OXFORD CAMBRIDGE AND RSA EXAMINATIONS

 Advanced Subsidiary General Certificate of Education

 Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

 Advanced General Certificate of Education}

MATHEMATICS

4729

Mechanics 2
Friday 27 JANUARY 2006
Afternoon
1 hour 30 minutes
Additional materials:
8 page answer booklet
Graph paper
List of Formulae (MF1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- The acceleration due to gravity is denoted by $\mathrm{g} \mathrm{m} \mathrm{s}^{-2}$. Unless otherwise instructed, when a numerical value is needed, use $g=9.8$.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

A uniform $\operatorname{rod} A B$ has weight 20 N and length 3 m . The end A is freely hinged to a point on a vertical wall. The rod is held horizontally and in equilibrium by a light inextensible string. One end of the string is attached to the rod at B. The other end of the string is attached to a point C, which is 1 m directly above A (see diagram). Calculate the tension in the string.

2 A golfer hits a ball from a point O on horizontal ground with a velocity of $50 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of 25° above the horizontal. The ball first hits the ground at a point A. Assuming that there is no air resistance, calculate
(i) the time taken for the ball to travel from O to A,
(ii) the distance $O A$.

3 A box of mass 50 kg is dragged along a horizontal floor by a constant force of magnitude 400 N acting at an angle of α above the horizontal. The total resistance to the motion of the box has magnitude 300 N . The box starts from rest at the point O, and passes the point $P, 25 \mathrm{~m}$ from O, with a speed of $2 \mathrm{~m} \mathrm{~s}^{-1}$.
(i) For the box's motion from O to P, find
(a) the increase in kinetic energy of the box,
(b) the work done against the resistance to motion of the box.
(ii) Hence calculate α.

A rectangular frame consists of four uniform metal rods. $A B$ and $C D$ are vertical and each is 40 cm long and has mass $0.2 \mathrm{~kg} . A D$ and $B C$ are horizontal and each is 60 cm long. $A D$ has mass 0.7 kg and $B C$ has mass 0.5 kg . The frame is freely hinged at E and F, where E is 10 cm above A, and F is 10 cm below B (see diagram).
(i) Sketch a diagram showing the directions of the horizontal components of the forces acting on the frame at E and F.
(ii) Calculate the magnitude of the horizontal component of the force acting on the frame at E. [3]
(iii) Calculate the distance from $A D$ of the centre of mass of the frame.

5 Three smooth spheres A, B and C, of equal radius and of masses $3 m \mathrm{~kg}, 2 m \mathrm{~kg}$ and $m \mathrm{~kg}$ respectively, are free to move in a straight line on a smooth horizontal table. Spheres B and C are stationary. Sphere A is moving with speed $2 \mathrm{~m} \mathrm{~s}^{-1}$ when it collides directly with sphere B. The collision is perfectly elastic.
(i) Find the velocities of A and B after the collision.
(ii) Find, in terms of m, the magnitude of the impulse that A exerts on B, and state the direction of this impulse.

Sphere B continues its motion and hits C. After the collision, B continues in the same direction with speed $1.0 \mathrm{~m} \mathrm{~s}^{-1}$ and C moves with speed $2.8 \mathrm{~m} \mathrm{~s}^{-1}$.
(iii) Find the coefficient of restitution between B and C.

6 A stone is projected horizontally with speed $7 \mathrm{~m} \mathrm{~s}^{-1}$ from a point O on the edge of a vertical cliff. The horizontal and upward vertical displacements of the stone from O at any subsequent time, t seconds, are $x \mathrm{~m}$ and $y \mathrm{~m}$ respectively. Assume that there is no air resistance.
(i) Express x and y in terms of t, and hence show that $y=-\frac{1}{10} x^{2}$.

The stone hits the sea at a point which is 20 m below the level of O.
(ii) Find the distance between the foot of the cliff and the point where the stone hits the sea.
(iii) Find the speed and direction of motion of the stone immediately before it hits the sea.

7 Marco is riding his bicycle at a constant speed of $12 \mathrm{~m} \mathrm{~s}^{-1}$ along a horizontal road, working at a constant rate of 300 W . Marco and his bicycle have a combined mass of 75 kg .
(i) Calculate the wind resistance acting on Marco and his bicycle.

Nicolas is riding his bicycle at the same speed as Marco and directly behind him. Nicolas experiences 30% less wind resistance than Marco.
(ii) Calculate the power output of Nicolas.

The two cyclists arrive at the bottom of a hill which is at an angle of 1° to the horizontal. Marco increases his power output to 500 W .
(iii) Assuming Marco's wind resistance is unchanged, calculate his instantaneous acceleration immediately after starting to climb the hill.

Marco reaches the top of the hill at a speed of $13 \mathrm{~m} \mathrm{~s}^{-1}$. He then freewheels down a hill of length 200 m which is at a constant angle of 10° to the horizontal. He experiences a constant wind resistance of 120 N .
(iv) Calculate Marco's speed at the bottom of this hill.

Fig. 1

A particle P of mass 0.1 kg is moving with constant angular speed $\omega \mathrm{rad} \mathrm{s}^{-1}$ in a horizontal circle on the smooth inner surface of a cone which is fixed with its axis vertical and its vertex A at its lowest point. The semi-vertical angle of the cone is 60° and the distance $A P$ is 0.8 m (see Fig. 1).
(i) Calculate the magnitude of the force exerted by the cone on the particle.
(ii) Calculate ω.

Fig. 2

The particle P is now attached to one end of a light inextensible string which passes through a small smooth hole at A. The lower end of the string is attached to a particle Q of mass 0.2 kg . Q is in equilibrium with the string taut and $A P=0.8 \mathrm{~m} . P$ moves in a horizontal circle with constant speed $\nu \mathrm{m} \mathrm{s}^{-1}$ (see Fig. 2).
(iii) State the tension in the string.
(iv) Find v.

BLANK PAGE

BLANK PAGE

BLANK PAGE

 effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

