^{2} y \frac{d y}{d x}=1$ or equivalent
Clearly use $1+\tan ^{2} y=\sec ^{2} y$
Clearly arrive at A.G.
(ii) Reasonable attempt to diff. to $\frac{-2 x}{\left(1+x^{2}\right)^{2}}$

Substitute their expressions into D.E. Clearly arrive at A.G.

3 (i) State $y=0$ (or seen if working given)
(ii) Write as quad. in x^{2}

Use for real $x, b^{2}-4 a c \geq 0$
Produce quad. inequality in y
Attempt to solve inequality Justify A.G.

4 (i) Correct definition of $\cosh x$ or $\cosh 2 x$ Attempt to sub. in RHS and simplify Clearly produce A.G.
(ii) Write as quadratic in $\cosh x$

Solve their quadratic accurately
Justify one answer only
Give $\ln (4+\sqrt{ } 15)$

5 (i)
Get $(t+1 / 2)^{2}+3 / 4$
(ii) Derive or quote $\mathrm{d} x=\frac{2}{1+t^{2}} \mathrm{~d} t$

Derive or quote $\sin x=2 t /\left(1+t^{2}\right)$
Attempt to replace all x and $d x$
Get integral of form $A /\left(B t^{2}+C t+D\right)$ Use complete square form as $\tan ^{-1}(f(t))$ Get A.G.

B1 Quote or derive $x-1 / 6 x^{3}$
M1 Ignore extra terms
A1 $\sqrt{ }$ On their $\sin x$; ignore extra terms; allow 3 !
SC Attempt product rule M1 Attempt $f(0), \mathrm{f}^{\prime}(0), \mathrm{f}^{\prime \prime}(0) . .$. (at least 3) M1
Use Maclaurin accurately cao A1
M1
M1 May be implied
A1
M1 Use of chain/quotient rule
M1 Or attempt to derive diff. equ ${ }^{\text {n }}$.
A1
SC Attempt diff. of $\left(1+x^{2}\right) \mathrm{d} y=1 \mathrm{M} 1, \mathrm{~A} 1$ dx
Clearly arrive at A.G. B1
B1 Must be = ; accept x-axis; ignore any others

M1 $\left(x^{2} y-x+(3 y-1)=0\right)$
M1 Allow > ; or < for no real x
M1 $1 \geq 12 y^{2}-4 y ; 12 y^{2}-4 y-1 \leq 0$
M1 Factorise/ quadratic formula
A1 e.g. diagram / table of values of y
SC Attempt diff. by product/quotient M1 Solve dy/d $x=0$ for two real $x \quad$ M1 Get both $(-3,-1 / 6)$ and ($1,1 / 2$) A1 Clearly prove min./max. A1
Justify fully the inequality e.g. detailed graph

M1 or LHS if used

M1 $\left(2 \cosh ^{2} x-7 \cosh x-4=0\right)$
A1 $\sqrt{ }$ Factorise/quadratic formula
B1 State cosh $x \geq 1 /$ graph; allow ≥ 0
A1 cao; any one of $\pm \ln (4 \pm \sqrt{ } 15)$ or decimal equivalent of $\ln ()$

B1 cao
B1
B1
M1
A1 $\sqrt{ }$ From their expressions, $C \neq 0$
M1 From formulae book or substitution
A1

6 (i) Attempt to sum areas of rectangles Use G.P. on $h\left(1+3^{h}+3^{2 h}+\ldots+3^{(n-1) h}\right)$

Simplify to A.G.
(ii) Attempt to find sum areas of different rect. Use G.P. on $h\left(3^{h}+3^{2 h}+\ldots+3^{n h}\right)$

Simplify to A.G.
(iii) Get $1.8194(8), 1.8214(8)$ correct

7 (i) Attempt to solve $r=0, \tan \theta=-\sqrt{ } 3$ Get $\theta=-\frac{1}{3} \pi$ only
(ii) $r=\sqrt{ } 3+1$ when $\theta=1 / 4 \pi$
(iii)

(iv) Formula with correct r used

Replace $\tan ^{2} \theta=\sec ^{2} \theta-1$
Attempt to integrate their expression
Get $\theta+\sqrt{ } 3 \ln \sec \theta+1 / 2 \tan \theta$
Correct limits to $1 / 4 \pi+\sqrt{ } 3 \ln \sqrt{ } 2+1 / 2$
8 (i) Attempt to diff. using product/quotient
Attempt to solve $\mathrm{d} y / \mathrm{d} x=0$
Rewrite as A.G.
(ii) Diff. to $f^{\prime}(x)=1 \pm 2 \operatorname{sech}^{2} x$

Use correct form of $\mathrm{N}-\mathrm{R}$ with their expressions from correct $f(x)$
Attempt N-R with $x_{1}=2$ from previous M1
Get $x_{2}=1.9162(2)$ (3 s.f. min.)
Get $x_{3}=1.9150(1)(3$ s.f. min.)
(iii) Work out e_{1} and e_{2} (may be implied)

M1 $\left(h .3^{h}+h .3^{2 h}+\ldots+h .3^{(n-1) h}\right)$
M1 All terms not required, but last term needed (or 3^{1-h}); or specify a, r and n for a G.P.
A1 Clearly use $n h=1$
M1 Different from (i)
M1 All terms not required, but last term needed; G.P. specified as in (i), or deduced from (i)
A1
$\mathrm{B} 1, \mathrm{~B} 1$ Allow $1.81 \leq \mathrm{A} \leq 1.83$
M1 Allow $\pm \sqrt{ } 3$
A1 Allow -60°
$\mathrm{B} 1, \mathrm{~B} 1 \mathrm{AEF}$ for $r, 45^{\circ}$ for θ
B1 Correct r at correct end-values of θ; Ignore extra θ used

B1 Correct shape with r not decreasing

M1 r^{2} may be implied
B1
M1 Must be 3 different terms leading to any 2 of $a \theta+b \ln (\sec \theta / \cos \theta)+c \tan \theta$
A1 Condone answer $x 2$ if $1 / 2$ seen elsewhere
A1 cao; AEF
M1
M1
A1 Clearly gain A.G.
B1 Or $\pm 2 \operatorname{sech}^{2} x-1$
M1
M1 To get an x_{2}
A1
A1 cao

B1 $\sqrt{-0.083(8), ~}-0.0012$ (allow \pm if both of same sign); e_{1} from 0.083 to 0.085

Use $e_{2} \approx k e_{1}{ }^{2}$ and $e_{3} \approx k e_{2}{ }^{2}$
Get $e_{3} \approx e_{2}{ }^{3} / e_{1}{ }^{2}=-0.0000002$ (or 3)

9 (i) Rewrite as quad. in e^{y}
Solve to $\mathrm{e}^{y}=\left(x \pm \sqrt{ }\left(x^{2}+1\right)\right)$ Justify one solution only
(ii) Attempt parts on $\sinh x \cdot \sinh ^{n-1} x$

Get correct answer
Justify $\sqrt{ } 2$ by $\sqrt{ }\left(1+\sinh ^{2} x\right)$ for cosh x when limits inserted
Replace $\cosh ^{2}=1+\sinh ^{2}$; tidy at this stage Produce I_{n-2}
Gain A.G. clearly
(iii) Attempt $4 I_{4}=\sqrt{ } 2-3 I_{2}, 2 I_{2}=\sqrt{ } 2-I_{0}$ Work out $I_{0}=\sinh ^{-1} 1=\ln (1+\sqrt{ } 2)=\alpha$ Sub. back completely for I_{4} Get ${ }^{1} / 8(3 \ln (1+\sqrt{ } 2)-\sqrt{ } 2)$

M1
A1 $\sqrt{ } \pm$ if same sign as B1 $\sqrt{ }$
SC B1 only for $x_{4}-x_{3}$

M1 Any form
A1 Allow $y=\ln (\quad)$
B1 $x-\sqrt{ }\left(x^{2}+1\right)<0$ for all real x
SC Use $C^{2}-S^{2}=1$ for $C= \pm \sqrt{ }\left(1+x^{2}\right) \quad$ M1
Use/state $\cosh y+\sinh y=\mathrm{e}^{y} \quad \mathrm{~A} 1$
Justify one solution only B1
M1
A1 ($\left.\cosh x \cdot \sinh ^{n-1} x-\int \cosh ^{2} x \cdot(n-1) \sinh ^{n-2} x d x\right)$
B1 Must be clear
M1
A1
A1
M1 Clear attempt at iteration (one at least seen)
B1 Allow I_{2}
M1
A1 AEEF

Mark Scheme 4727 June 2006

$1 \text { (a) } \begin{aligned} \text { Identity } & =1+0 \mathrm{i} \\ \text { Inverse } & =\frac{1}{1+2 \mathrm{i}} \\ & =\frac{1}{1+2 \mathrm{i}} \times \frac{1-2 \mathrm{i}}{1-2 \mathrm{i}}=\frac{1}{5}-\frac{2}{5} \mathrm{i} \end{aligned}$	B1 B1 B1 3	For correct identity. Allow 1 For $\frac{1}{1+2 \mathrm{i}}$ seen or implied For correct inverse AEFcartesian
$\text { (b) } \begin{aligned} \text { Identity } & =\left(\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}\right) \\ \text { Inverse } & =\left(\begin{array}{cc} -3 & 0 \\ 0 & 0 \end{array}\right) \end{aligned}$	$\begin{array}{\|l} \text { B1 } \\ \text { B1 } 2 \\ 5 \\ \hline \end{array}$	For correct identity For correct inverse
$\begin{aligned} & 2 \text { (a) }\left(z_{1} z_{2}=\right) 6 \mathrm{e}^{\frac{5}{2} \pi \mathrm{i}} \\ & \quad\left(\frac{z_{1}}{z_{2}}=\frac{2}{3} \mathrm{e}^{-\frac{1}{12} \pi \mathrm{i}}=\right) \frac{2}{3} \frac{23}{\mathrm{e}^{2} \pi \mathrm{i}} \end{aligned}$	B1 B1 M1 A1 4	For modulus $=6$ For argument $=\frac{5}{12} \pi$ For subtracting arguments For correct answer
$\text { (b) } \begin{aligned} &\left(w^{-5}=\right) 2^{-5} \operatorname{cis}\left(-\frac{5}{8} \pi\right) \\ &=\frac{1}{32}\left(\cos \frac{11}{8} \pi+i \sin \frac{11}{8} \pi\right) \end{aligned}$	$\begin{gathered} \text { M11 } \\ \text { A1 } \\ \text { A1 } 3 \\ 7 \end{gathered}$	For use of de Moivre For $-\frac{5}{8} \pi$ seen or implied For correct answer (allow 2^{-5} and cis $\frac{11}{8} \pi$)

3 EITHER $\quad \mathbf{c}-\mathbf{a}= \pm[11,3,-2]$	B1	For vector joining lines
$(\mathbf{c}-\mathbf{a}) \times[8,3,-6]$	M1*	For attempt at vector product of $\mathbf{c - a}$ and [8, 3, -6]
$\mathbf{n}= \pm[-12,50,9]$	A1 $\sqrt{ }$	For obtaining \mathbf{n}. f.t. from incorrect $\mathbf{c}-\mathbf{a}$
$=\frac{\|\mathbf{n}\|}{[[8,3,-6] \mid}$	M1 (dep*)	For dividing $\|\mathbf{n}\|$ by magnitude of [8,3,-6]
$\frac{\sqrt{2725}}{\sqrt{109}}$	A1	For either magnitude correct
(d =) 5	A1	For correct distance CAO
$\begin{aligned} & O R \mathbf{c - a}= \pm[11,3,-2] \\ & (\mathbf{c}-\mathbf{a}) \cdot[8,3,-6] \end{aligned}$	B1	For vector joining lines
	M1*	For attempt at scalar product of $\mathbf{c - a}$ and [8, 3, -6]
$\cos \theta= \pm \frac{109}{\sqrt{134} \sqrt{109}}= \pm \sqrt{\frac{109}{134}}$	A1 $\sqrt{ }$	For correct $\cos \theta$ AEF. f.t. from incorrect c-a
$d=\sqrt{134} \sin \theta$	$\begin{aligned} & \text { M1 } \\ & \text { (dep*) } \end{aligned}$	For using trigonometry for perpendicular
	A1	For correct expression for d in terms of θ
$(d=) 5$	A1	For correct distance CAO
$\begin{aligned} & \text { OR } \quad \mathbf{c}-\mathbf{a}= \pm[11,3,-2] \\ & (\mathbf{c}-\mathbf{a}) \cdot[8,3,-6] \end{aligned}$	B1	For vector joining lines
	M1*	For attempt at scalar product of $\mathbf{c - a}$ and [8, 3, -6]
$x=\frac{109}{\sqrt{109}}=\sqrt{109}$	A1 V	For finding projection of $\mathbf{c - a}$ onto [8, 3, -6] f.t. from incorrect $\mathbf{c}-\mathbf{a}$
$d=\sqrt{134-109}$	M1 (dep*) A1	For using Pythagoras for perpendicular distance
$(d=) 5$		For correct expression for d For correct distance CAO
$\begin{aligned} & \text { OR } \quad \mathbf{C P}= \pm[-11+8 t,-3+3 t, 2-6 t] \\ & \text { CP } \cdot[8,3,-6]=0 \end{aligned}$	B1	For finding a vector from $C(12,5,3)$ to a point on the line
	M1*	For using scalar product for perpendicularity
$t= \pm 1$ OR $P=(9,5,-1)$	A1 V	For correct point. f.t. from incorrect CP
$d=\sqrt{3^{2}+0^{2}+4^{2}}$	$\begin{aligned} & \text { M1 } \\ & \text { (dep*) } \end{aligned}$	For finding magnitude of $\mathbf{C P}$
	A1	For correct expression for d
$(d=) 5$	A1 6	For correct distance CAO SR Obtain
		$\begin{aligned} & \text { CP }=[11,3,-2]-[8,3,-6]= \pm[3,0,4] \\ & \begin{array}{ll} \text { Verify }[3,0,4] \cdot[8,3,-6]=0 & \text { M1 } \end{array} \\ & \begin{array}{ll} d=\sqrt{3^{2}+0^{2}+4^{2}}=5 & \begin{array}{l} \text { M1 (dep*) A1 A1 } \\ \\ \\ \text { (maximum 5/6) } \end{array} \end{array} \end{aligned}$
	6	

4 Integrating factor $e^{\int-\frac{x^{2}}{1+x^{3}} \mathrm{dx}}$ $\begin{aligned} & =\mathrm{e}^{-\frac{1}{3} \ln \left(1+x^{3}\right)}=\left(1+x^{3}\right)^{-\frac{1}{3}} \\ \Rightarrow & \frac{\mathrm{~d}}{\mathrm{~d} x}\left(y\left(1+x^{3}\right)^{-\frac{1}{3}}\right)=\frac{x^{2}}{\left(1+x^{3}\right)^{\frac{1}{3}}} \\ \Rightarrow & y\left(1+x^{3}\right)^{-\frac{1}{3}}=\frac{1}{2}\left(1+x^{3}\right)^{\frac{2}{3}}(+c) \\ \Rightarrow & 1=\frac{1}{2}+c \Rightarrow c=\frac{1}{2} \\ \Rightarrow & y=\frac{1}{2}\left(1+x^{3}\right)+\frac{1}{2}\left(1+x^{3}\right)^{\frac{1}{3}} \end{aligned}$	M1 M1 A1 M1 A1 $\sqrt{ }$ A1 8	For correct process for finding integrating factor For correct IF, simplified (here or later) For multiplying through by their IF For integrating RHS to obtain $A\left(1+x^{3}\right)^{k} O R \ln A\left(1+x^{3}\right)^{k}$ For correct integration $(+c$ not required here) For substituting $(0,1)$ into $G S$ (including $+c$) For correct c. f.t. from their GS For correct solution. AEF in form $y=\mathrm{f}(x)$
5 (i) EITHER $\mathbf{a}=[2,3,5], \quad \mathbf{b}= \pm[2,2,0]$ $\mathbf{n}=\mathbf{a} \times \mathbf{b}= \pm k[-10,10,-2]$ Use $(2,1,5) O R(0,-1,5)$ $\Rightarrow 5 x-5 y+z=10$ OR $\mathbf{a}=[2,3,5], \quad \mathbf{b}= \pm[2,2,0]$ e.g. $\mathbf{r}=[2,1,5]+\lambda[2,2,0]+\mu[2,3,5]$ $[x, y, z]=[2+2 \lambda+2 \mu, 1+2 \lambda+3 \mu, 5+5 \mu]$ $\Rightarrow 5 x-5 y+z=10$	B1 M1 A1 $\sqrt{ }$ M1 A1 B1 M1 A1 $\sqrt{ }$ M1 A1 5	For stating 2 vectors in the plane For finding perpendicular to plane For correct n. f.t. from incorrect b For substituting a point into equation $a x+b y+c z=d$ where $[a, b, c]=$ their \mathbf{n} For correct cartesian equation AEF For stating 2 vectors in the plane For stating parametric equation of plane For writing 3 equations in x, y, z f.t. from incorrect \mathbf{b} For eliminating λ and μ For correct cartesian equation AEF
(ii) $[2 t, 3 t-4,5 t-9]$	B1 1	For stating a point A on l_{1} with parameter t AEF
$\begin{aligned} & \text { (iii) } \pm[2 t+5,3 t-7,5 t-13] \\ & \pm[2 t+5,3 t-7,5 t-13] \cdot[2,3,5]=0 \\ & \Rightarrow t=2 \\ & \frac{x+5}{9}=\frac{y-3}{-1}=\frac{z-4}{-3} \text { OR } \\ & \frac{x-4}{9}=\frac{y-2}{-1}=\frac{z-1}{-3} \end{aligned}$	M1 M1 A1 A1 4	For finding direction of l_{2} from A and (5,3, 4) For using scalar product for perpendicularity with any vector involving t For correct value of t For a correct equation AEFcartesian SR For $2 p+3 q+5 r=0$ and no further progress award B1

$6 \text { (i) } \begin{aligned} & \left(m^{2}+4=0 \Rightarrow\right) m= \pm 2 \mathrm{i} \\ & \quad \mathrm{CF}=A \cos 2 x+B \sin 2 x \\ & \quad \mathrm{PI}=p \sin x(+q \cos x) \\ & -p \sin x(-q \cos x)+4 p \sin x(+4 q \cos x)=\sin x \\ & \Rightarrow p=\frac{1}{3}, \quad q=0 \\ & \Rightarrow y=A \cos 2 x+B \sin 2 x+\frac{1}{3} \sin x \end{aligned}$	B1 B1 B1 M1 A1 $\mathrm{B} 1 \sqrt{ } 6$	For correct solutions of auxiliary equation (may be implied by correct CF) For correct CF (AEtrig but not $A e^{2 i x}+B e^{-2 i x}$ only) State a trial PI with at least $p \sin x$ For substituting PI into DE For correct p and q (which may be implied) For using GS = CF + PI, with 2 arbitrary constants in CF and none in PI
$\begin{aligned} & \text { (ii) }(0,0) \Rightarrow A=0 \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 B \cos 2 x+\frac{1}{3} \cos x \Rightarrow \frac{4}{3}=2 B+\frac{1}{3} \\ & A=0, B=\frac{1}{2} \\ & \Rightarrow y=\frac{1}{2} \sin 2 x+\frac{1}{3} \sin x \end{aligned}$	B1 V M1 A1 A1 4 10	For correct equation in A and/or B f.t. from their GS For differentiating their GS and substituting values for x and $\frac{\mathrm{d} y}{\mathrm{~d} x}$ For correct A and B Allow $A=-\frac{1}{4} \mathrm{i}, B=\frac{1}{4} \mathrm{i}$ from CF $A e^{2 i x}+B e^{-2 i x}$ For stating correct solution CAO
$\begin{aligned} & 7 \text { (i) } C+i S=1+e^{i \theta}+e^{2 i \theta}+e^{3 i \theta}+e^{4 i \theta}+e^{5 i \theta} \\ &=\frac{e^{6 i \theta}-1}{e^{i \theta}-1} \\ &=\frac{e^{3 i \theta}-e^{-3 i \theta}}{e^{\frac{1}{2} i \theta}-e^{-\frac{1}{2} i \theta}} \cdot \frac{e^{3 i \theta}}{e^{\frac{1}{2} i \theta}}=\frac{e^{3 i \theta}-e^{-3 i \theta}}{e^{\frac{1}{2} \theta}-e^{-\frac{1}{2} i \theta}} e^{\frac{5}{2 i} \theta} \end{aligned}$	M1 M1 A1 A1 4	For using de Moivre, showing at least 3 terms For recognising GP For correct GP sum For obtaining correct expression AG
$\text { (ii) } \begin{aligned} C+\mathrm{i} S & =\frac{2 \mathrm{i} \sin 3 \theta}{2 \mathrm{i} \sin \frac{1}{2} \theta} \cdot \mathrm{e}^{\frac{5}{2} \theta} \\ \mathrm{Re} \Rightarrow C & =\sin 3 \theta \cos \frac{5}{2} \theta \operatorname{cosec} \frac{1}{2} \theta \\ \mathrm{Im} \Rightarrow S & =\sin 3 \theta \sin \frac{5}{2} \theta \operatorname{cosec} \frac{1}{2} \theta \end{aligned}$	M1 A1 A1 B1 4	For expressing numerator and denominator in terms of sines For $k \sin 3 \theta$ and $k \sin \frac{1}{2} \theta$ For correct expression AG For correct expression
(iii) $\begin{aligned} & C=S \Rightarrow \sin 3 \theta=0, \tan \frac{5}{2} \theta=1 \\ & \theta=\frac{1}{3} \pi, \frac{2}{3} \pi \\ & \theta=\frac{1}{10} \pi, \frac{1}{2} \pi, \frac{9}{10} \pi \end{aligned}$	M1 A1 A2 4	For either equation deduced AEF Ignore values outside $0<\theta<\pi$ For both values correct and no extras For all values correct and no extras. Allow A1 for any 1 value $O R$ all correct with extras

8 (i) $r^{4} \cdot a \neq a . r^{4}$	B1 1	For stating the non-commutative product in the given table, or justifying another correct one
(ii) Possible subgroups order 2, 5	$\begin{array}{ll} \text { B1 } \\ \text { B1 } 2 \end{array}$	For either order stated For both orders stated, and no more (Ignore 1)
(iii) (a) $\{e, a\}$ (b) $\left\{e, r, r^{2}, r^{3}, r^{4}\right\}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 12 \end{aligned}$	For correct subgroup For correct subgroup
$\begin{aligned} & \text { (iv) order of } r^{3}=5 \\ & (a r)^{2}=a r \cdot a r=r^{4} a \cdot a r=e \\ & \Rightarrow \text { order of } a r=2 \\ & \left(a r^{2}\right)^{2}=a r^{2} a r \cdot r=a r^{2} r^{4} a \cdot r=a r a \cdot r=e \\ & \Rightarrow \text { order of } a r^{2}=2 \end{aligned}$	B1 M1 A1 A1 4	For correct order For attempt to find $(a r)^{m}=e$ OR $\left(a r^{2}\right)^{m}=e$ For correct order For correct order
(v)	B1 B1 B1 B1 B1 5 14	If the border elements $a r a r^{2} a r^{3} a r^{4}$ are not written, it will be assumed that the products arise from that order For all 16 elements of the form e or r^{m} For all 4 elements in leading diagonal $=e$ For no repeated elements in any completed row or column For any two rows or columns correct For all elements correct

Mark Scheme 4728 June 2006

1		$\begin{aligned} & \text { Momentum before }=3 M- \\ & 1200 \times 3 \\ & \text { Momentum after }=1200 \times 5 \\ & 3 M-3600=6000 \\ & 3(1200+m)-3600=6000 \\ & m=2000 \end{aligned}$	B1 B1 M1 A1 A1	5	Ignore g if included; accept inconsistent directions (or loss of momentum of loaded wagon $=3 \mathrm{M}$ B1 gain of momentum of unloaded wagon $=1200(5+3)$ B1) Equation with all terms; accept with g For any correct equation in m, M
2	(i)	$\begin{aligned} & 2.5=6.5 \sin \theta \\ & \theta=22.6^{\circ} \end{aligned}$	M1 A1 A1	3	For resolving forces in the \mathbf{i} direction or for relevant use of trigonometry AG Accept verification
	(ii)	$\begin{aligned} & R=6.5 \cos 22.6^{\circ} \\ & R=6 \end{aligned}$	M1 A1 A1		For resolving forces in the \mathbf{j} direction or for using Pythagoras or relevant trigonometry.

3	(i)	 Time intervals 80, 40, 40 $t=80,120,160$	B1 B1 B1 B1 B1	Line segment $A B$ (say) of +ve slope from origin Line segment $B C$ (say) of steeper + ve slope and shorter time interval than those for $A B . S R$: If the straight line segments are joined by curves, this B1 mark is not awarded Line segment $C D$ (say) of less steep slope compared with $B C$. (An (x, t) graph is accepted and the references to more/less steep are reversed.) May be implied; any 2 correct
	(ii)	Line joining (0,0) and (160, 360)	B1 ft 6	
	(iii)	$\begin{align*} & v=360 / 160 \\ & s=120+4.5(t-80) \\ & 2.25 t \\ & t=106 \frac{2}{3} \quad(107) \tag{107} \end{align*}$ SR Construction method Plotting points on graph paper t between 104 and 109 inclusive	M1 M1 A1 M1 A1 5 M1 A1	Woman's velocity ($=2.25$) For equation of man's displacement in relevant interval Accept omission of -80 Woman's displacement, awarded even if t is interpreted differently in man's expression Accept also 106.6, 106.7 but not 106 Candidates reading the displacement intersection from graph, then dividing this distance by the woman's speed to find t, also get $v=360 / 160 \mathrm{M} 1$ as above for the woman's velocity.
4	(i)	Displacement is 20 m	B1 1	$20+\mathrm{C}$ (from integration) B0
	(ii)	$s(t)=0.01 t^{3}-0.15 t^{2}+2 t$ (+A) $10-15+20+A=20$ Displacement is $0.01 t^{3}-0.15 t^{2}+2 t+5$	M1 A1 M1 A1 4	For using $s(t)=\int v(t) d t$ Can be awarded prior to cancelling For using $s(10)=c v(20)$ AG
	(iii)	$\begin{aligned} & a=0.06 t-0.3 \\ & 0.06 t-0.3=0.6 \end{aligned}$ $t=15$ Displacement is 35 m	M1 A1 DM1 A1 B1	For using $a(t)=\mathrm{dv} / \mathrm{d} t$ For starting solving $a(t)=0.6$ depends on previous M1

\begin{tabular}{|c|c|c|c|c|}
\hline 5 \& (i) \& \[
\begin{aligned}
\& R=m g \\
\& m=2.55
\end{aligned}
\] \& \begin{tabular}{|ll|}
\hline M1 \& \\
M1 \& \\
A1 \& 3 \\
\hline
\end{tabular} \& For using \(F=5\) and \(F=\mu R\) Accept 2.5 or 2.6 \\
\hline \& (ii) a

(ii) b \& \[
$$
\begin{aligned}
& P \cos \alpha=6 \\
& R=P \sin \alpha+25 \\
& 0.2 R=6 \\
& 0.2(P \sin \alpha+25)=6 \\
& \\
& \alpha=39.8^{\circ} \\
& P^{2}=6^{2}+5^{2} \\
& \text { or } P \cos 39.8^{\circ}=6 \\
& \text { or } P \sin 39.8^{\circ}=5 \\
& P=7.81 \\
& P
\end{aligned}
$$

\] \& | B1 |
| :--- |
| M1 |
| A1ft |
| B1 |
| M1 |
| A1 |
| M1 |
| A1 |
| 8 | \& | For resolving vertically with 3 distinct forces |
| :--- |
| Or $P \sin \alpha+(\mathrm{cv} \mathrm{m}) g$ |
| For using $F=6$ and $F=\mu R$. |
| Can be implied by |
| $0.2(P \sin \alpha+25)=6$ |
| For an equation in |
| $P \sin \alpha$ (=5)after elimination of R |
| Accept art 40° |
| For eliminating or substituting for α with $\operatorname{cv}(6)$. Evidence is needed that 5 is the value of $P \sin \alpha$ (rather than the original frictional force) |
| Accept art 7.8 |

\hline 6 \& (i) \& | $10500+3000+1500$ |
| :--- |
| Driving force below 15000 gives retardation | \& \[

$$
\begin{array}{|ll}
\hline \text { M1 } & \\
\text { A1 } & \\
\hline
\end{array}
$$
\] \& For summing 3 resistances Accept generalised case or specific instance

\hline \& (ii) \& | $35000-15000=80000 a$ |
| :--- |
| Acceleration is $0.25 \mathrm{~ms}^{-2}$ | \& \[

$$
\begin{array}{ll}
& \\
\text { A1 } 1 & 2
\end{array}
$$

\] \& | Newton's second law for whole train |
| :--- |
| AG Accept verification |

\hline \& (iii) \& \[
$$
\begin{aligned}
& 35000-10500-8500= \\
& 0.25 \mathrm{~m} \\
& \text { Mass is } 64000 \mathrm{~kg}
\end{aligned}
$$

\] \& | A1 |
| :--- |
| A1 3 | \& For applying Newton's second law to E only, at least 2 forces out of the relevant 3 .

\hline \& (iv) \& \[
$$
\begin{aligned}
& -15000-15000=80000 a \\
& \text { OR } \\
& -3000-10500-15000=(80000 \\
& -m) a \\
& \\
& -1500=m a \\
& \text { Mass is } 4000 \mathrm{~kg}
\end{aligned}
$$

\] \& | M1 | |
| :--- | :--- |
| A1 | |
| | |
| M1 | |
| A1 | |
| A1 | 5 | \& | For applying Newton's second law with all appropriate forces $a=-0.375$ |
| :--- |
| For applying Newton's second law to B only, only 1 force Or cv(a) |

\hline \& (v) \& \[
$$
\begin{aligned}
& -15000-10500 \pm T \\
& 0.375) \\
& T= \pm 1500 \rightarrow \text { forward force } \\
& \text { on } E \text { of } 1500 \mathrm{~N} \\
& \text { OR (working with A and B) } \\
& -1500-3000 \pm T \\
& \quad=(80000-64000)(- \\
& \begin{array}{l}
0.375) \\
T= \pm 1500 \rightarrow \text { forward force } \\
\text { on } E \text { of } 1500
\end{array}
\end{aligned}
$$

\] \& | B1ft |
| :--- |
| B1 2 |
| B1ft |
| B1 | \& | Follow through cv ($\left.m_{\mathrm{E}}, a\right)$, or accept use of m_{E}, a |
| :--- |
| Follow through $\mathrm{cv}\left(m_{\mathrm{E}}, a\right)$, or accept use of m_{E}, a |

\hline
\end{tabular}

7	(i)	$0=6+(\pm) 1.5 a$	M 1	For using $v=u+$ at with $v=0$

	$\begin{aligned} & a=(\mp) 4 \mathrm{~ms}^{-2} \\ & -m g \sin 15^{\circ}-F=m a \end{aligned}$ $-0.1 \times 9.8 \sin 15^{\circ}-F=0.1 \times(-$ 4) $\begin{aligned} & R=0.1 g \cos 15^{\circ} \\ & 0.146357 \ldots=\mu 0.946607 \end{aligned}$ Coefficient is 0.155	A1 M1 A1 B1 M1 A1	7	For applying Newton's second law with 2 forces For using $F=\mu R$ Anything between 0.15 and 0.16 inclusive
(ii)	$m g s i n 15^{\circ}>\mu m g \cos 15^{\circ}$ (or $\tan 15^{\circ}>\mu$) \rightarrow particle moves down	M1	2	For comparing weight component with frictional force (or tan 'angle of friction' with μ) Awarded if conclusion is correct even though values are wrong
(iii)	$\begin{aligned} & (6+0) \div 2=s \div 1.5 \\ & s=4.5 \\ & m g \sin 15^{\circ}-F=m a \\ & 0.25364 \ldots-0.146357 \ldots= \\ & 0.1 a \\ & \\ & v^{2}=2(1.07285 \ldots) 4.5 \end{aligned}$ Speed is $3.11 \mathrm{~ms}^{-1}$	M1 A1 M1 A1 M1 A1	6	For using $(u+v) \div 2=s \div t$ For using Newton's second law with 2 forces Values must be correct even if not explicitly stated. Note that the correct value of friction may legitimately arise from a wrong value of μ and a wrong value of R For using $v^{2}=2$ as with any value of a Accept anything rounding to 3.1 from correct working

Mark Scheme 4729 June 2006

1		$\begin{aligned} & \mathrm{mgh}=35 \times 9.8 \times 4 \\ & \mathrm{mgh} / \mathrm{t}=1372 / 10 \\ & 137 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	4	watch out for extras or 0.137 kW	4
2		$\begin{aligned} & v^{2}=2 \mathrm{gh} \\ & u=\sqrt{ } 4 \mathrm{~g} \text { or } \sqrt{ } 39.2 \text { or } 6.26 \\ & \mathrm{v}=\sqrt{ } 2.8 \mathrm{~g} \text { or } \sqrt{ } 27.44(5.24) \\ & \mathrm{l}=\mathrm{P} 0.3(6.26+5.24) \\ & 3.45 \mathrm{Ns} \end{aligned}$	M1 A1 A1 M1 A1/	5	kinematics or energy speed of impact (\pm) speed of rebound (\pm) must be sum of mags. of vels. \checkmark must be positive	2 5
3	(i)	$\begin{aligned} & \mathrm{d}=2.25 \\ & \mathrm{~h}=1.125 \text { or } 1.12 \text { or } 1.13 \\ & \text { or } 9 / 8 \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	2	3/8x6 OG (be generous) horizontal distance	
	(ii)	$\text { above } \int \text { depends on at leas }$	M1 M1 A1 A1 A1 $\sqrt{ }$ one	5	if not then next M1 ok or $\operatorname{mom}(A) \mathrm{T}_{2} \times 6 \cos 30^{\circ}=$ $12\left(6 \cos 30^{\circ}-h\right)$ or $\mathrm{T}_{2}=9.40$ or $T_{1}=2.60$ or $\sqrt{ }\left(12-T_{2}\right)$ M marks ($\mathrm{T}_{\mathrm{s}}>0$)	7
4	(i)	$P=13500 \mathrm{~W}$	B1	1	or 13.5 kW	
	(ii)	$\begin{aligned} & 500=13500 / \mathrm{v} \\ & \mathrm{v}=27 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \text { A1 } \end{aligned}$	2		
	(iii)	$\begin{aligned} & 15000 / 25-500=950 \\ & a=0.105 \text { or } 2 / 19 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	2 parts to F A0 for 900a or 100/950	
	(iv)	$\begin{aligned} & 15000 / 26-500 \\ & 950.9 .8 \sin 5^{\circ}=950 a \\ & \mathrm{a}=(-) .773 \mathrm{~ms}^{-2} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	3 parts to F A0 for 900a s.c. accept 0.77	9
5	(i)	$\begin{aligned} & \bar{x}=9 \\ & \mathrm{c} \text { of } \mathrm{m} \text { of } \Delta 4 \mathrm{~cm} \text { above } \mathrm{BD} \\ & (324+108)(\mathrm{m}) \bar{y}= \\ & 324(\mathrm{~m}) \times 9+108(\mathrm{~m}) \times(18+4) \\ & 432 \bar{y} \\ & 324 \times 9 \quad\left(18^{2} \times 9\right) \\ & 108 \times(18+4) \\ & \bar{y}=12.25 \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~A} 1 \end{aligned}$	7	ignore any working 8 cm below C/see their diagram $432 \bar{y}=108 \times 8+18^{2}(12+9)$ from C left hand side $1^{\text {st }}$ term on right hand side 2916 $2^{\text {nd }}$ term on right hand side 2376 5292 $\div 432$ or 49/4	
	(ii)	$\begin{aligned} & \tan \theta=5.75 / 9 \\ & \theta=32.6^{\circ} \text { or } 147.4^{\circ} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \delta \end{aligned}$	2	$\begin{aligned} & \text { must be .../9 } \\ & \int \tan ^{-1}((18-\text { their } \bar{y}) / 9) \text { or } 180^{\circ} . \end{aligned}$	9

± 1 in $3^{\text {rd }}$ sig. fig. except where stated

Mark Scheme 4730 June 2006

3 (i)	$1.4 \mathrm{R}=0.35 \times 360+1.05 \times 200$ Magnitude is 240 N $\begin{aligned} & 0.7 \times 240=0.35 \times 200+1.05 \mathrm{~T} \\ & \text { Tension is } 93.3 \mathrm{~N} \end{aligned}$	M1 A1 A1 M1 A1 A1		For taking moments about C for the whole structure. AG For taking moments about A for the $\operatorname{rod} A B$.
OR (i)	$\begin{aligned} & 0.7 R_{\mathrm{B}}=70+1.05 \mathrm{~T} \text { and } \\ & 1.05 \mathrm{~T} \quad 0.7 \mathrm{R}_{\mathrm{C}}=126+ \\ & \\ & 0.7\left(560-\mathrm{R}_{\mathrm{B}}\right)-0.7 \mathrm{R}_{\mathrm{B}}=126- \\ & 70 \text { or } \quad 0.7 \times 560=70+126+ \\ & 2.1 \mathrm{~T} \quad \\ & \text { Magnitude is } 240 \mathrm{~N} \\ & \text { Tension is } 93.3 \mathrm{~N} \end{aligned}$	M1 A1 M1 M	6	For taking moments about A for $A B$ and $A C$. For eliminating T or for adding the equations, and then using $R_{B}+R_{C}=560$. For a correct equation in R_{B} only or T only AG
(ii)	Horizontal component is 93.3 N to the left $Y=240-200$ Vertical component is 40 N downwards	B1 ft M1 A1	3	For resolving forces vertically.

4 (i)	$\begin{aligned} & \mathrm{L}(\mathrm{~m}) \ddot{\theta}=-(\mathrm{m}) \mathrm{g} \sin \theta \text { or } \\ & \begin{array}{l} (\mathrm{m}) \mathrm{g} \sin (\mathrm{~s} / \mathrm{L}) \quad(\mathrm{m}) \ddot{s}=- \\ \ddot{\theta} \approx-\mathrm{k} \theta \text { or } \ddot{s}=-\mathrm{ks} \text { [and motion } \\ \text { is therefore approx. simple } \\ \text { harmonic] } \end{array} \end{aligned}$ Period is 3.14 s .	M1 A1 B1 M1 M1	5	For using Newton's $2^{\text {nd }}$ Law perp. to string with $a=L \ddot{\theta}$. For using $\mathrm{T}=2 \pi / \mathrm{n}$ and $\mathrm{k}=$ w^{2} or $\mathrm{T}=2 \pi \sqrt{L / g}$ for simple pendulum. AG
(ii)	$\begin{aligned} & \dot{\theta}^{2}=4\left(0.1^{2}-0.06^{2}\right) \text { or } \\ & 1 / 2 \mathrm{~m}(2.45 \dot{\theta})^{2}= \\ & \quad 2.45 \mathrm{mg}(\cos 0.06- \\ & \cos 0.1) \\ & \text { Angular speed is } 0.16 \mathrm{rad} \mathrm{~s}^{-1} . \end{aligned}$	M1	3	For using $\dot{\theta}^{2}=n^{2}\left(\theta_{0}{ }^{2}-\theta^{2}\right)$ or the principle of conservation of energy (0.1599... from energy method)
OR (ii)	(in the case for which (iii) is attempted before (ii)) $\begin{aligned} & {[\dot{\theta}=-0.2 \sin 2 \mathrm{t}]} \\ & \dot{\theta}=-0.2 \sin (2 \times 0.464) \end{aligned}$ Angular speed is $0.16 \mathrm{rad} \mathrm{s}^{-1}$.	M1 A1ft A1	3	For using $\dot{\theta}=\mathrm{d}($ Acos $n t) / \mathrm{dt}$
(iii)	$\begin{aligned} & 0.06=0.1 \cos 2 \mathrm{t} \text { or } 0.1 \sin (\pi / 2- \\ & 2 \mathrm{t}) \\ & \sin ^{-1} 0.6 \quad \text { or } \quad 2 \mathrm{~T}=\pi / 2- \\ & \text { Time taken is } 0.464 \mathrm{~s} \end{aligned}$	M1 A1ft A1	3	For using $\theta=$ Acos nt or Asin ($\pi / 2-n t$) or for using $\theta=$ Asin nt and $T=\mathrm{t}_{0.1}-\mathrm{t}_{0.06}$ ft angular displacement of 0.04 instead of 0.06

\begin{tabular}{|c|c|c|c|c|}
\hline 5 \& \begin{tabular}{l}
\[
2 \times 12 \cos 60^{\circ}-3 \times 8=2 a+3 b
\] \\
For LHS of equation below \(0.5\left(12 \cos 60^{\circ}+8\right)=b-a\) \\
Speed of \(B\) is \(0.4 \mathrm{~ms}^{-1}\) in \(\mathbf{i}\) direction
\[
a=-6.6
\] \\
Component of A's velocity in \(\mathbf{j}\) direction is \\
\(12 \sin 60^{\circ}\) \\
Speed of \(A\) is \(12.3 \mathrm{~ms}^{-1}\) \\
Direction is at \(122.4^{\circ}\) to the \(\mathbf{i}\) direction
\end{tabular} \& \begin{tabular}{l}
A1 \\
M1 \\
A1 \\
A1 \\
M1 \\
A1 \\
A1 \\
B1 \\
B1ft \\
M1 \\
A1ft
\end{tabular} \& \[
\begin{aligned}
\& 1 \\
\& 2
\end{aligned}
\] \& \begin{tabular}{l}
\(\Sigma \mathrm{mv}\) conserved in i direction. \\
For using NEL \\
Complete equation with signs of \(a\) and \(b\) consistent with previous equation. For eliminating a or b . \\
May be shown on diagram or implied in subsequent work. \\
For using \(\theta=\tan ^{-1}(\) jcomp \(/ \pm \mathbf{i}\) comp) \\
Accept \(\theta=57.6^{\circ}\) with \(\theta\) correctly identified.
\end{tabular} \\
\hline 6 (i) \& \begin{tabular}{l}
\[
\begin{aligned}
\& \mathrm{T}=1470 \times / 30 \\
\& {[49 \mathrm{x}=70 \times 9.8]} \\
\& \mathrm{x}=14
\end{aligned}
\] \\
Distance fallen is 44 m
\end{tabular} \& \[
\begin{aligned}
\& \hline \text { B1 } \\
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { A1ft }
\end{aligned}
\] \& 4 \& For using \(\mathrm{T}=\mathrm{mg}\) \\
\hline (ii) \& \begin{tabular}{l}
PE loss \(=70 \mathrm{~g}(30+14)\) \\
EE gain \(=1470 \times 14^{2} /(2 \times 30)\) \\
\(\left[1 / 270 v^{2}=30184-4802\right]\) \\
Speed is \(26.9 \mathrm{~ms}^{-1}\)
\end{tabular} \& \begin{tabular}{l}
B1ft B1ft M1 \\
A1
\end{tabular} \& \& For a linear equation with terms representing KE, PE and \(E E\) changes. AG \\
\hline \begin{tabular}{l}
OR \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\[
\left[0.5 \mathrm{v}^{2}=14 \mathrm{~g}-68.6+30 \mathrm{~g}\right]
\] \\
For \(14 \mathrm{~g}+30 \mathrm{~g}\) \\
For \(\mp 68.6\) \\
Speed is \(26.9 \mathrm{~ms}^{-1}\)
\end{tabular} \& M1

B1ft
B1ft

A1 \& \& | For using Newton's $2^{\text {nd }}$ law ($\mathrm{vdv} / \mathrm{dx}=\mathrm{g}-0.7 \mathrm{x}$), integrating ($0.5 \mathrm{v}^{2}=\mathrm{gx}-$ $\left.0.35 x^{2}+k\right)$, using $v(0)^{2}=$ $60 \mathrm{~g} \rightarrow \mathrm{k}=30 \mathrm{~g}$, and substituting $\mathrm{x}=14$. |
| :--- |
| Accept in unsimplified form. AG |

\hline (iii) \& | $\begin{aligned} & \text { PE loss }=70 \mathrm{~g}(30+\mathrm{x}) \\ & \text { EE gain }=1470 x^{2} /(2 x 30) \\ & {\left[x^{2}-28 x-840=0\right]} \end{aligned}$ |
| :--- |
| Extension is 46.2 m | \& \& \& For using PE loss $=\mathrm{KE}$ gain to obtain a 3 term quadratic equation.

\hline | OR |
| :--- |
| (iii) | \& | $A=26.9 / \sqrt{0.7}$ |
| :--- |
| Extension is 46.2 m | \& | M1 |
| :--- |
| M1 |
| A1 |
| A1 | \& \& For identifying SHM with

$$
\begin{aligned}
& \quad n^{2}= \\
& 1470 /(70 \times 30) \\
& \text { For using } v_{\max }=A n
\end{aligned}
$$

\hline
\end{tabular}

7 (i)	$\begin{aligned} & 1 / 20.3 \mathrm{v}^{2}+1 / 20.4 \mathrm{v}^{2} \\ & \pm 0.3 \mathrm{~g}(0.6 \sin \theta) \\ & \pm 0.4 \mathrm{~g}(0.6 \theta) \\ & {\left[0.35 \mathrm{v}^{2}=2.352 \theta-1.764 \sin \theta\right]} \\ & \\ & \mathrm{v}^{2}=6.72 \theta-5.04 \sin \theta \end{aligned}$	B1 B1 B1 M1 A1	5	For using the principle of conservation of energy. AG
(ii)		M1		For applying Newton's $2^{\text {nd }}$ Law radially to P and using $a=v^{2} / r$
	$\begin{aligned} & 0.3\left(\mathrm{v}^{2} / 0.6\right)=0.3 \mathrm{~g} \sin \theta-\mathrm{R} \\ & {[1 / 2(6.72 \theta-5.04 \sin \theta)=} \end{aligned}$	$\begin{aligned} & \text { A1 } \\ & \text { M1 } \end{aligned}$		For substituting for v^{2}.
	$\begin{aligned} & 0.3 \mathrm{~g} \sin \theta-\mathrm{R}] \\ & \text { Magnitude is }(5.46 \sin \theta- \\ & 3.36 \theta) \mathrm{N} \\ & {[5.46 \cos \theta-3.36=0]} \\ & \text { Value of } \theta \text { is } 0.908 \end{aligned}$	A1 M1 A1	6	AG For using $\mathrm{dR} / \mathrm{d} \theta=0$
(iii)	$\begin{aligned} & {[\mathrm{T}-0.3 \mathrm{~g} \cos \theta=0.3 \mathrm{a}]} \\ & {[0.4 \mathrm{~g}-\mathrm{T}=0.4 \mathrm{a}]} \end{aligned}$	M1 M1		For applying Newton's $2^{\text {nd }}$ Law tangentially to P For applying Newton's $2^{\text {nd }}$ Law to Q [If $0.4 \mathrm{~g}-0.3 \mathrm{~g} \cos \theta=0.3 \mathrm{a}$ is seen, assume this derives from $\mathrm{T}-0.3 \mathrm{~g} \cos \theta=0.3 \mathrm{a} \ldots \ldots .$ M1 $\text { and } \mathrm{T}=0.4 \mathrm{~g} \ldots . . . \mathrm{M} 0]$
	Component is $5.6-4.2 \cos \theta$	A1	3	
OR (iii)	$0.4 \mathrm{~g}-0.3 \mathrm{~g} \cos \theta=(0.3+0.4) \mathrm{a}$ Component is $5.6-4.2 \cos \theta$	$\begin{aligned} & \mathrm{B} 2 \\ & \mathrm{~B} 1 \end{aligned}$	3	
OR (iii)	$[2 \mathrm{v}(\mathrm{dv} / \mathrm{d} \theta)=6.72-5.04 \cos \theta]$ $2(0.6 a)=6.72-5.04 \cos \theta$ Component is $5.6-4.2 \cos \theta$	M1 M1 A1		For differentiating v^{2} (from (i)) w.r.t. θ For using $\mathrm{v}(\mathrm{dv} / \mathrm{d} \theta)=\mathrm{ar}$

Mark Scheme 4731 June 2006

1	$\begin{aligned} \int x \rho \mathrm{~d} x & =\int_{0}^{a} k(a+2 x) x \mathrm{~d} x \\ & =k\left[\frac{1}{2} a x^{2}+\frac{2}{3} x^{3}\right]_{0}^{a}\left(=\frac{7}{6} k a^{3}\right) \\ \int \rho \mathrm{d} x & =k \int_{0}^{a}(a+2 x) \mathrm{d} x=k\left[a x+x^{2}\right]_{0}^{a} \\ & =2 k a^{2} \\ \bar{x} & =\frac{\frac{7}{6} k a^{3}}{2 k a^{2}} \\ & =\frac{7}{12} a \end{aligned}$	M1 A1 B1 M1 A1 5	for $\int \ldots(a+2 x) x \mathrm{~d} x$ for ... $\left[a x+x^{2}\right]_{0}^{a}$ Dependent on first M1 Accept 0.583a
2 (i)	$I=\frac{1}{2} \times 8 \times 0.15^{2} \quad\left(=0.09 \mathrm{~kg} \mathrm{~m}^{2}\right)$	B1	
	$\begin{aligned} \text { Using } \omega_{2}{ }^{2} & =\omega_{1}{ }^{2}+2 \alpha \theta \\ 25^{2} & =10^{2}+2 \alpha \times 75 \\ \alpha & =3.5 \mathrm{rads}^{-2} \end{aligned}$ $\begin{aligned} \text { Couple is } \begin{aligned} I \alpha & =0.09 \times 3.5 \\ & =0.315 \mathrm{~N} \mathrm{~m} \end{aligned} \end{aligned}$	M1A1 M1 A1 ft	ft from wrong / and / or α, but ft requires M1M1
	OR Increase in KE is $\frac{1}{2} \times 0.09 \times\left(25^{2}-10^{2}\right)$ M1A1 ft $=23.625 \mathrm{~J}$ M1 Couple is $\frac{23.625}{75}=0.315 \mathrm{Nm}$		WD by couple is $L \times 75$ ft requires M1M1
(ii)	By conservation of angular momentum $\begin{aligned} \left(0.09+I_{2}\right) \times 9 & =0.09 \times 25 \\ I_{2} & =0.16 \mathrm{~kg} \mathrm{~m}^{2} \end{aligned}$	M1 A1 ft A1 3	Using angular momentum

3	$\begin{aligned} \int_{1}^{2} \frac{1}{x^{2}} \mathrm{~d} x & =\left[-\frac{1}{x}\right]_{1}^{2} \\ & =\frac{1}{2} \end{aligned}$ Mass per unit area $\rho=48 \mathrm{~kg} \mathrm{~m}^{-2}$ $\begin{aligned} I & =\int \frac{4}{3}(\rho y \delta x)\left(\frac{1}{2} y\right)^{2} \\ & =\int \frac{1}{3} \rho y^{3} \mathrm{~d} x \\ & =\frac{1}{3} \rho \int_{1}^{2} \frac{1}{x^{6}} \mathrm{~d} x \\ & =\frac{1}{3} \rho\left[-\frac{1}{5 x^{5}}\right]_{1}^{2} \\ & =\frac{31}{480} \rho=\frac{31}{480} \times 48 \\ & =3.1 \mathrm{~kg} \mathrm{~m}^{2} \end{aligned}$	M1 A1 B1 M1 A1 A1 ft A1 A1 8	For integral of y^{3} For correct integration of $\frac{1}{x^{6}}$
4 (i)	$\begin{aligned} & R C=2 a \cos \theta \\ & \mathrm{EPE}=\frac{5 m g}{2 a}(2 a \cos \theta)^{2} \\ & \mathrm{GPE}=m g a \sin 2 \theta+2 m g(2 a \sin 2 \theta) \\ & V=10 m g a \cos ^{2} \theta+5 m g a \sin 2 \theta \\ & \begin{aligned} \mathrm{d} V & =-20 m g a \cos \theta \sin \theta+10 m g a \cos 2 \theta \\ \mathrm{~d} \theta & =-10 m g a \sin 2 \theta+10 m g a \cos 2 \theta \end{aligned} \end{aligned}$ For equilibrium, $10 m g a(\cos 2 \theta-\sin 2 \theta)=0$ $\begin{aligned} \tan 2 \theta & =1 \\ \theta & =\frac{1}{8} \pi \end{aligned}$	B1 M1 M1 A1 B1 M1 A1 7	or $R C^{2}=2 a^{2}+2 a^{2} \cos 2 \theta$ One term sufficient for M1 Correct differentiation of $\cos ^{2} \theta$ (or $\cos 2 \theta$) and $\sin 2 \theta$ For using $\frac{\mathrm{d} V}{\mathrm{~d} \theta}=0$ Accept $22 \frac{1}{2}^{\circ}, 0.393$
(ii)	$\frac{\mathrm{d}^{2} V}{\mathrm{~d} \theta^{2}}=-20 m g a \cos 2 \theta-20 m g a \sin 2 \theta$ When $\theta=\frac{1}{8} \pi, \frac{\mathrm{~d}^{2} V}{\mathrm{~d} \theta^{2}}(=-20 \sqrt{2} m g a)<0$ Hence the equilibrium is unstable	B1 ft M1 A1 3	Determining the sign of $V^{\prime \prime}$ Correctly shown
	OR Other method for determining whether V has a maximum or a minimum M1 Correct determination A1 ft Equilibrium is unstable		Correctly shown

5 (i)	$\begin{aligned} I & =\frac{1}{3}(20)\left(0.3^{2}+0.9^{2}\right)+20 \times 0.9^{2} \\ & =22.2 \mathrm{~kg} \mathrm{~m}^{2} \end{aligned}$	M1 M1 A1 (ag) 3	MI of lamina about any axis Use of parallel (or perp) axes rule Correctly obtained
	$\begin{array}{rlr} \text { OR } I & =\frac{1}{3} \times 20 \times 0.3^{2}+\frac{4}{3} \times 20 \times 0.9^{2} \\ & =22.2 \mathrm{~kg} \mathrm{~m}^{2} \end{array}$		As above
(ii)	Total moment is $20 \times 9.8 \times 0.9 \cos \theta-44.1$ Angular acceleration is zero when moment is zero $\cos \theta=\frac{44.1}{20 \times 9.8 \times 0.9}=0.25$	M1 M1 A1 (ag) 3	
(iii)	Maximum angular speed when $\cos \theta=0.25$ $\theta=1.318$ Work done against couple is 44.1×1.318 By work energy principle, $\begin{aligned} \frac{1}{2} I \omega^{2} & =20 \times 9.8 \times 0.9 \sin \theta-44.1 \theta \\ \omega & =3.19 \mathrm{rads}^{-1} \end{aligned}$	M1 A1 M1 A1 ft A1	Equation involving work, KE and PE

6 (i)	As viewed from P $\begin{aligned} \sin \alpha & =\frac{1790}{7400} \\ \alpha & =14.0^{\circ} \end{aligned}$ Bearing of relative velocity is $50-\alpha=036^{\circ}$ or $50+\alpha=064^{\circ}$	M1 A1 (ag) B1 ft	For 64 or ft $50+\alpha$
(ii)	Velocity diagram $\begin{aligned} \frac{\sin \beta}{7} & =\frac{\sin 106}{10} \\ \beta & =42.3^{\circ} \end{aligned}$ Bearing of \mathbf{v}_{Q} is $36+\beta=078.3^{\circ}$	B1 M1 A1 A1 4	Correct diagram (may be implied) Correct triangle must be intended Accept 78°
(iii)	$\begin{aligned} \frac{w}{\sin 31.7} & =\frac{10}{\sin 106} \\ w & =5.47 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	M1 A1 2	If cosine rule is used, M1 also requires an attempt at solving the quadratic
	Alternative for (ii) and (iii) $\binom{w \sin 36}{w \cos 36}=\binom{10 \sin \theta}{10 \cos \theta}-\binom{7 \sin 110}{7 \cos 110}$ Obtaining an equation in θ only, and solving it M1 $\theta=78.3^{\circ}$ Obtaining an equation in wonly, and solving it $w=5.47 \mathrm{~m} \mathrm{~s}^{-1}$		e.g. $10 \sin \theta-7.2654 \cos \theta=8.3173$ or A1A1 if another angle found first

(iv)	$Q C=\sqrt{7400^{2}-1790^{2}}=7180 \mathrm{~m}$ Time taken is $\frac{7180}{5.468}$ $=1310 \mathrm{~s}$	M1 M1 A1 ft 3	(Or M2 for other complete method for finding the time) For attempt at relative distance $\div w$ (not awarded for $7400 \div w$) or 21.9 minutes ft is $7180 \div w$
(v)	Bearing of $C P$ is $90+36=126^{\circ}$	B1 1	

7 (i)	$\begin{aligned} I & =\frac{1}{3} m(3 a)^{2}+m(2 a)^{2} \\ & =7 m a^{2} \\ m g(2 a \sin \theta) & =I \alpha \\ \quad \alpha & =\frac{2 g \sin \theta}{7 a} \end{aligned}$	M1 A1 M1 A1 4	Using parallel axes rule
(ii)	By conservation of energy $\begin{aligned} \frac{1}{2} I \omega^{2} & =m g\left(2 a \cos \frac{1}{3} \pi-2 a \cos \theta\right) \\ \frac{7}{2} m a^{2} \omega^{2} & =m g a(1-2 \cos \theta) \\ \omega & =\sqrt{\frac{2 g(1-2 \cos \theta)}{7 a}} \end{aligned}$	M1 A1 A1 (ag) 3	Equation involving KE and PE Need to see how $\frac{1}{3} \pi$ is used Correctly obtained
(iii)	$\begin{aligned} m g \cos \theta-R & =m\left(2 a \omega^{2}\right) \\ R & =m g \cos \theta-\frac{4}{7} m g(1-2 \cos \theta) \\ & =\frac{1}{7} m g(15 \cos \theta-4) \end{aligned}$	M1 A1 A1	For radial acceleration $r \omega^{2}$
	$\begin{aligned} m g \sin \theta-S & =m(2 a \alpha) \\ S & =m g \sin \theta-\frac{4}{7} m g \sin \theta \\ & =\frac{3}{7} m g \sin \theta \end{aligned}$	M1 A1 A1 6	For transverse acceleration $r \alpha$
	$\begin{gathered} \text { OR } \quad S(2 a)=I_{G} \alpha=\left(3 m a^{2}\right) \alpha \\ S=\frac{3}{7} m g \sin \theta \end{gathered}$ M1A1		Must use I_{G}
(iv)	When $\cos \theta=\frac{1}{3}, \sin \theta=\frac{\sqrt{8}}{3}, \tan \theta=\sqrt{8}$ $R=\frac{1}{7} m g, S=\frac{\sqrt{8}}{7} m g$ Angle with R is $\tan ^{-1} \frac{S}{R}=\tan ^{-1} \sqrt{8}=\theta$ so the resultant force is vertical Magnitude is $\sqrt{R^{2}+S^{2}}$ $=\frac{1}{7} m g \sqrt{1+8}=\frac{3}{7} \mathrm{mg}$	M1 A1 M1 A1 4	
	OR When resultant force is F vertically upwards $\begin{align*} & S=F \sin \theta, \text { hence } F=\frac{3}{7} m g \\ & R=F \cos \theta, \text { so } \\ & \frac{1}{7} m g(15 \cos \theta-4)=\frac{3}{7} m g \cos \theta \tag{M1}\\ & \qquad \cos \theta=\frac{1}{3} \end{align*}$ M1A1		
	OR Horizontal force is $R \sin \theta-S \cos \theta$ $\begin{aligned} & =\frac{1}{7} m g(15 \cos \theta-4) \sin \theta-\frac{3}{7} m g \sin \theta \cos \theta \quad \mathrm{M} 1 \\ & =\frac{1}{7} m g \sin \theta(12 \cos \theta-4) \\ & =0 \text { when } \cos \theta=\frac{1}{3} \quad \text { A1 } \end{aligned}$		

Mark Scheme 4732 June 2006

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs ". If correct ans seen to $\geq 3 \mathrm{sfs}$, ISW for later rounding Penalise 2 sfs only once in paper.

4(i)	$\begin{aligned} & 0.4207 \text { or } 0.421(3 \mathrm{sfs}) \\ & \text { or } 0.8^{25}+25 \mathrm{x} 0.8^{24} \times 0.2+. .{ }^{25} \mathrm{C}_{4} \times 0.4^{21} \times 0.2^{4} \\ & 0.579(3) \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { B1 } & \mathbf{2} \end{array}$	or $1-0.6167$ or $0.3833 \quad(3 \mathrm{sfs})$ or 1- (6 correct terms, 0 to 5)
(ii)	$\begin{aligned} & { }^{{ }^{10} \mathrm{C}_{3} \times(1-0.27)^{7} \times 0.27^{3}} \\ & =0.261(3 \mathrm{sfs}) \end{aligned}$	$\begin{array}{\|ll} \hline \text { M1 } & \\ \text { A1 } & 2 \end{array}$	
(iii)		$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{M} 1 \end{aligned}$ A1 3	or $1-{ }^{n} \mathrm{C}_{0} \times 0.27^{0} \times 0.73^{n}>0.95$ oe allow incorrect sign M1 must be correct $\mathrm{ft}(1-0.27)$ from (ii) for M1M1 10 with incorrect sign in wking: SCB2 10 with just $0.73^{9}=0.059: \quad$ M1M1A1
Total		7	
5(i)	$1 / 3+1 / 4+p+q=1 \quad$ oe $0 \times 1 / 3+1 \times 1 / 4+2 p+3 q=1 \frac{1}{4}$ oe equalize coeffs, eg mult eqn (i) by 2 or 3 Or make p or q subject of (i) or (ii) $p=1 / 4, q=1 / 6$ oe	$\begin{array}{ll} \hline \text { B1 } & \\ \text { B1 } & \\ \text { M1 } & \\ \text { A1A1 } & \mathbf{5} \\ \hline \end{array}$	allow one error. ft their equns subst or subtr not nec'y
(ii)	$\begin{aligned} & \sum x^{2} p(\text { not } / 4 \text { or } / 3 \text { etc }) \quad\left(=2^{3 / 4}\right) \\ & \left(1^{1} / 4\right)^{2} \\ & =1.1875 \text { or } 1^{3} / 16 \text { oe } \\ & \operatorname{sd}=\sqrt{ }(\text { (their } 1.1875)=1.09(3 \mathrm{sfs}) \end{aligned}$	M1 M1 A1 B1f 4	≥ 2 non-zero terms correct. dep +ve result indep if +ve result or . $\left.x-1^{1 / 4}\right)^{2} p$ (≥ 2 (non-0) terms correct): M2 ft (i) $(0 \leq p, q<1)$ or letters p, q both M1s cao dep 1st M1 \& $/(+$ ve no. $) \quad$ eg $\sqrt{ } 2.75=1.66$
Total		9	

6(i)(a)	Little (or no) connection (agreement, rel'nship) between dist and commission Allow disagreement Unchanged. No change in rank	M1 A1 M1 M1 A1 B1 ft B1B1	5 1	≥ 5 ranks correct in each set all correct dep ranks attempted even if opp orders, allow arith errors Correct formula with $n=7, \operatorname{dep} 2^{\text {nd }}$ M1 calc r for ranks: $\begin{aligned} S_{x x}=S_{y y} & =140-28^{2} / 7 . & S_{x y}=110-28^{2} / 7 \\ & =28) & (=-2) \end{aligned}$ corr subst in one corr S (any version):M1 corr subst in $r=S_{x y} / \sqrt{ }\left(S_{x x} S_{y y}\right) \quad$:M1 -0.07 without wking: M1A1M2A0 No mks unless $\left\|r_{s}\right\| \leq 1$ ft their r_{s} Must refer to context. Not "little corr'n between dist and com" not "strong disagreement" Ignore other comment
(ii)(a) (b)	$=-1$ Close to -1 or, eg ≈-0.9	B1 B1	1	indep cao not referring to "corr'n" rather than r allow "neg", not neg corr'n or neg skew
Total		10		

Total 72 marks

Mark Scheme 4733 June 2006

1	$\begin{aligned} & \mu=\frac{3}{37} \int_{3}^{4} x^{3} d x=\frac{3}{37}\left[\frac{x^{4}}{4}\right]_{3}^{4} \\ & \left.3 \frac{81}{148}\right] \\ & \frac{3}{37} \int_{3}^{4} x^{4} d x=\frac{3}{37}\left[\frac{x^{5}}{5}\right]_{3}^{4} \\ & =121 \frac{123}{185} \text { or } 12.665 \\ & \sigma^{2}=12 \frac{123}{185}-3 \frac{81}{148}{ }^{2}=\mathbf{0 . 0 8 1 5} \end{aligned}$	M1 M1 A1 A1 M1 A1	Integrate $x f(x)$, limits 3 \& $4 \quad$ [can be implied] [$\frac{525}{148}$ or 3.547] Attempt to integrate $x^{2} f(x)$, limits $3 \& 4$ Correct indefinite integral, any form $\frac{2343}{185}$ or in range [12.6, 12.7] [can be implied] Subtract their μ^{2} Answer, in range [0.0575, 0.084]
2	(i) Find $\mathrm{P}(R \geq 6) \quad$ or $\mathrm{P}(R<6)$ $=0.0083 \quad \text { or } 0.9917$ Compare with 0.025 [can be from $\mathrm{N}]$ [0.05 if "empty LH tail stated] Reject H_{0}	M1 A1 B1 A1 $\sqrt{2}$ 4	Find $P(=6)$ from tables/calc, OR RH critical region $P(\geq 6)$ in range $[0.008,0.0083]$ or $P(<6)=$ 0.9917 OR CR is 6 with probability $0.0083 / 0.9917$ Explicitly compare with 0.025 [or 0.975 if consistent] OR state that result is in critical region Correct comparison and conclusion, $\sqrt{ }$ on their p
	(ii) $\begin{aligned} & n=9, \mathrm{P}(\leq 1)=0.0385[>0.025] \\ & n=10, \mathrm{P}(\leq 1)=0.0233[<0.025] \\ & \text { Therefore } n=9 \end{aligned}$	$\begin{array}{ll} & \\ \text { A1 } & \\ \text { B1 } & 3 \end{array}$	At least one, or $n=8, P(\leq 1)=0.0632$ Both of these probabilities seen, don't need 0.025 Answer $n=9$ only, indep't of M1A1, not from $\mathrm{P}(=$ 1)
3	(i) $\begin{aligned} & (140-\mu) / \sigma=-2.326 \\ & (300-\mu) / \sigma=0.842\end{aligned}$ Solve to obtain: $\begin{aligned} \mu & =257.49 \\ \sigma & =50.51 \end{aligned}$	M1 B1 A1 $\sqrt{2}$ M1 A1 A1 $\mathbf{6}$	One standardisation equated to Φ^{-1}, allow " $1-$ ", σ^{2} Both 2.33 and 0.84 at least, ignore signs Both equations completely correct, $\sqrt{ }$ on their z Solve two simultaneous equations to find one variable μ value, in range [257, 258] σ in range [50.4, 50.55]
	(ii) Higher as there is positive skew	$\begin{array}{\|ll} \mathrm{B} 1 & \\ \text { B1 } & \mathbf{2} \\ \hline \end{array}$	"Higher" or equivalent stated Plausible reason, allow from normal calculations
4	(i) Each element equally likely to be selected (and all selections independent) OR each possible sample equally likely	B1	One of these two. "Selections independent" alone is insufficient, but don't need this. An example is insufficient.
	$\text { (ii) } \begin{aligned} & \quad B(6,5 / 8) \\ & \\ & { }^{6} C_{4} p^{4}(1-p)^{2} \\ & = \\ & =0.32187 \end{aligned}$	M1 M1 A1 $\sqrt{ } 3$	$B(6,5 / 8)$ stated or implied, allow e.g. 499/799 Correct formula, any p Answer, a.r.t. 0.322 , can allow from wrong p
	$\text { (iii) } \begin{aligned} & \mathrm{N}(37.5,225 / 16) \\ & \frac{39.5-37.5}{3.75}=0.5333 \\ & 1-\Phi(0.5333) \\ & =\mathbf{0 . 2 9 7} \end{aligned}$	B1 M1 dep A1 dep M1 A1 6	Normal, mean 37.5, or 37.47 from 499/799, 499/800 14.0625 or 3.75 seen, allow $14.07 / 14.1$ or 3.75 Standardise, wrong or no cc, $n p, n p q$, no $\sqrt{ } n$ Correct cc, $\sqrt{ } n p q$, signs can be reversed Tables used, answer < 0.5, $p=5 / 8$ Answer, a.r.t. 0.297 SR: $n p<5$: $\quad \operatorname{Po}(n p)$ stated or implied, B1

5	(i)	$\begin{aligned} & \mathrm{B}(303,0.01) \\ & \approx \mathrm{Po}(3.03) \end{aligned}$	$\begin{array}{ll} \hline \text { B1 } \\ \text { B1 } & 2 \end{array}$	$B(303,0.01)$ stated, allow $p=0.99$ or 0.1 Allow Bin implied clearly by parameters Po(3.03) stated or implied, can be recovered from (ii)
	(ii)	$\begin{aligned} & e^{-3.03}\left(1+3.03+\frac{3.03^{2}}{2}\right)=0.4165 \\ & \text { AG } \end{aligned}$	$\begin{array}{ll} \\ \text { M1 } & \\ \text { A1 } \end{array}$	Correct formula, ± 1 term or "1 - " or both Convincingly obtain $0.4165(02542)$ [Exact: 0.41535]
	(iii)	$\begin{aligned} & 302 \text { seats } \Rightarrow \mu=3.02 \\ & e^{-3.02}(1+3.02)=0.1962 \\ & 0.196<0.2 \end{aligned}$ $\text { So } 302 \text { seats. }$	M1 M1 A1 A1 A1	Try smaller value of μ Formula, at least one correct term Correct number of terms for their μ 0.1962 [or 0.1947 from exact] Answer 302 only
SR: SR: SR:		```B(303, 0.99): B1B0; M0; M1 then N(298.98,2.9898) or equiv, standardise: M1A1 total 4/9 p=0.1: }\quad\textrm{B}(303,0.1),N(30.3,27.27) B1B0; Standardise 2 with np & Vnpq, M1A0 N(0.1n, 0.09n); standardise with np & Vnpq; solve quadratic for }Vn;n=339: M1M1M1A1, total 6/9 B(303, 0.01) \approxN(3.03, 2.9997): B1B0; M0A0; M1A0```		
6	(i)	Customers arrive independently	B1 1	Valid reason in context, allow "random"
	(ii)	$\begin{aligned} & 1-0.9921 \\ & =0.0079 \end{aligned}$	$\begin{array}{ll} \mathrm{M} 1 \\ \text { A1 } & 2 \end{array}$	Poisson tables, " 1 "", or correct formula ± 1 term Answer, a.r.t. $0.008 \quad[1-0.9384=0.0606:$ M1A0 $]$
	(iii)	$\begin{aligned} & \begin{array}{l} \mathrm{N}(48,48) \\ z=\frac{55.5-48}{\sqrt{48}} \\ =1.0825 \end{array} \\ & 1-\Phi(1.0825) \\ & =0.1394 \end{aligned}$	B1 B1 $\sqrt{ }$ M1 dep A1 dep M1 A1 6	Normal, mean 48 Variance or SD same as mean $\sqrt{ }$ Standardise, wrong or no cc, $\mu=\lambda$ Correct cc, $\sqrt{\lambda}$ Use tables, answer < 0.5 Answer in range [0.139, 0.14]
	(iv)	$\begin{aligned} & e^{-\lambda}<0.02 \\ & \lambda>-\ln 0.02 \\ & \quad=3.912 \\ & 0.4 t=3.912: \quad t=9.78 \text { minutes } \\ & t=9 \text { minutes } 47 \text { seconds } \end{aligned}$	M1 M1 A1 M1 A1 5	Correct formula for $P(0), O R P(0 \mid \lambda=4)$ at least In used \quad OR $\lambda=3.9$ at least by $T \& 1$ 3.91(2) seen OR $\lambda=3.91$ at least by $T \& 1$ Divide λ by 0.4 or multiply by 150 , any distribution 587 seconds $\pm 1 \mathrm{sec}$ [inequalities not needed]

7		$\frac{c-4000}{60 / \sqrt{50}}=1.645$ Solve $c=4014$ [4013.958] Critical region is $\mathbf{>} \mathbf{4 0 1 4}$	M1 B1 A1 $\sqrt{ }$ M1 A1 A1 $\sqrt{ }$ 6	Standardise unknown with $\sqrt{ } 50$ or 50 [ignore RHS] $z=1.645$ or -1.645 seen Wholly correct eqn, $\sqrt{ }$ on their $z[1-1.645$: M1B1A0] Solve to find c Value of c, a.r.t. 4014 Answer "> 4014", allow \geq, $\sqrt{ }$ on their c, needs M1M1
	(ii)	Use "Type II is: accept when H_{0} false" $\begin{array}{cc} \begin{array}{c} 4020-4014 \\ \hline 0 / \sqrt{50} \end{array} & \\ =0.7071 & \\ 4013.958] & \\ 1-\Phi(0.712 \text { from } \\ =0.240 & \\ 4013.958] & \\ \hline 0.238 \text { from } \end{array}$	M1dep depM1 A1 1 A1 M1 A1	Standardise 4020 and $4014 \sqrt{ }$, allow 60^{2}, cc With $\sqrt{ } 50$ or 50 Completely correct LHS, $\sqrt{ }$ on their c z-value in range [0.707, 0.712] Normal tables, answer < 0.5 Answer in range [0.2375, 0.2405]
	(iii)	Smaller Smaller cv, better test etc	$\begin{aligned} & B 1 \\ & B 1 \end{aligned}$	"Smaller" stated, no invalidating reason Plausible reason
	(iv)	Smaller Smaller cv, larger prob of Type I etc	$\begin{array}{ll} \text { B1 } \\ \text { B1 } & 2 \end{array}$	"Smaller" stated, no invalidating reason Plausible reason
	(v)	No, parent distribution known to be normal	B2	"No" stated, convincing reason SR: If B0, "No", reason that is not invalidating: B1

Mark Scheme 4734 June 2006

1	Add two Poisson distributions	M1	
With mean 17	A1		
$P(27)=e^{-17} 17^{27} / 27!$ or $P(\leq 27)-P(\leq 26)$	M1		Use formula or table
0.00634 or $0.0063,0.0064$ from tables	A1	4	M1A1 0.0052 from $N(17,17)$

2
$\mathrm{H}_{0}: p_{1}=p_{2}=p_{3}=p_{4}$,
(H_{1} : They are not all equal)
B1
Expected values under $\mathrm{H}_{0}=150$
B1
$X^{2}=\left(12^{2}+23^{2}+15^{2}+20^{2}\right) / 150$

$$
=8.653
$$

At least one correct term
A1 Accept art 8.65 or 8.66
Critical value with 3 d.f. $=7.815 \quad \mathrm{~B} 1$
($X^{2}>7.185$ so) reject H_{0} and accept that proportions are different.

B1 $\sqrt{ } 6 \quad \mathrm{ft}$ critical value

Assume population of differences has a normal distribution.
or sample random B1 Either assumption.
$\mathrm{H}_{0}: \mu_{\mathrm{B}}-\mu_{\mathrm{A}}=0, \mathrm{H}_{1}: \mu_{\mathrm{B}}-\mu_{\mathrm{A}}>0$
B1
AEF
$t=(23.43-22.84) / \sqrt{ }(0.548 / 10)$
$C V=1.833$
B1
$2.52>\mathrm{CV}$ so reject H_{\circ}
Seen
Allow from CV 2.262 (2-tail),
1.812,1.734

Accept that there is evidence that mean time
has reduced.
A1 $\sqrt{ } \sqrt{7}$
7 ft wrong CV
(i) EITHER: $\int_{q_{3}}^{4} \frac{1}{12} x \mathrm{~d} x=\frac{1}{4}$ or $\int_{1}^{2} \frac{4}{3 x^{3}} d x+\int_{2}^{q_{3}} \frac{1}{12} x d x=\frac{3}{4} \quad \mathrm{M} 1^{*}$
$\left[x^{2} / 24\right]$ OR $\left[-2 /\left(3 x^{2}\right]+\left[x^{2} / 24\right] \quad\right.$ A1 Either
$\left(16-q_{3}{ }^{2}\right) / 24=1 / 4$ or $1 / 3+q_{3}{ }^{2} / 24=3 / 4 \quad$ dep *M1 \quad Form equation and attempt to solve $q_{3}=\sqrt{10}$

A1 4 Accept to 3 SF
If they find $F(x)$: M1A1, M1A1
(ii) $\mathrm{E}\left(X^{2}\right)=\int_{1}^{2} \frac{4}{3 x} \mathrm{~d} x+\int_{2}^{4} \frac{x^{3}}{12} \mathrm{~d} x$
$\mathrm{E}(X)=\int_{1}^{2} \frac{4}{3 x^{2}} \mathrm{~d} x+\int_{2}^{4} \frac{x^{2}}{12} \mathrm{~d} x \quad \mathrm{M} 1 \quad$ Either correct
$\left[\frac{4}{3} \ln x\right]_{1}^{2}+\left[\frac{x^{4}}{48}\right]_{2}^{4}$
$\left[\frac{-4}{3 x}\right]_{1}^{2}+\left[\frac{x^{3}}{36}\right]_{2}^{4}$
$a=E\left(X^{2}\right) / E(X) \quad$ M1
$a=2.6659,2.67 \quad$ A1 $5 \quad$ Or exact value, $(3 \ln 2) / 5+9 / 4$ or equiv.

\begin{tabular}{|c|c|c|c|c|c|}
\hline 5 \& (i) \& \((48 \times 72 / 150)\) or \((48 / 150)(72 / 150) \times 150\) \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& 2 \& Multiply and divide relevant values All correct \\
\hline \& (ii) \& No, no expected value less than 5 \& \& B1 \& 1 \\
\hline \& (iii) \& \begin{tabular}{l}
\(\mathrm{H}_{0}\) :Volume and day are independent (\(\mathrm{H}_{1}\) :Volume and day are not independe Critical value for \(4 \mathrm{df}=13.28\) \\
Test statistic \(>13.28\), reject \(\mathrm{H}_{0}\) Accept that volume and day are not independent
\end{tabular} \& \begin{tabular}{l}
nt) \\
B1 \\
M1 \\
A1
\end{tabular} \& B1
4 \& Attributes specified \\
\hline \& (iv) \& Choose Friday Highest volume \& B1 \& B1 \& 2 Not reference to E values \\
\hline \(\overline{6}\) \& (i) \& \begin{tabular}{l}
(a) No \\
0.43 belongs to relevant interval \\
(b)Yes \\
0.43 is outside relevant interval
\end{tabular} \& B1
B1 \& B1
3 \& Must be with reason \\
\hline \& (ii) \& \begin{tabular}{l}
\(\mathrm{H}_{0}: p_{R}=p_{T,} \mathrm{H}_{1}: p_{R} \neq p_{T}\) \\
Estimate of \(p=74 / 165\) \\
Variance estimate of difference
\[
\begin{aligned}
\& =\left(\frac{74}{165}\right)\left(\frac{91}{165}\right)\left(\frac{1}{80}+\frac{1}{85}\right) \\
\& z=(28 / 80-46 / 85) / \sigma_{\text {est }} \\
\& =-2.468
\end{aligned}
\] \\
Compare correctly with CV -2.468<-2.326, or \(2.468>2.326\) Reject \(\mathrm{H}_{0}\) and accept that the proportions differ on the island.
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1 \\
B1 \\
M1 \\
A1 \\
M1 \\
A1
\end{tabular} \& A1

8 \& | Proportions |
| :--- |
| May be implied by later work |
| Standardising |
| Completely correct expression |
| + or - , 2.47 |
| Conclusion in context |

\hline 7 \& (i) \& | $T_{1} \sim \mathrm{~N}\left(2.2,0.75^{2}\right), T_{2} \sim \mathrm{~N}\left(1.8,0.70^{2}\right)$ |
| :--- |
| Use $T_{2}-1 / 2 T_{1}$ normal $\mu=0.7$ |
| $\sigma^{2}=0.7^{2}+1 / 4 \times 0.75^{2}(0.630625)$ |
| ($0-\mu$) $/ \sigma$ -0.881 |
| Probability 0.189 | \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& A1 \& | Or $1 / 2 T_{1}-T_{2}$ |
| :--- |
| From reasonable σ^{2} not just sum + or - |
| 6 |

\hline (ii) \& Use \& | m of 5 Ts | M 1 |
| :--- | :--- |
| $\mu=9.4$ | |
| $\sigma^{2}=2.5225$ | |
| $\mathrm{z}=(10-\mu) / \sigma$ | |
| Probability $0.6473,0.647$ | | \& | A1 |
| :--- |
| A1 |
| M1 |
| A1 | \& \multicolumn{2}{|l|}{Standardising, must be σ 5}

\hline \& (iii) \& Calculation of variance \quad B1 \& 1 \& \&

\hline
\end{tabular}

8
(i) $\quad s_{B}{ }^{2}=\frac{1}{49}\left(630.194-\frac{176.35^{2}}{50}\right)$
$=0.1675$
$\mathrm{H}_{0}: \mu_{B}-\mu_{A}=0, \mathrm{H}_{1}: \mu_{B}-\mu_{A}>0$
$z=0.115 / \sqrt{ }(0.049 / 40+0.1675 / 50) \quad$ M1
$=1.700$
z>1.645, reject H_{0} and accept that $\mu_{B}>\mu_{A}$

A1

A1
M1

M1
A1 $\sqrt{ } 7$

Any equivalent formula
May be implied by later work aef
Standardising but not from pooled variance estimate
art 1.70
Compare correctly with 1.645
ft their calculated z
(ii) $\quad z=0.09 / \sqrt{ }(0.004575)$

$$
=1.331
$$

H_{0} not rejected for $\alpha<9.16$

M1
A1
M1 A1 Accept $<9.2, \leq 9.2$. M1 for correct 4 method for 9.2, A1 for inequality difference) M1 Mention of CLT implied by
(iii) (a) Not necessary
(b) Not necessary since samples large enough for CLT to be applied (normality of sample means giving normality of

B1 Ignore any reason
------------(iii) A1 3 Sample mean (approx) normal. (Do not award if population or sample said to be normal)

Mark Scheme 4735 June 2006
(i) (a) True
(b) False
(c) True

B2 2
B0 for 0,1 correct,
B1 for 2 correct,
B2 for 3 correct.

(ii)	$\begin{aligned} & \operatorname{Var}(2 X-Y)= \\ & 4 \operatorname{Var}(X)+\operatorname{Var}(Y)-4 \operatorname{Cov}(X, Y) \\ & 6=11-4 \operatorname{Cov}(X, Y) \\ & \operatorname{Cov}(X, Y)=5 / 4 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \mathbf{4} \end{aligned}$	Using formula Obtain cov cao
2	EITHER: sample is random OR twin pairs chosen independently			
	$\begin{aligned} & \mathrm{H}_{0}: m_{F}=m_{S}, \mathrm{H}_{1}: m_{F}>m_{S} \\ & \text { Use of } \mathrm{B}(60,0.5) \end{aligned}$	B1	M1	For both using medians
	Normal approx with $\mu=30, \sigma^{2}=15$		A1	Both
	EITHER: $\mathrm{z}=(36.5-30) / \sqrt{15}$	M1		Standardising
	=1.678	A2		A1 if correct apart from missing or wrong cc
	OR:CR is $(\mathrm{X}-30-0.5) / \sqrt{15}>1.645$ $X \geq 37$	A2	M1	Setting up inequality A1 if correct apart from missing or wrong c.c.
	EITHER: 1.678> 1.645 OR: Sample value 37 in CR There is evidence that the first-born male twins are taller than the second	M1		Correct comparison
	-born twin in a majority of cases. OR: p-value: 0.0467 > 1.645	$\begin{aligned} & \text { A1 } \\ & \text { M1 } \end{aligned}$		Conclusion in context
	Completion	A1	9	
	NB: Exact $\operatorname{Bin}(60,0.5) \mathrm{p}$-value is 0.0	from	raph	calculator: full credit

3 (i) $\quad P(C)=P(C \mid F) P(F)+P\left(C \mid F^{\prime}\right) P\left(F^{\prime}\right)$
$=0.98 \times 0.05+0.04 \times 0.95$
A1
0.087 AG A1

3
(ii) $\quad \mathrm{P}(\mathrm{F} \mid \mathrm{C})=\frac{0.05 \times 0.98}{0.05 \times 0.98+0.95 \times 0.04} \quad \mathrm{M} 1 \mathrm{~A} 1$
$=0.5632 \quad$ A1 3 art 0.563 or $49 / 87$
(iii) $\quad P\left(F \mid C^{\prime}\right)=P\left(C^{\prime} \mid F\right) P(F) / P\left(C^{\prime}\right) \quad M 1 \quad$ Conditional prob.
0.02×0.05/0.913 [0.001095]
$5000 \times$ above $=5.476 ., 5.48$.
M1A1 $\sqrt{ } 4 \quad \mathrm{ft}$ a conditional prob.

4
(i) $\quad \mathrm{M}_{\mathrm{x}}(\mathrm{t})=\int_{a}^{b} \frac{1}{b-a} \mathrm{e}^{\mathrm{xt}} \mathrm{dt}$

M1 Correct integral with limits

$$
\begin{aligned}
& =\left[\frac{\mathrm{e}^{x t}}{(b-a) t}\right]_{a}^{b} \\
& =\frac{e^{b t}-e^{a t}}{(b-a) t} \mathrm{AG}
\end{aligned}
$$

B1
Correct integral

A1 3
(ii) Product of mgfs M1
$\left(\frac{1-e^{-t}}{t}\right)\left(\frac{e^{t}-1}{t}\right)$
A1 2
(iii) $\mathrm{M}_{\mathrm{S}}(\mathrm{t})=\left(\frac{e^{\frac{1}{2} t}-e^{-\frac{1}{2} t}}{t}\right)^{2}$
$=\left(e^{t}-2+e^{-t}\right) / t^{2} \quad$ A1dep
Correctly shown
mgfs of S and T are same \quad depA1 Correctly shown
S and T have identical distributions B1 4

5

Mark Scheme 4736 June 2006

1	(i)	2 4 3 3 2 5 4 Box 1 $\mathbf{2}$ $\mathbf{4}$ $\mathbf{2}$ Box 2 $\mathbf{3}$ $\mathbf{3}$ Box 3 $\mathbf{5}$ Box 4 $\mathbf{4}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 [2] } \end{aligned}$	For packing these seven weights into boxes with no more than 8 kg total in each box For this packing
	(ii)	5 4 3 3 2 2 Box 1 $\mathbf{5}$ $\mathbf{3}$ Box 2 $\mathbf{4}$ $\mathbf{4}$ Box 3 $\mathbf{3}$ $\mathbf{2}$ $\mathbf{2}$	B1 M1 A1 [3]	For putting the weights into decreasing order (may be implied from packing) For packing the seven weights into three boxes with no more than 8 kg total in each box For this packing
	(iii)	$\begin{aligned} & 15 \times 2^{2} \\ & =60 \text { seconds } \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	For a correct calculation For 60 or 60 seconds or 1 minute 7
2	(i)		\qquad M1 A1 [2] \qquad M1 A1 [2]	Graphs may be in any order For a reasonable attempt For a graph that is topologically equivalent to one of these graphs For a different reasonable attempt For a graph that is topologically equivalent to one of these graphs For another different reasonable attempt For a graph that is topologically equivalent to one of these graphs
	(ii)	The graphs each have four odd nodes, but Eulerian graphs have no odd nodes.	B1 [1]	For any recognition that the nodes are not all even 7

3	(ii)	Travelling salesperson $A-B-E-G-F-D-C-A$ 130 (minutes) Shortest possible time ≤ 130 minutes Order of connecting: $\boldsymbol{B}, \boldsymbol{E}, \mathbf{G}, \boldsymbol{F}, \boldsymbol{D}, \boldsymbol{C}$ Lower bound $=10+15+95$ $=120$ minutes		Identifying TSP by name For starting with $A-B-E-G-\ldots$ For this closed tour For 130 For less than or equal to their time, with units For a valid vertex order (or arc order) for their starting point For a diagram or listing showing a tree connecting the vertices B, C, D, E, F and G but not A For a diagram showing one of these trees (vertices must be labelled but arc weights are not needed) For stating or using the total weight of their tree For stating or using $A B$ and $A D$ or $10+15$ For 120 or calculating $25+$ their 95 , with units
	(iv)	$A-B-E-G-F-C-D-A$ or this in reverse	$\begin{aligned} & \text { M1 } \\ & \text { A1 [2] } \end{aligned}$	For a reasonable attempt For a valid tour of weight 125 13

5	(i)	$\begin{aligned} & 2 x-5 y+2 z+s=10 \\ & 2 x+3 z+t=30 \end{aligned}$							B1 [1]	Slack variables used correctly
	(ii)	P	χ	y	Z	s	t		M1 A1 [2]	For overall structure correct, including two slack variable columns and column for RHS (condone omission of P column or labels) For a completely correct initial tableau, with no extra constraints added (condone variations in order of rows or columns)
		1	-1	2	3	0	0	0		
		0	2	-5	2	1	0	10		
		0	2	0	3	0	1	30		
	(iii)	Pivot on x column since it is the only column with a negative value in the objective row $10 \div 2=5$ $5<15$ so pivot on this row $30 \div 2=15$							B1 B1 [2]	For negative in objective row, top row, payoff row, or equivalent For these two divisions shown
	(iv)	New row $2=$ row $2 \div 2$ New row 1 = row $1+$ new row 2 New row 3 = row $3-2 \times$ new row 2							$\begin{aligned} & \text { B1 } \\ & \text { B1 [2] } \end{aligned}$	For dealing with the pivot row correctly For dealing with the other rows correctly May be coded by rows of table
		1	0	-0.5	4	0.5	0	5	M1 M1 A1 [3]	For updating their pivot row correctly For a reasonable attempt at updating other rows For correct values in tableau (condone consistent order of rows or columns). Do not follow through errors in initial tableau or pivot choice.
		0	1	-2.5	1	0.5	0	5		
		0	0	5	1	-1	1	20		
		$\begin{aligned} & x=5, y=0, z=0 \\ & P=5 \end{aligned}$ Not the maximum feasible value of P since there is still a negative value in the objective row							$\begin{array}{ll} \mathrm{B1} 1 \\ \text { B1 } \\ \text { B1 } \end{array}$	For reading off x, y and z from their tableau For reading off P from their tableau 'No' seen or implied and a correct reason 13

Mark Scheme 4737 June 2006

1 (i)	4+4+8+7+6 = 29 litres per second	$\begin{aligned} & \hline \text { B1 } \\ & {[1]} \end{aligned}$	For 29
(ii)	$4-1-2+3+3+5=12$ litres per second $0-5-4+3+0+5=-1$ So minimum flow across cut is $\mathbf{0}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	For using upper and lower capacities correctly For showing how 12 (given) was worked out For a substantially correct calculation For 0, from an appropriate calculation
(iii)	Flow in arc $C E \geq 2$ and flow in arc $C F \geq$ 3, so at least 5 litres per second must flow into C At most 4 litres per second flow into A, of which at least 1 flows out to B and 2 flow out to E, so at most 1 litre per second can flow along $A D$	M11 A1 M1 A1 [4]	For any reasonable attempt (eg $C E=2$, $C F=3$) For correct reasoning For identifying $\leq \mathbf{4}$ in and $\geq \mathbf{3}$ out or equivalent For a correct conclusion
(iv)	Either a diagram or a description of a flow of 11 litres per second. Arcs $A D, A E, B E, C E, C F$ must all be at their minimum capacities.	M1 A1 A1 [3]	For a flow of 11 litres per second from S to T Flow satisfies all lower capacities Flow satisfies all upper capacities
(v)	$11 \leq$ maximum flow ≤ 12	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { [2] } \end{aligned}$	11 as lower bound 12 as upper bound (max flow $=12 \Rightarrow$ B0, B1) 14

Advanced GCE Mathematics (3890, 3892, 7890) June 2006 Assessment Series

Unit Threshold Marks

Unit		Maximum Mark	a	b	c	d	e	u
4721	Raw	72	56	48	40	33	26	0
	UMS	100	80	70	60	50	40	0
4722	Raw	72	53	45	37	29	22	0
	UMS	100	80	70	60	50	40	0
4723	Raw	72	57	49	42	35	28	0
	UMS	100	80	70	60	50	40	0
4724	Raw	72	60	52	44	37	30	0
	UMS	100	80	70	60	50	40	0
4725	Raw	72	60	52	44	37	30	0
	UMS	100	80	70	60	50	40	0
4726	Raw	72	54	47	40	33	27	0
	UMS	100	80	70	60	50	40	0
4727	Raw	72	50	43	37	31	25	0
	UMS	100	80	70	60	50	40	0
4728	Raw	72	58	50	42	35	28	0
	UMS	100	80	70	60	50	40	0
4729	Raw	72	59	51	43	36	29	0
	UMS	100	80	70	60	50	40	0
4730	Raw	72	58	50	43	36	29	0
	UMS	100	80	70	60	50	40	0
4731	Raw	72	51	44	37	30	23	0
	UMS	100	80	70	60	50	40	0
4732	Raw	72	56	49	42	35	29	0
	UMS	100	80	70	60	50	40	0
4733	Raw	72	52	44	36	29	22	0
	UMS	100	80	70	60	50	40	0
4734	Raw	72	57	49	42	35	28	0
	UMS	100	80	70	60	50	40	0
4735	Raw	72	54	47	40	33	27	0
	UMS	100	80	70	60	50	40	0
4736	Raw	72	61	53	46	39	32	0
	UMS	100	80	70	60	50	40	0

4737	Raw	72	61	53	45	38	31	0
	UMS	100	80	70	60	50	40	0

Specification Aggregation Results

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	U
$\mathbf{3 8 9 0}$	300	240	210	180	150	120	0
$\mathbf{3 8 9 1}$	300	240	210	180	150	120	0
$\mathbf{3 8 9 2}$	300	240	210	180	150	120	0
$\mathbf{7 8 9 0}$	600	480	420	360	300	240	0
$\mathbf{7 8 9 1}$	600	480	420	360	300	240	0
$\mathbf{7 8 9 2}$	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{U}	Total Number of Candidates
$\mathbf{3 8 9 0}$	31.0	46.3	61.2	73.5	84.2	100	12438
$\mathbf{3 8 9 1}$	0	0	0	100	100	100	1
$\mathbf{3 8 9 2}$	60.6	76.8	89.2	95.3	97.6	100	1109
$\mathbf{7 8 9 0}$	46.9	67.7	81.9	91.5	97.6	100	9525
$\mathbf{7 8 9 1}$	50.0	75.0	87.5	87.5	100	100	8
$\mathbf{7 8 9 2}$	59.9	80.2	89.4	95.5	98.6	100	1428

For a description of how UMS marks are calculated see;
www.ocr.org.uk/OCR/WebSite/docroot/understand/ums.jsp
Statistics are correct at the time of publication

OCR (Oxford Cambridge and RSA Examinations)

1 Hills Road
Cambridge
CB1 2EU

OCR Information Bureau

(General Qualifications)
Telephone: 01223553998
Facsimile: 01223552627
Email: helpdesk@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

