OXFORD CAMBRIDGE AND RSA EXAMINATIONS
 Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

4721
Core Mathematics 1
Monday
23 MAY 2005
Morning
1 hour 30 minutes
Additional materials:
Answer booklet
Graph paper
List of Formulae (MF1)

TIME
1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are not permitted to use a calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

WARNING

You are not allowed to use a calculator in this paper.

1 Solve the inequality $x^{2}-6 x-40 \geqslant 0$.

2 (i) Express $3 x^{2}+12 x+7$ in the form $3(x+a)^{2}+b$.
(ii) Hence write down the equation of the line of symmetry of the curve $y=3 x^{2}+12 x+7$.

3 (i) Sketch the curve $y=x^{3}$.
(ii) Describe a transformation that transforms the curve $y=x^{3}$ to the curve $y=-x^{3}$.
(iii) The curve $y=x^{3}$ is translated by p units, parallel to the x-axis. State the equation of the curve after it has been transformed.

4 Solve the equation $x^{6}+26 x^{3}-27=0$.

5 (a) Simplify $2 x^{\frac{2}{3}} \times 3 x^{-1}$.
(b) Express $2^{40} \times 4^{30}$ in the form 2^{n}.
(c) Express $\frac{26}{4-\sqrt{ } 3}$ in the form $a+b \sqrt{ } 3$.

6 Given that $\mathrm{f}(x)=(x+1)^{2}(3 x-4)$,
(i) express $\mathrm{f}(x)$ in the form $a x^{3}+b x^{2}+c x+d$,
(ii) find $\mathrm{f}^{\prime}(x)$,
(iii) find $\mathrm{f}^{\prime \prime}(x)$.

7 (i) Calculate the discriminant of each of the following:
(a) $x^{2}+6 x+9$,
(b) $x^{2}-10 x+12$,
(c) $x^{2}-2 x+5$.
(ii)

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

State with reasons which of the diagrams corresponds to the curve
(a) $y=x^{2}+6 x+9$,
(b) $y=x^{2}-10 x+12$,
(c) $y=x^{2}-2 x+5$.

8 (i) Describe completely the curve $x^{2}+y^{2}=25$.
(ii) Find the coordinates of the points of intersection of the curve $x^{2}+y^{2}=25$ and the line $2 x+y-5=0$.

9 (i) Find the gradient of the line l_{1} which has equation $4 x-3 y+5=0$.
(ii) Find an equation of the line l_{2}, which passes through the point $(1,2)$ and which is perpendicular to the line l_{1}, giving your answer in the form $a x+b y+c=0$.

The line l_{1} crosses the x-axis at P and the line l_{2} crosses the y-axis at Q.
(iii) Find the coordinates of the mid-point of $P Q$.
(iv) Calculate the length of $P Q$, giving your answer in the form $\frac{\sqrt{ } a}{b}$, where a and b are integers.

10 (i) Given that $y=\frac{1}{3} x^{3}-9 x$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(ii) Find the coordinates of the stationary points on the curve $y=\frac{1}{3} x^{3}-9 x$.
(iii) Determine whether each stationary point is a maximum point or a minimum point.
(iv) Given that $24 x+3 y+2=0$ is the equation of the tangent to the curve at the point (p, q), find p and q.

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher ($O C R$) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

