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1 (i) Write down and simplify the first three non-zero terms of the Maclaurin series for ln(1 + 3x).
[3]

(ii) Hence find the first three non-zero terms of the Maclaurin series for

ex ln(1 + 3x),
simplifying the coefficients. [3]

2 Use the Newton-Raphson method to find the root of the equation e−x = x which is close to x = 0.5.
Give the root correct to 3 decimal places. [5]

3 Express
x + 6

x(x2 + 2) in partial fractions. [5]

4 Answer the whole of this question on the insert provided.

The sketch shows the curve with equation y = F(x) and the line y = x. The equation x = F(x) has roots
x = α and x = β as shown.

(i) Use the copy of the sketch on the insert to show how an iteration of the form xn+1 = F(xn), with
starting value x1 such that 0 < x1 < α as shown, converges to the root x = α. [3]

(ii) State what happens in the iteration in the following two cases.

(a) x1 is chosen such that α < x1 < β .

(b) x1 is chosen such that x1 > β .
[3]
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5 (i) Find the equations of the asymptotes of the curve with equation

y = x2 + 3x + 3
x + 2

. [3]

(ii) Show that y cannot take values between −3 and 1. [5]

6 (i) It is given that, for non-negative integers n,

In = � 1

0
e−xxn dx.

Prove that, for n ≥ 1,

In = nIn−1 − e−1. [4]
(ii) Evaluate I3, giving the answer in terms of e. [4]

7

The diagram shows the curve with equation y = √
x. A set of N rectangles of unit width is drawn,

starting at x = 1 and ending at x = N + 1, where N is an integer (see diagram).

(i) By considering the areas of these rectangles, explain why

√
1 + √

2 + √
3 + . . . + √

N < � N+1

1

√
x dx. [3]

(ii) By considering the areas of another set of rectangles, explain why

√
1 + √

2 + √
3 + . . . + √

N > � N

0

√
x dx. [3]

(iii) Hence find, in terms of N, limits between which
N

∑
r=1

√
r lies. [3]
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8 The equation of a curve, in polar coordinates, is

r = 1 + cos 2θ , for 0 ≤ θ < 2π.

(i) State the greatest value of r and the corresponding values of θ . [2]

(ii) Find the equations of the tangents at the pole. [2]

(iii) Find the exact area enclosed by the curve and the lines θ = 0 and θ = 1
2
π. [5]

(iv) Find, in simplified form, the cartesian equation of the curve. [4]

9 (i) Using the definitions of cosh x and sinh x in terms of ex and e−x, prove that

sinh 2x = 2 sinh x cosh x. [4]
(ii) Show that the curve with equation

y = cosh 2x − 6 sinh x

has just one stationary point, and find its x-coordinate in logarithmic form. Determine the nature
of the stationary point. [8]

4726/Jan06



Candidate
Candidate Name Centre Number Number

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education
Advanced General Certificate of Education

MATHEMATICS 4726
Further Pure Mathematics 2
INSERT for Question 4

Monday 16 JANUARY 2006 Morning 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

• This insert should be used to answer Question 4.

• Write your name, centre number and candidate number in the spaces provided at the top of this
page.

• Write your answers to Question 4 in the spaces provided in this insert, and attach it to your answer
booklet.

This insert consists of 2 printed pages.

© OCR 2006 [A/102/2699] Registered Charity Number: 1066969 [Turn over



2

4 (i)

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(ii) (a) ................................................................................................................................................

(b) ................................................................................................................................................
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