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1 Use the standard results for
n

∑
r=1

r and
n

∑
r=1

r2 to show that, for all positive integers n,

n

∑
r=1

(6r2 + 2r + 1) = n(2n2 + 4n + 3). [6]

2 The matrices A and I are given by A = (1 2
1 3

) and I = ( 1 0
0 1

) respectively.

(i) Find A2 and verify that A2 = 4A − I. [4]

(ii) Hence, or otherwise, show that A−1 = 4I − A. [2]

3 The complex numbers 2 + 3i and 4 − i are denoted by � and w respectively. Express each of the
following in the form x + iy, showing clearly how you obtain your answers.

(i) � + 5w, [2]

(ii) �*w, where �* is the complex conjugate of �, [3]

(iii)
1
w

. [2]

4 Use an algebraic method to find the square roots of the complex number 21 − 20i. [6]

5 (i) Show that
r + 1
r + 2

− r
r + 1

= 1(r + 1)(r + 2) . [2]

(ii) Hence find an expression, in terms of n, for

1
6
+ 1

12
+ 1

20
+ . . . + 1(n + 1)(n + 2) . [4]

(iii) Hence write down the value of
∞
∑
r=1

1(r + 1)(r + 2) . [1]

6 The loci C1 and C2 are given by

|� − 2i| = 2 and |� + 1| = |� + i|
respectively.

(i) Sketch, on a single Argand diagram, the loci C1 and C2. [5]

(ii) Hence write down the complex numbers represented by the points of intersection of C1 and C2.
[2]
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7 The matrix B is given by B = ( a 1 3
2 1 −1
0 1 2

).

(i) Given that B is singular, show that a = −2
3
. [3]

(ii) Given instead that B is non-singular, find the inverse matrix B−1. [4]

(iii) Hence, or otherwise, solve the equations

−x + y + 3� = 1,

2x + y − � = 4,

y + 2� = −1. [3]

8 (a) The quadratic equation x2 − 2x + 4 = 0 has roots α and β .

(i) Write down the values of α + β and αβ . [2]

(ii) Show that α2 + β2 = −4. [2]

(iii) Hence find a quadratic equation which has roots α2 and β2. [3]

(b) The cubic equation x3 − 12x2 + ax − 48 = 0 has roots p, 2p and 3p.

(i) Find the value of p. [2]

(ii) Hence find the value of a. [2]

9 (i) Write down the matrix C which represents a stretch, scale factor 2, in the x-direction. [2]

(ii) The matrix D is given by D = ( 1 3
0 1

). Describe fully the geometrical transformation represented

by D. [2]

(iii) The matrix M represents the combined effect of the transformation represented by C followed
by the transformation represented by D. Show that

M = ( 2 3
0 1

) . [2]

(iv) Prove by induction that Mn = ( 2n 3(2n − 1)
0 1

), for all positive integers n. [6]
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