OXFORD CAMBRIDGE AND RSA EXAMINATIONS
 Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

4727
Further Pure Mathematics 3
Wednesday 25 JANUARY 2006 Morning 1 hour 30 minutes

Additional materials:
8 page answer booklet
Graph paper
List of Formulae (MF1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 Find the acute angle between the skew lines

$$
\begin{equation*}
\frac{x+3}{1}=\frac{y-2}{1}=\frac{z-4}{-1} \quad \text { and } \quad \frac{x-5}{2}=\frac{y-1}{-3}=\frac{z+3}{1} \tag{4}
\end{equation*}
$$

2 The tables shown below are the operation tables for two isomorphic groups G and H.

G	a	b	c	d
a	d	a	b	c
b	a	b	c	d
c	b	c	d	a
d	c	d	a	b

H	2	4	6	8
2	4	8	2	6
4	8	6	4	2
6	2	4	6	8
8	6	2	8	4

(i) For each group, state the identity element and list the elements of any proper subgroups.
(ii) Establish the isomorphism between G and H by showing which elements correspond.

3 (i) By using the substitution $y^{3}=z$, find the general solution of the differential equation

$$
3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 x y^{3}=\mathrm{e}^{-x^{2}}
$$

giving y in terms of x in your answer.
(ii) Describe the behaviour of y as $x \rightarrow \infty$.

4 (i) By expressing $\cos \theta$ and $\sin \theta$ in terms of $\mathrm{e}^{\mathrm{i} \theta}$ and $\mathrm{e}^{-\mathrm{i} \theta}$, or otherwise, show that

$$
\begin{equation*}
\cos ^{2} \theta \sin ^{4} \theta=\frac{1}{32}(\cos 6 \theta-2 \cos 4 \theta-\cos 2 \theta+2) \tag{6}
\end{equation*}
$$

(ii) Hence find the exact value of

$$
\begin{equation*}
\int_{0}^{\frac{1}{3} \pi} \cos ^{2} \theta \sin ^{4} \theta \mathrm{~d} \theta \tag{3}
\end{equation*}
$$

5 (i) Solve the equation $z^{4}=64(\cos \pi+i \sin \pi)$, giving your answers in polar form.
(ii) By writing your answers to part (i) in the form $x+\mathrm{i} y$, find the four linear factors of $z^{4}+64$. [4]
(iii) Hence, or otherwise, express $z^{4}+64$ as the product of two real quadratic factors.

The cuboid $O A B C D E F G$ shown in the diagram has $\overrightarrow{O A}=4 \mathbf{i}, \overrightarrow{O C}=\mathbf{j}, \overrightarrow{O D}=2 \mathbf{k}$, and M is the mid-point of $D E$.
(i) Find a vector perpendicular to $\overrightarrow{M B}$ and $\overrightarrow{O F}$.
(ii) Find the cartesian equations of the planes $C M G$ and $O E G$.
(iii) Find an equation of the line of intersection of the planes $C M G$ and $O E G$, giving your answer in the form $\mathbf{r}=\mathbf{a}+t \mathbf{b}$.

7 A group G has an element a with order n, so that $a^{n}=e$, where e is the identity. It is given that x is any element of G distinct from a and e.
(i) Prove that the order of $x^{-1} a x$ is n, making it clear which group property is used at each stage of your proof.
(ii) Express the inverse of $x^{-1} a x$ in terms of some or all of x, x^{-1}, a and a^{-1}, showing sufficient working to justify your answer.
(iii) It is now given that a commutes with every element of G. Prove that a^{-1} also commutes with every element.

8 (i) Find the general solution of the differential equation

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+2 k \frac{\mathrm{~d} x}{\mathrm{~d} t}+4 x=0
$$

where k is a real constant, in each of the following cases.
(a) $|k|>2$
(b) $|k|<2$
(c) $k=2$
(ii) (a) In the case when $k=1$, find the solution for which $x=0$ and $\frac{\mathrm{d} x}{\mathrm{~d} t}=6$ when $t=0$.
(b) Describe what happens to x as $t \rightarrow \infty$ in this case, justifying your answer.

BLANK PAGE

