

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

7 JUNE 2005

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

4725

Further Pure Mathematics 1

Tuesday

Additional materials: Answer booklet Graph paper List of Formulae (MF1) Afternoon

1 hour 30 minutes

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- . The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- . Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 Use the standard results for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^2$ to show that, for all positive integers *n*,

$$\sum_{r=1}^{n} (6r^2 + 2r + 1) = n(2n^2 + 4n + 3).$$
 [6]

- 2 The matrices **A** and **I** are given by $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$ and $\mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ respectively.
 - (i) Find A^2 and verify that $A^2 = 4A I$. [4]
 - (ii) Hence, or otherwise, show that $\mathbf{A}^{-1} = 4\mathbf{I} \mathbf{A}$. [2]

3 The complex numbers 2 + 3i and 4 - i are denoted by z and w respectively. Express each of the following in the form x + iy, showing clearly how you obtain your answers.

(i) z + 5w, [2]

(ii)
$$z^*w$$
, where z^* is the complex conjugate of z , [3]
(iii) $\frac{1}{w}$. [2]

- 4 Use an algebraic method to find the square roots of the complex number 21 20i. [6]
- 5 (i) Show that

$$\frac{r+1}{r+2} - \frac{r}{r+1} = \frac{1}{(r+1)(r+2)}.$$
[2]

(ii) Hence find an expression, in terms of *n*, for

$$\frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \dots + \frac{1}{(n+1)(n+2)}.$$
[4]

(iii) Hence write down the value of
$$\sum_{r=1}^{\infty} \frac{1}{(r+1)(r+2)}.$$
 [1]

6 The loci C_1 and C_2 are given by

|z - 2i| = 2 and |z + 1| = |z + i|

respectively.

- (i) Sketch, on a single Argand diagram, the loci C_1 and C_2 . [5]
- (ii) Hence write down the complex numbers represented by the points of intersection of C_1 and C_2 . [2]

7 The matrix **B** is given by $\mathbf{B} = \begin{pmatrix} a & 1 & 3 \\ 2 & 1 & -1 \\ 0 & 1 & 2 \end{pmatrix}$.

- (i) Given that **B** is singular, show that $a = -\frac{2}{3}$. [3]
- (ii) Given instead that **B** is non-singular, find the inverse matrix \mathbf{B}^{-1} . [4]
- (iii) Hence, or otherwise, solve the equations

$$-x + y + 3z = 1,$$

$$2x + y - z = 4,$$

$$y + 2z = -1.$$
[3]

- 8 (a) The quadratic equation $x^2 2x + 4 = 0$ has roots α and β .
 - (i) Write down the values of $\alpha + \beta$ and $\alpha\beta$. [2]
 - (ii) Show that $\alpha^2 + \beta^2 = -4$. [2]
 - (iii) Hence find a quadratic equation which has roots α^2 and β^2 . [3]
 - (b) The cubic equation $x^3 12x^2 + ax 48 = 0$ has roots p, 2p and 3p.
 - (i) Find the value of *p*. [2]
 - (ii) Hence find the value of *a*. [2]

9 (i) Write down the matrix C which represents a stretch, scale factor 2, in the *x*-direction. [2]

- (ii) The matrix **D** is given by $\mathbf{D} = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$. Describe fully the geometrical transformation represented by **D**. [2]
- (iii) The matrix **M** represents the combined effect of the transformation represented by **C** followed by the transformation represented by **D**. Show that

$$\mathbf{M} = \begin{pmatrix} 2 & 3\\ 0 & 1 \end{pmatrix}.$$
 [2]

(iv) Prove by induction that
$$\mathbf{M}^n = \begin{pmatrix} 2^n & 3(2^n - 1) \\ 0 & 1 \end{pmatrix}$$
, for all positive integers *n*. [6]

BLANK PAGE

4

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.