OXFORD CAMBRIDGE AND RSA EXAMINATIONS

 Advanced Subsidiary General Certificate of Education

 Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

 Advanced General Certificate of Education}

MATHEMATICS

4733
Probability \& Statistics 2
Wednesday
22 JUNE 2005
Afternoon
1 hour 30 minutes
Additional materials:
Answer booklet
Graph paper
List of Formulae (MF1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 It is desired to obtain a random sample of 15 pupils from a large school. One pupil suggests listing all the pupils in the school in alphabetical order and choosing the first 15 names on the list.
(i) Explain why this method is unsatisfactory.
(ii) Suggest a better method.

2 A continuous random variable has a normal distribution with mean 25.0 and standard deviation σ. The probability that any one observation of the random variable is greater than 20.0 is 0.75 . Find the value of σ.

3 (a) The random variable X has a $\mathrm{B}(60,0.02)$ distribution. Use an appropriate approximation to find $\mathrm{P}(X \leqslant 2)$.
(b) The random variable Y has a $\operatorname{Po}(30)$ distribution. Use an appropriate approximation to find $\mathrm{P}(Y \leqslant 38)$.

4 The height of sweet pea plants grown in a nursery is a random variable. A random sample of 50 plants is measured and is found to have a mean height 1.72 m and variance $0.0967 \mathrm{~m}^{2}$.
(i) Calculate an unbiased estimate for the population variance of the heights of sweet pea plants.
(ii) Hence test, at the 10% significance level, whether the mean height of sweet pea plants grown by the nursery is 1.8 m , stating your hypotheses clearly.

5 The random variable W has the distribution $\mathrm{B}(30, p)$.
(i) Use the exact binomial distribution to calculate $\mathrm{P}(W=10)$ when $p=0.4$.
(ii) Find the range of values of p for which you would expect that a normal distribution could be used as an approximation to the distribution of W.
(iii) Use a normal approximation to calculate $\mathrm{P}(W=10)$ when $p=0.4$.

6 A factory makes chocolates of different types. The proportion of milk chocolates made on any day is denoted by p. It is desired to test the null hypothesis $\mathrm{H}_{0}: p=0.8$ against the alternative hypothesis $\mathrm{H}_{1}: p<0.8$. The test consists of choosing a random sample of 25 chocolates. H_{0} is rejected if the number of milk chocolates is k or fewer. The test is carried out at a significance level as close to 5% as possible.
(i) Use tables to find the value of k, giving the values of any relevant probabilities.
(ii) The test is carried out 20 times, and each time the value of p is 0.8 . Each of the tests is independent of all the others. State the expected number of times that the test will result in rejection of the null hypothesis.
(iii) The test is carried out once. If in fact the value of p is 0.6 , find the probability of rejecting H_{0}.
(iv) The test is carried out twice. Each time the value of p is equally likely to be 0.8 or 0.6 . Find the probability that exactly one of the two tests results in rejection of the null hypothesis.

7 The continuous random variable X has the probability density function shown in the diagram.

(i) Find the value of the constant k.
(ii) Write down the mean of X, and use integration to find the variance of X.
(iii) Three observations of X are made. Find the probability that $X<9$ for all three observations.
(iv) The mean of 32 observations of X is denoted by \bar{X}. State the approximate distribution of \bar{X}, giving its mean and variance.

[Question 8 is printed overleaf.]

8 In excavating an archaeological site, Roman coins are found scattered throughout the site.
(i) State two assumptions needed to model the number of coins found per square metre of the site by a Poisson distribution.

Assume now that the number of coins found per square metre of the site can be modelled by a Poisson distribution with mean λ.
(ii) Given that $\lambda=0.75$, calculate the probability that exactly 3 coins are found in a region of the site of area $7.20 \mathrm{~m}^{2}$.

A test is carried out, at the 5% significance level, of the null hypothesis $\lambda=0.75$, against the alternative hypothesis $\lambda>0.75$, in Region LVI which has area $4 \mathrm{~m}^{2}$.
(iii) Determine the smallest number of coins that, if found in Region LVI, would lead to rejection of the null hypothesis, stating also the values of any relevant probabilities.
(iv) Given that, in fact, $\lambda=1.2$ in Region LVI, find the probability that the test results in a Type II error.

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher ($O C R$) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

