OXFORD CAMBRIDGE AND RSA EXAMINATIONS

 Advanced Subsidiary General Certificate of Education

 Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

 Advanced General Certificate of Education}

MATHEMATICS

4726

Further Pure Mathematics 2
Monday 16 JANUARY 200
Additional materials:
8 page answer booklet
Graph paper
List of Formulae (MF1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- There is an insert for use in Question 4.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 (i) Write down and simplify the first three non-zero terms of the Maclaurin series for $\ln (1+3 x)$.
(ii) Hence find the first three non-zero terms of the Maclaurin series for

$$
\mathrm{e}^{x} \ln (1+3 x)
$$

simplifying the coefficients.

2 Use the Newton-Raphson method to find the root of the equation $\mathrm{e}^{-x}=x$ which is close to $x=0.5$. Give the root correct to 3 decimal places.

3 Express $\frac{x+6}{x\left(x^{2}+2\right)}$ in partial fractions.

4 Answer the whole of this question on the insert provided.

The sketch shows the curve with equation $y=\mathrm{F}(x)$ and the line $y=x$. The equation $x=\mathrm{F}(x)$ has roots $x=\alpha$ and $x=\beta$ as shown.
(i) Use the copy of the sketch on the insert to show how an iteration of the form $x_{n+1}=\mathrm{F}\left(x_{n}\right)$, with starting value x_{1} such that $0<x_{1}<\alpha$ as shown, converges to the root $x=\alpha$.
(ii) State what happens in the iteration in the following two cases.
(a) x_{1} is chosen such that $\alpha<x_{1}<\beta$.
(b) x_{1} is chosen such that $x_{1}>\beta$.

5 (i) Find the equations of the asymptotes of the curve with equation

$$
\begin{equation*}
y=\frac{x^{2}+3 x+3}{x+2} \tag{3}
\end{equation*}
$$

(ii) Show that y cannot take values between -3 and 1 .

6 (i) It is given that, for non-negative integers n,

$$
I_{n}=\int_{0}^{1} \mathrm{e}^{-x} x^{n} \mathrm{~d} x
$$

Prove that, for $n \geqslant 1$,

$$
\begin{equation*}
I_{n}=n I_{n-1}-\mathrm{e}^{-1} . \tag{4}
\end{equation*}
$$

(ii) Evaluate I_{3}, giving the answer in terms of e.

The diagram shows the curve with equation $y=\sqrt{x}$. A set of N rectangles of unit width is drawn, starting at $x=1$ and ending at $x=N+1$, where N is an integer (see diagram).
(i) By considering the areas of these rectangles, explain why

$$
\begin{equation*}
\sqrt{1}+\sqrt{2}+\sqrt{3}+\ldots+\sqrt{N}<\int_{1}^{N+1} \sqrt{x} \mathrm{~d} x \tag{3}
\end{equation*}
$$

(ii) By considering the areas of another set of rectangles, explain why

$$
\begin{equation*}
\sqrt{1}+\sqrt{2}+\sqrt{3}+\ldots+\sqrt{N}>\int_{0}^{N} \sqrt{x} \mathrm{~d} x \tag{3}
\end{equation*}
$$

(iii) Hence find, in terms of N, limits between which $\sum_{r=1}^{N} \sqrt{r}$ lies.

8 The equation of a curve, in polar coordinates, is

$$
r=1+\cos 2 \theta, \quad \text { for } 0 \leqslant \theta<2 \pi
$$

(i) State the greatest value of r and the corresponding values of θ.
(ii) Find the equations of the tangents at the pole.
(iii) Find the exact area enclosed by the curve and the lines $\theta=0$ and $\theta=\frac{1}{2} \pi$.
(iv) Find, in simplified form, the cartesian equation of the curve.

9 (i) Using the definitions of $\cosh x$ and $\sinh x$ in terms of e^{x} and e^{-x}, prove that

$$
\begin{equation*}
\sinh 2 x=2 \sinh x \cosh x \tag{4}
\end{equation*}
$$

(ii) Show that the curve with equation

$$
y=\cosh 2 x-6 \sinh x
$$

has just one stationary point, and find its x-coordinate in logarithmic form. Determine the nature of the stationary point.

Candidate Name	Centre Number	Number

OXFORD CAMBRIDGE AND RSA EXAMINATIONS
Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education
MATHEMATICS
Further Pure Mathematics 2
INSERT for Question 4
Monday 16 JANUARY $2006 \quad$ Morning 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- This insert should be used to answer Question 4.
- Write your name, centre number and candidate number in the spaces provided at the top of this page.
- Write your answers to Question 4 in the spaces provided in this insert, and attach it to your answer booklet.

4
(i)

(ii) (a)
(b)

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher ($O C R$) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

