1. (i) (ii)	$\begin{aligned} & 11^{-2}=\frac{1}{121} \\ & \sqrt{50}+\frac{6}{\sqrt{3}} \\ & =5 \sqrt{2}+\frac{6 \sqrt{3}}{3} \\ & =5 \sqrt{2}+2 \sqrt{3} \end{aligned}$	B1 1 B1 M1 A1 3 4	$\frac{1}{121}$ $5 \sqrt{2}$ Attempt to rationalise $\frac{6}{\sqrt{3}}$ $2 \sqrt{3}$
2.	$\begin{aligned} & q x^{2}-2 q r x+q r^{2}+10 \\ & =2 x^{2}-12 x+p \end{aligned}$	B1 B1 M1 A1 $\sqrt{ } 4$ 4	$\begin{aligned} & q=2 \\ & r=3 \\ & q r^{2}+10=p \\ & p=28 \sqrt{ } \text { on both } q \text { and } p \text { values } \end{aligned}$
3.	$y=5 \sqrt{2 x}-3$	M1 A1 M1 A1 4 4	$\begin{aligned} & \sqrt{2 x} \text { or } \sqrt{\frac{x}{2}} \text { seen } \\ & 5 \sqrt{2 x} \\ & \pm 3 \text { to } y=(\quad) \\ & y=a \sqrt{k x}-3, k>0 \end{aligned}$
4. (a)	$\begin{aligned} & \tan 2 x=1 \\ & 2 x=45,225 \\ & x=22 \frac{1}{2}, 112 \frac{1}{2} \end{aligned}$	$\begin{array}{ll} \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$	45 or 225 seen or implied Evidence of angle being halved $22 \frac{1}{2}$ and $112 \frac{1}{2}$ and no others between 0° and 180°

(b)	$\begin{aligned} & \tan \theta+\frac{1}{\tan \theta} \\ & \equiv \frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta} \\ & \equiv \frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cos \theta} \\ & \equiv \frac{1}{\sin \theta \cos \theta} \end{aligned}$	$\begin{array}{ll}\text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \\ & \underline{6}\end{array}$	Use $\frac{\sin }{\cos }=\tan$ Use $\sin ^{2}+\cos ^{2}=1$ $\frac{1}{\sin \theta \cos \theta}$ AG CWO
5.	Either $\begin{aligned} & y=2 x+1 \\ & \text { or } y=\frac{x^{2}+11}{3} \\ & x^{2}-6 x+8=0 \\ & (x-2)(x-4)=0 \\ & x=2 \quad x=4 \\ & y=5 \quad y=9 \end{aligned}$ OR $\begin{aligned} & x=\frac{y-1}{2} \\ & \frac{(y-1)^{2}}{4}-3 y+11=0 \\ & y^{2}-14 y+45=0 \\ & (y-5)(y-9)=0 \\ & y=5 \quad y=9 \\ & x=2 \quad x=4 \end{aligned}$	M1 A1	Substitute for x / y Obtain 3 term quadratic $=0$ Correct method to solve 3 term quadratic $\begin{array}{ll} x=2 / 4 & y=5 / 9 \\ y=5 / 9 & x=2 / 4 \end{array}$

6.(i)	$9-4 \times 7 \times 1=-19$	B1	-19 or 9-28
	0 real roots	$\text { B1 } \sqrt{2}_{2}$	0 real roots
(ii)	$(p+1)^{2}-64=0$ or $\begin{aligned} & 2\left[\left(x+\frac{p+1}{4}\right)^{2}-\frac{(p+1)^{2}}{16}+4\right]=0 \\ & p=-9,7 \end{aligned}$	M1	Attempts $b^{2}-4 a c$ (involving p) or attempts to complete square (involving p)
		A1	$(p+1)^{2}-64=0$ aef
			$p=-9$
		$\text { B1 } \quad 4$	$p=7$
		$\underline{6}$	
7.(i)	$\text { Gradient DE }=-\frac{1}{2}$	B1 1	$-\frac{1}{2}$
(ii)	Gradient EF $=\frac{4}{2}=2$	B1	2
	$-\frac{1}{2} \times 2=-1$	$\text { B1 } 2$	$m_{1} m_{2}=-1$ o.e.
(iii)	$\begin{aligned} & y-3=-\frac{1}{2}(x-2) \\ & \frac{1}{2} x+y-4=0 \\ & x+2 y-8=0 \end{aligned}$	M1	Correct equation for straight line, gradient $D E$, point F.
		$\text { A1 } \sqrt{ }$	$y-3=-\frac{1}{2}(x-2)$ aef
		$\begin{array}{ll} \text { A1 } & 3 \\ & \underline{6} \end{array}$	$x+2 y-8=0$ (this form but can have fractional coefficeints.)
8.(i)	$\frac{d y}{d x}=4 x$	B1	$4 x$
	$\text { At } x=3, \frac{d y}{d x}=12$	B1 2	12
(ii)	Gradient of tangent $=-8$		$\frac{d y}{d y}=-8$
	$4 x=-8$		$d x$
	$x=-2$		$x=-2$
	$y=8$	A1 $\sqrt{ } 3$	$y=8$

(iii)	$x>11$	B1	$x>11$
	$(x-13)(x+23)<0$	M1	Correct method to solve $(x-13)(x+23)<0$ e.g. graph
	$\begin{aligned} & -23<x<13 \\ & \therefore 11<x<13 \end{aligned}$	B1	13 and -23 seen
			$-23<x<13$
		$\text { B1 } \sqrt{5}$	$11<x<13 \quad \sqrt{\text { on } x}>11$
		的	

1 (i) State $3 \ln x$
B1 1 [or equiv such as $3 \ln 3 x$ or $3 \log _{\mathrm{e}} x$]
(ii) State answer of the form $k \mathrm{e}^{\frac{1}{2} x}$

Obtain $8 \mathrm{e}^{\frac{1}{2} x}$
M1 [... where k is (unsimplified) constant]
A1 2

B1 [2^{8} needs to be evaluated]
B1 [coefficient must be simplified]
M1 [where k is attempt at binomial coeff]
A1 4 [coefficient must be simplified]

M1

A1 $\sqrt{ } 2\left[\ldots\right.$ following their coeff of x^{2} from part (i); accept $448 y^{4}$]

3 (i) Either:
Equate attempt at at least one of $f(-1), f(1), f(-3), f(3)$
to zero
Obtain $-1-p+q=0$ and $27+3 p+q=0$
Attempt solution of pair of simultaneous equations
Obtain $p=-7$ and $q=-6$
Or:
Consider x^{2} term from $(x+1)(x-3)(x+a)$
Obtain $x+2$ as third factor
Consider coefficient of x and constant term
Obtain $p=-7$ and $q=-6$
(ii) State -1 and 3

State -2

*M1

A1 [or equivs; maybe implied]
M1 [dep *M1]
A1 4

*M1

A1
M1 [dep *M]
A1 (4)
B1
B1 $\sqrt{ } 2$ [...following their value of q]

4 Obtain derivative of the form $k \mathrm{e}^{0.4 t}$
Obtain correct $1.2 \mathrm{e}^{0.4 t}$
Substitute 7 to obtain 19.7
Obtain derivative of the form $k t^{3}\left(2 t^{4}+9\right)^{n}$
Obtain correct $4 t^{3}\left(2 t^{4}+9\right)^{-\frac{1}{2}}$
Substitute 7 to obtain 19.8

M1 [any constant k different from 3]
A1 [or unsimplified equiv]
A1 [or 20 or greater accuracy (19.7335...)]
M1 [any constant k; any non-zero $n<\frac{1}{2}$]
A1 [or unsimplified equiv]
A1 6 [or 20 or greater accuracy (19.7804...)]

5 (i) State expression of form $k\left(y_{0}+2 y_{1}+y_{2}\right)$ or equiv

State $\frac{1}{2} \times \frac{1}{2}(\ln 16+2 \ln 13+\ln 4)$ or decimal approx
Use one relevant logarithm property correctly
Use second relevant logarithm property correctly
Confirm $\frac{1}{2} \ln 104$
(ii) Refer, in some form, to fact that tops of trapezia are below the curve

M1 [involving attempts at y values corresponding to $0,0.5,1$ - exact or decimal; any constant k]
$[0.25(2.77+2 \times 2.56+1.39)]$
M1 $\quad\left[\ldots\right.$ such as $p \ln a=\ln a^{p}$]
M1 $\quad[\ldots$ such as $\ln a+\ln b=\ln a b]$
A1 5 [AG; necessary detail required]

B1 1 [allow for any number of trapezia]

8 (i) Refer to angle $O D A$ being 60° or $\frac{1}{3} \pi$ and deduce $\frac{2}{3} \pi$
(ii) Use formula $r \theta$ or equiv at least once

Obtain either $12 \times \frac{1}{3} \pi$ for $B C$ or $6 \times \frac{2}{3} \pi$ for $A C$
Obtain $4 \pi+4 \pi+6$ and hence $8 \pi+6$
(iii) Use formula $\frac{1}{2} r^{2} \theta$ or equiv at least once

Obtain $\frac{1}{2} \times 12^{2} \times \frac{\pi}{3}$ for $O B C$ and $\frac{1}{2} \times 6^{2} \times \frac{2 \pi}{3}$ for $A D C$ A1
Attempt correct process to find shaded area with valid attempt at area of triangle
Obtain $24 \pi-12 \pi-9 \sqrt{3}$ and hence $12 \pi-9 \sqrt{3}$

B1 1 [AG]

M1 [needs angle in radians]
A1
A1

A1 4 [or exact equiv]

9 (i) Obtain either 37 or 1.728
Confirm 38.728
(ii) Recognise arithmetic progression with $a=7, d=15 \quad$ B1

Substitute into attempt at sum formula
M1
Obtain $\frac{1}{2} \times 70(14+69 \times 15)$ or equiv and hence 36715
(iii) Attempt use of logarithms to solve

Obtain $p \ln 1.2<\ln 36715$ or equiv
Obtain 57.65... and conclude 57
(iv) Relate attempt at S_{q} to attempt at v_{70}

Obtain $\frac{15}{2} q^{2}-\frac{1}{2} q-1.2^{70}<0$ or equiv
Attempt solution of quadratic equation for q
Obtain 215.71... and conclude 215
B1

B1 2 [AG; necessary detail required]

A1 3 [AG]

M1
A1
A1 3 [one value only clearly identified] [scheme for trial \& improvement approach: M1 A2]
*M1 [attempt at term, not sum, of GP]
A1 [... or equation]
M1 [dep *M; or equiv such as T\&I]
A1 4 [one value only clearly identified]

	$\begin{aligned} & 1+(-2)(2 x)+\frac{(-2)(-3)}{2!}(2 x)^{2}+\frac{(-2)(-3)(-4)}{3!}(2 x)^{3} \\ & =1-4 x+12 x^{2}-32 x^{3} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	4	For binomial coefficient in x^{2} / x^{3} term For first two terms (simplified to) 1-4x For term $+12 x^{2}$ correctly obtained Fir term $-32 x^{3}$ correctly obtained
2	$\begin{aligned} & \frac{\mathrm{d} x}{\mathrm{~d} \theta}=\cos \theta-\theta \sin \theta \\ & \frac{\mathrm{d} y}{\mathrm{~d} \theta}=\cos \theta \end{aligned}$ Hence $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\cos \theta}{\cos \theta-\theta \sin \theta}=1$ when $\theta=\pi$	M1 A1 B1 M1 A1 ft	5	For relevant use of the product rule For correct differentiation of x For correct differentiation of y For use of $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} \theta} \frac{\mathrm{~d} x}{\mathrm{~d} \theta}$ For correct substitution in their $\underline{d} y$
$3 \text { (i) }$	$R \cos \alpha=3, R \sin \alpha=1$ Hence $R=\sqrt{10}$ and $\tan \alpha=\frac{1}{3}$	M1 A1 A1	3	For stating these results, or by implication from correct/plausible values of R, α, or $\tan \alpha$ For correct (exact) value for R For correct (exact) value for $\tan \alpha$
(ii)	$\begin{aligned} & \theta-\tan ^{-1}\left(\frac{1}{3}\right)=\cos ^{-1}\left(\frac{2}{\sqrt{10}}\right) \\ & \theta-0.3217 \ldots=0.8860 \ldots \text { or } 5.397 . . \\ & \text { Hence } \theta=1.21 \text { or } 5.72 \end{aligned}$	Mí M1 A1 ft A1 ft	4_{7}	For correct process for one value of θ For quadrant RHS value For one correct answer For $2^{\text {nd }}$ correct answer and no others in range [Allow values in degrees: 69.2 and 327.7]
4 (i)	$x-\frac{x}{x^{2}+1}=\frac{x^{3}+x=x}{x^{2}+1}=\frac{x^{3}}{x^{2}+1}$	B1	1	For correctly showing the given result
(ii)	$\int\left(x-\frac{x}{x^{2}+1}\right) \mathrm{d} x=\frac{1}{2} x^{2}-\frac{1}{2} \ln \left(x^{2}+1\right)$	$\begin{array}{\|l\|} \mathrm{B} 1 \\ \text { M1 } \\ \text { A1 } \end{array}$	3	For $\frac{1}{2} x^{2}+\ldots$ For recognition of $\mathrm{f}^{\prime}(x) \mathrm{f}(x)$ type of integral For correct terms $\frac{1}{2} x^{2}-\frac{1}{2} \ln \left(x^{2}+1\right)$
	Integral is $\frac{1}{2} x^{2} \ln \left(x^{2}+1\right)-\int \frac{1}{2} x^{2} \cdot \frac{2 x}{x^{2}+1} \mathrm{~d} x$ i.e. $\frac{1}{2} x^{2} \ln \left(x^{2}+1\right)-\frac{1}{2} x^{2}+\frac{1}{2} \ln \left(x^{2}+1\right)$	B1 B1 B1 ft	37	For correct first term $\frac{1}{2} x^{2} \ln \left(x^{2}+1\right)$ For correct simplified integrand $x^{3} /\left(x^{2}+1\right)$ For correct answer

5 (i) L is $\mathbf{r}=\left(\begin{array}{l}3 \\ 1 \\ 2\end{array}\right)+t\left(\begin{array}{l}3 \\ 2 \\ -2\end{array}\right)$ or equivalent	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	For subtracting given vectors to find direction For a correct (vector) equation
(ii) The point S corresponds to $t=2$ Q corresponds to $t=-1$, so ratio is $2: 3$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	3	For correctly showing the given result For relevant use of parameters For correct ratio in any (exact) form [Alternatively by direct calculation of the two magnitudes which are $\sqrt{68}$ and $\sqrt{153}]$
(iii) Scalar product of the direction vectors is $\begin{aligned} & 1 \times 3+4 \times 2+2 \times(-2)=7 \\ & \cos \theta=\frac{7}{\sqrt{21} \times \sqrt{17}}=0.3704 \ldots \end{aligned}$ Hence angle is 68° to the nearest degree	M1 M1 A1	$\begin{array}{\|r\|} \hline 3 \\ 8 \\ \hline \end{array}$	For calculation of relevant scalar product For use of correct formula with any vectors For correct answer (allow 1.19 radians)
6 (i) Separating gives $\frac{1}{y^{2}} \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{x^{2}}$ Hence $-\frac{1}{y}=-\frac{1}{x}+c$ Required solution is $y=\frac{x}{1-c x}$	M1 A1 B1 M1 A1	5	For dividing both sides by y^{2} For correct integration on both sides For inclusion of (one) constant integration For valid algebraic process to make y explicit For correct answer (a.c.f.)
(ii) $\quad(2,1) \Rightarrow y=\frac{x}{1+\frac{1}{2} x}$, so $y=\frac{8}{5}$ when $x=8$	M1 A1 A1 ft	38	For using $x=2, y=1$ to evaluate c For correct c For correct value of y
7 (i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2 \sqrt{x}}$ or $2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=1$ or equivalent So integral is $\int \frac{1}{y^{2}(1+y)} \cdot 2 y \mathrm{~d} y=\int \frac{2}{y(1+y)} \mathrm{d} y$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	3	For correct differentiation, in any form For substitution for x throughout For showing the given result correctly
$\text { (ii) } \begin{aligned} & \frac{2}{y(1+y)}=\frac{2}{y}-\frac{2}{1+y} \\ & \text { Hence integral }=[2 \ln y-2 \ln (1+y)]_{2}^{3} \\ & =2 \ln 3-2 \ln 2-2 \ln 4+2 \ln 3=2 \ln \frac{9}{8} \end{aligned}$	M1 A1 A1 ft B1 M1 A1	69	For correct form $\frac{A}{y}+\frac{B}{1+y}$ For correct partial fractions For correct integration of their pfs For correct limits for y For use of limits and simplification For correct answer $2 \ln \frac{9}{8}$ or $\ln \frac{81}{64}$
8 (i) $(x-8)^{2}+(y-1)^{2}=4^{2}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	For correct LHS or $x^{2}+y^{2}-16 x-2 y$ For correct equation, in any form
(ii) (a) Intersect where $(x-8)^{2}+(m x-1)^{2}=16$ $\text { i.e. } x^{2}\left(1+m^{2}\right)-2 x(m+8)+49=0$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	For substitution For correctly obtaining the given equation
$\text { (b) } \begin{aligned} & \text { Real roots if }(m+8)^{2} \geq 49\left(1+m^{2}\right) \\ & \text { i.e. } 48 m^{2}-16 m-15 \leq 0 \\ & \text { Hence }(12 m+5)(4 m-3) \leq 0 \\ & \\ & \text { i.e. }-\frac{5}{12 \leq m \leq \frac{3}{4}} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	4	For considering discriminant For correct quadratic inequality in m For solutions for m For correct set of values for m
(iii) EITHER $A O B=\alpha+\beta$ where $\tan \alpha=\frac{3}{4}$ and $\tan \beta=\frac{5}{12}$	M1 A1 M1		For identifying gradient with tan of angle For handling negative sign correctly For relevant use of addition formula

$\text { Hence } \tan A O B=\frac{\frac{3}{4}+\frac{5}{12}}{1-\frac{3}{4} \times \frac{5}{12}}=\frac{56}{33}$	A1	4	For showing given answer correctly
OR $A O B=2 \theta$ where $\sin \theta=\frac{4}{\sqrt{65}}$ Hence $\tan \theta=\frac{4}{7}$ Hence $\tan A O B=\frac{2 \times \frac{4}{7}}{1-\frac{16}{49}}=\frac{56}{33}$	M1 A1 M1 A1	$\begin{aligned} & 4 \\ & 12 \\ & \hline \end{aligned}$	For using relevant circle geometry and trig For correct conversion to tan For relevant use of double-angle formula For showing given answer correctly

Substitute to $\int k \mathrm{~d} \theta$
Obtain $\frac{1}{2} \sin ^{-1} 2 x+c$
(iii) Equate $-1 / 2 \cos ^{-1} 2 x\left(+c_{1}\right)$ to $1 / 2 \sin ^{-1} 2 x+c$
Obtain A.G.
Choose any value of x e.g. $x=0$ for $a=1 / 2 \pi$ B1
(S.R. M1 d/dx $\left(\cos ^{-1} 2 x+\sin ^{-1} 2 x\right)=0$ A1 Obtain A.G.)
5.(i) Show $\sin ^{3 \pi / 4}+\cos ^{3 \pi / 4}=\sqrt{2} / 2-\sqrt{2} / 2=0$

(ii) Formula with correct r^{2}

Multiply r out to
$\sin ^{2} 2 \theta+\cos ^{2} 2 \theta+2 \sin 2 \theta \cos 2 \theta$
Simplify to $1+\sin 4 \theta$

Integrate with correct limits
Obtain $1 / 16(3 \pi+2)$

B1 A.G. - numeric evidence seen Or solve $r=0$

B1 Correct shape
B1 Evidence of scale
B1
M1 Does not need $1 / 2$
M1 Allow sub. e.g. $y=\sin 2 \theta$; allow $a+b \sin 4 \theta, b \neq 0$; allow recognition or other reasonable method
A1 $\sqrt{ }$
A1 cao AEEF
6.(i) Obtain $\frac{2}{r+1}-\frac{2}{r+3}$
(ii) Expand the first few terms

M1 Attempt at P.F.
A1 cao
$\begin{aligned} & (2 / 2-2 / 4)+(2 / 3-2 / 5)+(2 / 4-2 / 6)+\ldots \\ + & (2 /(n-1)-2 /(n+1))+\left({ }^{2} / n-2 /(n+2)\right)+(2 /(n+1)-2 /(n+3))\end{aligned}$
M1
M1 Sufficient for difference method
Cancel M1
Obtain $5 / 3-2 /(n+2)-2 /(n+3)$ A1
(iii) State idea of limit e.g. $\operatorname{Lt} \frac{1}{N}=0$ B1

State sum $=5 / 3$
7.(i) Square $a+\mathrm{i} b$

Equate real and imaginary parts
Eliminate a or b to quadratic
Solve for correct a and b
Obtain $z= \pm((\sqrt{6}+\mathrm{i} \sqrt{ } 2) / 2)$
(ii)

(iii) Rotate through $\pi / 6$ (about 0)

Enlarge factor $\sqrt{2}$ (about O)
8.(i) Obtain $x=-2 a, x=-a, y=1$
(ii) Write as $x^{2}(y-1)+3 a x y+2 a^{2} y=0$

Use $b^{2}-4 a c \geq 0$ for real x
Obtain quad. inequality $y(y+8) \geq 0$
Solve the inequality
Explain and obtain correct y
$B 1 \sqrt{ } \sqrt{ }$ from (ii)
B1 (Allow De Moivre
M1 (Equate r and θ
M1 (Obtain r and (one) θ
M1 (Attempt correct form A1 cao

B1 Two "correct" points in first quadrant
B1 Correct "coordinates" seen (some idea of correct scale)

B1,B1 Allow degrees
B1,B1

B1,B1,B1 May be quoted
M1 Attempt quadratic
M1
M1
M1
A1
(S.R. M1 Diff'ate M1 Attempt to solve grad. $=0$
A1 Correct t.p. M1 Attempt to justify inequality e.g.graph A1 Fully justified)
$\begin{array}{lr}\text { (iii) Select correct asymptote } y=1 & \text { B1 } \\ \text { Solve asymptote with curve } & \text { M1 } \\ \text { Obtain }(-2 a / 3,1) & \text { A1 }\end{array}$

1
(i) Either $(1+y)^{4}=y^{4}+4 y^{3}+6 y^{2}+4 y+1$ or $(1+y)^{3}=y^{3}+3 y^{2}+3 y+1$
$y^{4}-5 y^{2}+6(=0) \quad$ WWW
AG
dep*B1
(ii) Attempt to solve for $y^{2} \&$ then y
s.o.i M1
$1+\sqrt{ } 2,1+\sqrt{ } 3$
both A1
$1-\sqrt{ } 2,1-\sqrt{ } 3$
both A1 5

Attempt to solve $\ln x=\frac{3}{x} \quad$ AEF

State or use formula $x-\frac{\ln x-\frac{3}{x}}{\frac{1}{x}+\frac{3}{x^{2}}}$ or $x-\frac{x \ln x-3}{\ln x+1}$ (denom reasonable attempt) M1
$1^{\text {st }}$ iter correct
Final answer (not dep on prev A1) 2.86 cao *A1

2 d.p. justification (either $2.855 \& 2.865$ signs or suff iterations) dep*A1 5
$1+4 x^{2}=\cosh ^{2} u$
s.o.i.

B1
$\mathrm{d} x=\frac{1}{2} \cosh u(\mathrm{~d} u) \quad$ used
B1
$\frac{1}{2} \int \cosh ^{2} u(\mathrm{~d} u)$
B1

For $\int \cosh ^{2} u(\mathrm{~d} u), \quad$ use of $\cosh 2 u=+/-2 \cosh ^{2} u+/-1$ or parts once + use of $\cosh ^{2} u / \sinh ^{2} u$ connection

M1
$\mathrm{k}\left[u+\frac{1}{2} \sinh 2 u\right]$ or $\mathrm{k}[u+\sinh u \cosh u]$
A1

Final answer $=\frac{1}{4}\left[\sinh ^{-1} 2 x+2 x \sqrt{ }\left(1+4 x^{2}\right)\right]+\mathrm{c}$
A1 6
[Terms such as $\sinh \left(2 \sinh ^{-1} 2 x\right)$ not acceptable in final answer]
(i) Tangent (to curve) (at A); AC and curve have same gradient

B1 1
(ii)(a) $y_{0}+h \mathrm{f}\left(x_{0}, y_{0}\right)$, not $y_{0}+h \frac{\mathrm{~d} y}{\mathrm{~d} x}$; clear indic that $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is eval at $\left(x_{0}, y_{0}\right)$

B1 1
(b) $\mathrm{f}\left(x_{0}+h, \sqrt{ }\right.$ ans to (ii)(a))

B1 1
$\begin{array}{rlr}\text { (iii) } \begin{aligned} y_{1.1} & =1+0.1 \times \sqrt{ }\left(1^{3}+1^{3}\right)\end{aligned} & \text { M1 } \\ y_{1.2}=\text { their } y_{1.1}+0.1 \sqrt{ }\left(1.1^{3}+\text { their } y_{1.1^{3}}{ }^{3}\right) & \text { M1 } \\ =1.309 \text { or better }(1.3092935) & \text { A1 } 3\end{array}$

5
(i) $\Sigma \alpha^{2}=(\Sigma \alpha)^{2}-2 \Sigma \alpha \beta$
AEF

M1
$\alpha \beta+\beta \gamma+\gamma \alpha=-5$
A1 2
(ii) $x^{3}-3 x^{2}+($ their $\Sigma \alpha \beta) x-1=0$ B2
[S.R. Totally f.t. correct except for 1 incorrect sign \rightarrow B1]
(iii) Using $x^{3}-3 \mathrm{x}^{2}-5 \mathrm{x}-1=0 \&$ spotting $x=-1$ is a root or $(x+1)$ is a factor

B1
Using $x+1$ with factorisation or long division
M1
$x^{2}-4 x-1$
A1
$-1,2 \pm \sqrt{ } 5$
A1 4
8

6 (i) Attempt to use parts with $\mathrm{u}=x^{\mathrm{n}} \quad, \mathrm{dv}=(1-x)^{\frac{1}{2}}$
$\left\lfloor-\frac{2}{3} x^{n}(1-x)^{\frac{3}{2}}\right\rfloor+\frac{2}{3} n \int x^{n-1}(1-x)^{\frac{3}{2}}(\mathrm{~d} x) \quad$ Ignore limits here but note below $* \mathrm{~A} 1$
$=\frac{2}{3} n \int_{0}^{1} x^{n-1}(1-x)^{\frac{3}{2}}(\mathrm{~d} x) \quad$ AG \quad Limits present in sq. brackets \quad dep *A1 $\quad 3$
(ii) Multiplying out $x^{n-1}(1-x) \&$ producing 2 separate integrals
$I_{n}=\frac{2}{3} n I_{n-1}-\frac{2}{3} n I_{n}$
Combining I_{n} terms and producing AG
WWW
A1 3
(iii) $I_{0}=\frac{2}{3}$ or $\mathrm{I}_{1}=\frac{4}{15}$ B1

Attempt to use reduction formula at least once $\left(7 I_{2}=4 I_{1}, 5 I_{1}=2 I_{0}\right) \quad$ M1
$\frac{16}{105} ; \quad \sqrt{4} \mathrm{I}_{1}$ or $\frac{8}{35} \mathrm{I}_{0} \quad$ (Ignore any decimals) \quad A1 $\quad 3 \quad 9$
[If (iii) worked with a different method, then
M2 for complete method (M1 for partial, e.g. subst without changing limits)
A1 for answer]

OCR
Mark scheme after Standardisation

7
(i) Sketch $\quad(y$-axis symmetry, x-axis asymptote, curvature)
(ii) Attempt to change $\mathrm{d} x$ into $\mathrm{f}(u) \mathrm{d} u$
$\mathrm{d} x=\frac{1}{u} \mathrm{~d} u$
Integrand $\frac{2}{u^{2}+1}$
$2 \tan ^{-1} u$
Resubstitution or attempt to change limits
$2 \tan ^{-1} \mathrm{e}-\frac{1}{2} \pi$
AG
(iii) $\mathrm{k} \int \operatorname{sech}^{2} x(\mathrm{~d} x) \quad$ (where k is a constant, including 1)
$\mathrm{k} \tanh x$
$\pi\left(\frac{e^{2}-1}{e^{2}+1}\right) \quad$ with at least 1 intermediate stage \quad AG
*M1

8
(i) State/imply AE is $\mathrm{m}^{2}+6 \mathrm{~m}+10(=0)$
$\mathrm{m}=-3 \pm \mathrm{i}$
$\mathrm{e}^{-3 x}(A \cos x+B \sin x)$ or $A \mathrm{e}^{-3 x} \sin (x+\alpha)$ or $A \mathrm{e}^{-3 x} \cos (x-\beta)$ Vcomplex m $\sqrt{ } \mathrm{A} 1$

State/imply PI is 1
B1
(GS is) $(y=)$ their CF + their PI
(ii) Provided prev mark was not A0, substitute $(0,0)$ into their equation $\sqrt{ } \mathrm{A} 1 \quad 5$

Differentiate their equation, using suitable techniques (as necessary) *M1
Substitute $x=0$
*M1
Equate $y_{0}{ }^{\prime}$ to 1
dep*M1

Produce $y=-\mathrm{e}^{-3 x}(\cos x+2 \sin x)+1$ or exact equivalent
A2
11

1 (i) Rotation (about the origin) anticlockwise, through $\frac{2}{3} \pi$ OR 120°	M1 A1 A1 3	Anticlockwise may be shown by an arrow, or as +ve SR 2 different transformations stated earn at most M1 (for any rotation) A0 A0
(ii) $(n=) 3$	$\mathrm{B} 1 \sqrt{ } 1$	answer must f.t. from angle of rotation
		4
2 (i) Position vector of a point on plane P	B1 1	
(ii) Vector normal to the plane P	B1 1	
(iii) A (straight) line, through point with position vector \mathbf{a}, in a direction normal to plane	$\begin{array}{ll} \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & 3 \end{array}$	may be implied by points parallel to normal
		5
3 (i) Multiply by a^{-1} on left, or b^{-1} on right Obtain ($x=$) $a^{-1} c b^{-1}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	
(ii) EITHER: Expand RHS to give $r^{2} s^{2}=r s r s$ Use multiplication by r^{-1} and s^{-1} to obtain $r s=s r$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	SR done in reverse without \Leftrightarrow earns M1 A0 AG
OR: Multiply both sides by $(r s)^{-1}$ and use $(r s)^{-1}=s^{-1} r^{-1}$ Use multiplication by r^{-1} or s^{-1} to obtain $r s=s r$	M1 A1 2	left or right multiplication AG
		4
4 (i) State $z^{n}=\cos n \theta+i \sin n \theta$ Subtract $z^{-n}=\cos n \theta-i \sin n \theta$ to obtain $2 \mathrm{i} \sin n \theta$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } 2 \end{aligned}$	AG
$\text { (ii) } \begin{aligned} & 32 i \sin ^{5} \theta \\ & \left(z-z^{-1}\right)^{5}= \\ & z^{5}-5 z^{3}+10 z-10 z^{-1}+5 z^{-3}-z^{5} \\ & =2 \mathrm{i} \sin 5 \theta-10 \mathrm{i} \sin 3 \theta+20 \mathrm{i} \sin \theta \\ \Rightarrow & \left(\sin ^{5} \theta=\right) \frac{1}{16}(\sin 5 \theta-5 \sin 3 \theta+10 \sin \theta) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	may be seen anywhere. Allow $2^{5} \mathrm{i}^{5} \sin ^{5} \theta$ Attempt at binomial expansion
LONGER ALTERNATIVE METHOD: $\operatorname{Im}(c+\mathrm{i} s)^{5} \Rightarrow \sin 5 \theta=5 c^{4} s-10 c^{2} s^{3}+s^{5}$ $\operatorname{Im}(c+\mathrm{i} s)^{3} \Rightarrow \sin 3 \theta=3 c^{2} s-s^{3}$ Put $c^{2}=1-s^{2}$ in identities for both $\sin 5 \theta$ and $\sin 3 \theta$ and eliminate s^{3} between them $\Rightarrow\left(\sin ^{5} \theta=\right) \frac{1}{16}(\sin 5 \theta-5 \sin 3 \theta+10 \sin \theta)$	M1 A1 M1 A2 5	Expand at least imaginary terms of $(c+i s)^{5}$ Obtain identity for $\sin 5 \theta O R \sin 3 \theta$ AEF SR A1 for 2 terms correct
		7

5 (i) $\begin{aligned} & \text { Put } \Delta=\left\|\begin{array}{ccc} 7 & k & 1 \\ k & 3 & 1 \\ 1 & 7 & 3 \end{array}\right\|=0 \\ & \Delta=7 \times 2-k(3 k-1)+(7 k-3) \\ & =-3 k^{2}+8 k+11 \\ & k=-1, \frac{11}{3} \end{aligned}$	M1 M1 A1 A1 4	Use correct expansion method SR If M0 M0, allow B1 for $k=-1$ stated
	M1 M1 A1 A1	Eliminate one variable between two equations Solve in terms of 1 parameter for 2 of x, y, z correct for the 3rd correct AEF Allow $\frac{x}{1}=\frac{y+3}{2}=\frac{z-6}{-5}=t$ etc.
ALTERNATIVE METHOD: Find vector product of two of $[7,-1,1],[-1,3,1]$ and $[1,7,3]$ Obtain $\pm[1,2,-5]$ Find a point on the common line Obtain $(x, y, z)=(t, 2 t-3,-5 t+6)$	M1 A1 M1 A1 4	For finding the direction of the line of intersection of the 3 planes or any multiple e.g. by putting x, y or $z=0$ AEF or other forms as above
		8
$\begin{aligned} 6 \text { (i) } \quad\left(z^{2}\right. & =) \frac{1}{4}\left(\cos \frac{2}{3} \pi+\mathrm{i} \sin \frac{2}{3} \pi\right) \text { OR } \frac{1}{4} \mathrm{e}^{\frac{2}{3} \pi \mathrm{i}} \\ \left(z^{3}\right. & =) \frac{1}{8}(\cos \pi+\mathrm{i} \sin \pi) \text { OR } \frac{1}{8} \mathrm{e}^{\mathrm{i} \pi} \end{aligned}$	$\begin{array}{ll} \text { B1 } & \\ \text { B1 } & 2 \end{array}$	allow $-\frac{1}{8}$
(ii) 4 points shown, starting from the +ve real axis and going anticlockwise $\arg \mathrm{AB} \approx \frac{1}{3} \pi, \arg \mathrm{BC} \approx \frac{2}{3} \pi, \arg \mathrm{CD} \approx \pi$ and $\|A B\|>\|B C\|>\|C D\|$	M1 $\text { A1 } 2$	
(iii) Use G.P. sum $\frac{1-z^{m}}{1-z}$ $\begin{aligned} & z^{6 n}=k(\cos 2 n \pi+i \sin 2 n \pi) \\ & z=\frac{1}{2}\left(\frac{1}{2}+\mathrm{i} \frac{\sqrt{3}}{2}\right) \end{aligned}$ Attempt to make denominator real Obtain $\frac{1}{3}\left(1-\frac{1}{2^{6 n}}\right)(3+i \sqrt{3})$	M1* B1 B1 M1 (dep*) A1 5	for $m=$ any function of n seen or implied, any $k \neq 0$ AEFcartesian seen or implied AG
(iv) State $\frac{1}{3}(3+\mathrm{i} \sqrt{3})$	B1 1	AEF
		10

$\begin{array}{r} 7 \text { (i) } \quad \mathbf{r}=\left[\frac{3}{2}, 3,2\right]+ \\ +\lambda[2,1,2]+\mu[-2,1,0] \end{array}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } 2 \end{aligned}$	
$\begin{aligned} \text { (ii) } & \text { Use }[2,1,2] \times[-2,1,0] \\ & \Rightarrow(\mathbf{n}=) \pm[-2,-4,4] \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Use vector product of \mathbf{b} and \mathbf{c} or any multiple
Then EITHER: Use $\left(\frac{3}{2}, 3,2\right)$ to obtain $2 x+4 y-4 z=7$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
OR: Write 3 equations in x, y, z from (i) and eliminate λ and μ Obtain $2 x+4 y-4 z=7$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 4 \end{array}$	AEF
(iii) Find $\overrightarrow{P Q}$ and attempt to normalise Obtain $\left(\hat{\mathbf{n}}_{1}=\right) \frac{1}{3}[-1,-2,2]$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	AEF but not $-\hat{\mathbf{n}}_{1}$ or multiples of $\hat{\mathbf{n}}_{1}$
(iv) Attempt to find $\|\overrightarrow{P Q}\|$ Obtain $\left(\sqrt{1^{2}+2^{2}+2^{2}}=\right) 3$ $\overrightarrow{P Q}$ is the common perpendicular to l_{1} and l_{2}	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \\ & \hline \end{aligned}$	Allow use of $\|\hat{\mathbf{n}} \cdot \overrightarrow{P Q}\|$ to obtain $\left(\text { e.g. } \frac{1}{6}[-2,-4,4] \cdot[-1,-2,2]=\right) 3$
8 (i) $\mathrm{ff}(x)=\frac{1}{1-\frac{1}{1-x}}=\frac{1-x}{-x}=1-\frac{1}{x}$	$\begin{array}{r} \text { M1 A1 } \\ 2 \\ \hline \end{array}$	Putting f into itself AG An intermediate step is required
$\text { (ii) } \begin{aligned} & \mathrm{f}^{3}(x)=\frac{1}{1-\left(1-\frac{1}{x}\right)} \text { OR } 1-\frac{1}{\frac{1}{1-x}} \\ & \quad=x \Rightarrow \mathrm{f} \text { has order } 3 \end{aligned}$	M1 A1 A1 3	Putting ff into f $O R$ f into ff AG Simplification to x is required
(iii) $\{\mathrm{e}, \mathrm{h}\}$	$\begin{gathered} \text { M1 A1 } \\ 2 \end{gathered}$	M1 for 2 elements including e Allow f , ff f , hf , hff in place of h
$\text { (iv) } \begin{aligned} & \mathrm{fh}(x)=\frac{1}{1-\frac{1}{x}} \text { OR } \quad \mathrm{h}(\mathrm{ff})(x)=\frac{1}{1-\frac{1}{x}} \\ & \mathrm{hf}(x)=\frac{1}{\frac{1}{1-x}} \text { OR } \quad(\mathrm{ff}) \mathrm{h}(x)=1-\frac{1}{\frac{1}{x}} \\ & \mathrm{fh}(x) O R \mathrm{~h}(\mathrm{ff})(x)=\frac{x}{x-1} \\ & \mathrm{hf}(x) O R(\mathrm{ff}) \mathrm{h}(x)=1-x \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } 4 \end{aligned}$	Attempt to find fh or $\mathrm{h}(\mathrm{ff})$ Attempt to find hf or (ff)h SR Award A1 A0 if both elements are correct but the working for their derivation contains an error
		11

1	(i)	Momentum before collision $=$ $0.3 \times 1.5-0.2 \times 2$ Momentum after collision $=$ $0.2 \times b-0.3 \times a$ $0.45-0.4=0.2 b-0.3 a$ $b=1.5 a+0.25$	B1 B1 M1 A1	4	$\begin{array}{ll} \hline \text { Alternatively: Momentum lost by } A \\ =0.3 \times 1.5+0.3 \times a & \text { B1 } \\ \text { Momentum gained by } B & \text { B1 } \\ =0.2 \times b+0.2 \times 2 & \\ \text { For using the principle of } & \\ \text { conservation of momentum } & \end{array}$
	(ii)	$\begin{aligned} & a=2 / 4=0.5 \\ & b=1.5 \times 0.5+0.25=1 \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \mathrm{ft} \end{aligned}$		

2	(i)	$\begin{aligned} & \hline F=14.7 \text { and } R=3 g \\ & 14.7=3 \times 9.8 \mu \\ & \text { Coefficient is } 0.5 \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	3	For using $F=\mu R$
	(ii)	$\begin{aligned} & F=P \cos 30^{\circ} \\ & R=3 g+P \sin 30^{\circ} \\ & 0.866 P=0.5(29.4+0.5 P) \rightarrow \\ & 0.616 P=14.7 \\ & P=23.9 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \\ & \text { A1 } \end{aligned}$	4	For using $F=\mu R$ and attempting to solve for P

3	(i)	$\begin{aligned} & 10 \cos x=5 \\ & x=60 \\ & P=10 \sin x \text { or } P^{2}=10^{2}-5^{2} \\ & P=8.66 \text { or } 5 \sqrt{3} \end{aligned}$	M1 A1 M1 A1	4	For resolving in \mathbf{i} direction or using trigonometry to find x in triangle of forces For resolving in \mathbf{j} direction or using trigonometry or Pythagoras to find P in triangle of forces SR scale drawing (max 3 out of 4) Correct triangle of forces drawn to scale M1, then by measurement, magnitude of $P=8.6$ or 8.7 (2sf) A1 $x=60(2 \mathrm{sf}) \mathrm{A} 1$
	(ii)	$\begin{aligned} & H=10 \cos 45^{\circ}-5 \\ & V=12-10 \sin 45^{\circ} \\ & R^{2}=2.071^{2}+4.929^{2} \\ & \text { Magnitude is } 5.35 \mathrm{~N} \end{aligned}$	B1 B1 M1 A1	4	For using $R^{2}=H^{2}+V^{2}$ Alternatively for the above 4 marks: If combining two forces initially then combining this resultant the third force M1 for a complete method, A1 for the magnitude of the two forces, A1 for angle from those forces, A 1 for 5.35 . SR scale drawing (max 2 out of 4) Correct polygon of forces drawn to scale M1, then by measurement, magnitude is 5.3 or 5.4 (2sf) A1

4	(i)	$\begin{aligned} & v=2 t^{1.5}(+C) \\ & 2(9)^{1.5}+C=60 \rightarrow C=6 \end{aligned}$ Initial velocity is $6 \mathrm{~ms}^{-1}$	$\begin{aligned} & \mathrm{M} 1 \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$		For using $v=\int a d t$ For using $v(9)=60$
	(ii)	$\begin{aligned} & s=0.8 t^{2.5}+6 t \\ & O P=\left(0.8(9)^{2.5}+6 \times 9\right)-(0+0) \\ & (=194.4+54) \end{aligned}$ Distance $O P$ is $248(.4) \mathrm{m}$	M1* A1ft M1 dep* A1		For using $s=\int v d t$ ft incorrect non zero v_{0} For correct use of limits or equivalent

5	(i)		M1 A1 B1	3	For an attempt at sketching the graph for the outward stage; v must be continuous, ≥ 0 and single valued throughout, and the graph must consist of 3 straight line segments $1^{\text {st }}$ line segment must start at the origin and have +ve slope, $2^{\text {nd }}$ line segment must have zero slope, $3^{\text {rd }}$ line segment must have -ve slope and terminate on t axis. Values of v and t need not be shown. Correct sketch of the graph for the return stage; values of v and t need not be shown.
	(ii)	$\begin{aligned} & \text { OA }=1 / 20 \times 9+82 \times 9+1 / 28 \times 9 \\ & =90+738+36 \end{aligned}$ Distance $O A$ is 864 m	M1 A1	2	For using the idea that the distance is represented by the area of the relevant region
	(iii)	$\Delta t=16$ Distance at constant speed = $864-1 / 216 \times 8$ $110+16+800 / 8$ Total time is 226 s	B1 M1 M1 A1ft	4	For time of acceleration stage on return journey For correct method of finding a distance at constant speed For correct method for finding total time ft for $118+$ ans(ii) $/ 8$

6	(i)	$\begin{aligned} & h=15 \times 0.8-1 / 29.8 \times(0.8)^{2} \\ & =12-3.136 \end{aligned}$ Height is 8.86(4) m	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	2	For using $s=u t-1 / 2 g t^{2}$
	(ii)	$\begin{aligned} & H-1 / 29.8 \times(0.8)^{2}=8.864 \\ & H=15 \times 0.8 \\ & H=12 \end{aligned}$	$\begin{gathered} \mathrm{M} 1 \\ \mathrm{~A} 1 \end{gathered}$	2	For using $\mathrm{H}-1 / 2 \mathrm{gt}^{2}=$ ans(i) or $H=u t\left(\right.$ from $\left.H-1 / 2 g t^{2}=u t-1 / 2 g t^{2}\right)$
	(iii)	$\begin{aligned} & 0=15 t-4.9 t^{2}, t \neq 0 \text { or } \\ & 0=15-9.8(t / 2) \\ & \\ & t_{\mathrm{A}}=3.06 \text { or } 15 / 9.8 \\ & 12=1 / 29.8 t^{2} \\ & t_{\mathrm{B}}=1.56 \text { or } \sqrt{24 / 9.8} \\ & t_{\mathrm{A}}-t_{\mathrm{B}}=3.061-1.565 \end{aligned}$ Time interval is approx 1.5 s A.G.	M1 A1 M1 A1ft B1	5	For solving $0=u t-1 / 2 g t^{2}, t \neq 0$ or for solving $0=u-g(t / 2)$ or equivalent For solving $H=1 / 2 g t^{2}$ www

Mark scheme for M2 2638 (January 2005) (final)

$\mathbf{1}$	(i)	$v=21 / 2$	B 1	1	+ only	
	(ii)	$\mathrm{I}=0.2 \times 21 / 2-(-0.2 \times 5)$	M 1		Impulse = change of momentum	
		$\mathrm{I}=1.5 \mathrm{Ns}$	A 1		+ only	
		\leftarrow	B 1	3	to the left	4

$\mathbf{2}$	(i)	c.of m. of cone 0.6 or 0.2	B1		clearly from vertex (0.6) or base (0.2)	
		moments	M1		moments about vertex or about base	
		$1.2 \mathrm{~d}=0.5 \times 0.6+0.7 \times 1.2$	A 1		$1.2 \mathrm{e}=0.7 \times 0.4+0.5 \times 1.0(\mathrm{e}=0.65)$	
		$\mathrm{d}=0.95$	A 1	4	AG	
	(ii)	$\tan \theta=0.3 / 0.65$	M1		geometry must be correct	
		$\theta=24.8^{\circ}$	A 1	2		$\mathbf{6}$

$\mathbf{3}$	(i)	$\mathrm{D}=500 \mathrm{~N}$	B 1			
		$500=k \times 40^{2}$	M 1			
		$k=5 / 16$	A 1	3	AG (or 0.3125)	
	(ii)	$20,000 / 30-5 / 16 \times 30^{2}=350 \mathrm{a}$	M1		must have attempt at all 3 parts but not 500 for driving force or R	
					A1	
nor		A1	3	or 1.1 or $185 / 168$ or $1+17 / 168$	$\mathbf{6}$	
		$\mathrm{a}=1.10 \mathrm{~ms}^{-2}$				

4	(i)	$400 \cos 30^{\circ} \times 25$	M1			
		8660 Nm	A1	2	or $8.66 \mathrm{k} \ldots$	
	(ii)	inc. in K.E. $=100$	B1		$1 / 2.50 .2^{2}$	
		inc in P.E. $=4190$	B1		$50 \times 9.8 \times 25 \sin 20^{\circ}$	
		$100+4190+25 \mathrm{R}=8660$	M1		must have 4 terms and 25 R	
			A1			
		$\mathrm{R}=175$	A1	5		7
	or	$\mathrm{a}=0.08$	B1		no P.E. \& K.E.	
		$400 \cos 30^{\circ}-\mathrm{R}-50 \operatorname{gsin} 20^{\circ}=50 \mathrm{a}$	M 1		3 marks available only if N II used	
		$\mathrm{R}=175$	A1			

5	(i)(a)	$\mathrm{R} \cos 15^{\circ}=500 \times 9.8$	M1		for resolving vertically	
		$\mathrm{R}=5070 \mathrm{~N}$	A1	2	components of R needed for M1s	
	(b)	$\mathrm{R} \sin 15^{\circ}=500 \mathrm{v}^{2} / 60$	M1		N II and $\mathrm{a}=\mathrm{v}^{2} / \mathrm{r}$ (not for $\mathrm{R}=500 \mathrm{~g}$)	
		"	A1		R can be x for this (value needed)	
		$\mathrm{v}=12.6 \mathrm{~ms}^{-1}$	A1	3		
	(ii)(a)	$\mathrm{R} \cos 15^{\circ}=500.9 .8+\mathrm{F} \sin 15^{\circ}$	M1		for resolving vertically (3 parts)	
		$\mathrm{F}=3 / 7 \mathrm{R}$	B1		unknown F and R (M1 \& B1)	
		$\mathrm{R}=5730 \mathrm{~N}$	A1	3		
	(b)	$\mathrm{R} \sin 15^{\circ}+\mathrm{F} \cos 15^{\circ}=500 . \mathrm{v}^{2} / 60$	M1		N II \& $\mathrm{a}=\mathrm{v}^{2} / \mathrm{r}$ (3 parts) (accept $\mathrm{R}=500 \mathrm{~g}$ for M1 only)	
		"	A1		F \& R can be wrong for $1^{\text {st }} \mathrm{A} 1$	
		$\mathrm{v}=21.5 \mathrm{~ms}^{-1}$	A1	3		11

6	(i)	$0=14^{2} \sin ^{2} 60^{\circ}-2.9 .8 \mathrm{~h}$	M1		or use of $\mathrm{v}^{2} \sin ^{2} \theta / 2 \mathrm{~g}$	
		$\mathrm{~h}=7.5 \mathrm{~m}$	A1	2		
	(ii)	$0=14 \sin 60^{\circ}-9.8 \mathrm{t}$	M 1		use of $\mathrm{v}=\mathrm{u}+\mathrm{at}$ or similar	
		$\mathrm{t}=1.24 \mathrm{~s}(\mathrm{t}$ to max height)	B1		or $5 / 7 \sqrt{ } 3$ or total time 2.47	
		$\mathrm{~d}=2 \times 14 \cos 60^{\circ} \times 1.24$	M 1		must have 2	
		$\mathrm{~d}=17.3$	A 1	4	range $=\mathrm{u}^{2} \sin 2 \theta / \mathrm{g}=17.3$ scores 4	
	(iii)	$\mathrm{v}=4 / 7 \times 7$	M 1			
		$\mathrm{v}=4$	A1		\pm	
		vert. comp $\mathrm{v}=12.1$	B1		or $14 \sin 60^{\circ}$ or $\sqrt{147}$	
		speed $=\sqrt{ }\left(4^{2}+12.1^{2}\right)$	M1		may be implied	
		speed $=12.8 \mathrm{~ms}{ }^{-1}$	A1			
		$\theta=\tan ^{-1}(12.1 / 4)$	M1		or equivalent $($ may be implied $)$	
		$\theta=71.7^{\circ}$ to horizontal	A1	7	or 18.3° to vertical	$\mathbf{1 3}$

7	(i)	$\mathrm{R}=196 \mathrm{~N}$ (not in terms of g)	B1		reaction force at ground	
		N. $5 \sin 60^{\circ}=20.9 .8 .2 .5 \cos 60^{\circ}$	M1		moments about B or about T	
		"	A1		$20.9 .8 .2^{1 / 2} .1 / 2+$ F. $5 \sin 60^{\circ}=$ R. $2^{1 / 2}$	
		$\mathrm{N}=56.6$ (not in terms of g)	A1	4	reaction force at wall	
	(ii)	$\mathrm{F}=56.6$	B1J		\checkmark their N (value required)	
		$56.6<2 / 5 \times 196$ (78.4)	B1	2	or $\mathrm{F} / \mathrm{R}=0.289<0.4$	
	(iii)	$\mathrm{R}^{\prime}=980$ or 100 g	B1			
		$\mathrm{F}^{\prime}=2 / 5 \mathrm{R}^{\prime}=392$ or 40 g	B1/		\checkmark their R' (not 196)	
		$\mathrm{N}^{\prime}=\mathrm{F}$ '	B1		not 56.6 or 78.4	
		$\mathrm{N}^{\prime} \cdot 5 \sin 60^{\circ}=$	M1*		$\mathrm{M}(\mathrm{B}) 3$ parts (all moments)	
		20.9.8.2.5.1/2 +80.9.8.d $\cos 60^{\circ}$	A1		any N if substituted	
		solve for d	M1*		depends on previous M1	
		$\mathrm{d}=3.71 \mathrm{~m}$	A1	7		13
	or	80 gecos $60^{\circ}+20 \mathrm{~g} .2 .5 \cos 60^{\circ}+$	M1*		$\mathrm{M}(\mathrm{T})$ last 5 marks above become	
		$\mathrm{F}^{\prime} .5 \cdot \sin 60^{\circ}=\mathrm{R}^{\prime} .5 \cos 60^{\circ}$	A1		$\mathrm{e}=$ dist from T	
		$\mathrm{e}=1.29$	A1			
		$\mathrm{d}=5-\mathrm{e}$	M1*			
		$\mathrm{d}=3.71$	A1/			
	or	$80 \mathrm{gfcos} 60^{\circ}+\mathrm{R}{ }^{\prime} .2 .5 \cos 60^{\circ}=$	M1		$\mathrm{M}(\mathrm{G})$ last 4 marks become	
		$\mathrm{N}^{\prime} .2 .5 \sin 60^{\circ}+\mathrm{F}^{\prime} .2 .5 \sin 60^{\circ}$	A1		$\mathrm{f}=$ dist from G	
		$\mathrm{f}=1.21$	A1			
		$\mathrm{d}=3.71$	A1			

1	$\begin{aligned} & \binom{2.5 \cos 140}{2.5 \sin 140}=0.2\binom{v_{1}}{v_{2}}-0.2\binom{18}{0} \\ & \quad v_{1}=8.424, \quad v_{2}=8.035 \\ & \text { Speed }=\sqrt{v_{1}^{2}+v_{2}^{2}} \\ & =11.6 \mathrm{~ms}^{-1} \end{aligned}$	M1 A1 M1 A1 	Equation involving impulse and momentum (one component sufficient) Both component equations correct
	OR		Impulse / momentum triangle Correct triangle
2 (i)	At highest point, $R+m g=m \frac{u^{2}}{a}$ $u^{2}=a g+\frac{R a}{m} \geq a g, \text { so } u \geq \sqrt{a g}$	M1 A1 (ag) 2	$\begin{aligned} & \text { Or } m g=m \frac{u^{2}}{a} \\ & \text { Or } u=\sqrt{a g} \end{aligned}$
(ii)	$\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}=m g(2 a)$ When $u^{2}=a g, v^{2}=5 a g$ $\begin{aligned} R-m g & =m \frac{v^{2}}{a} \\ R & =6 m g \end{aligned}$	M1 A1 A1 M1 A1 (ag) 	Using conservation of energy from highest point to lowest point
3	Velocities after collision $\begin{gathered} m w+m x=m(17)-m(6 \cos 60) \\ (w+x=14) \end{gathered}$ $\begin{gathered} x-w=0.6(17+6 \cos 60) \\ \quad(x-w=12) \\ w=1, \quad x=13 \end{gathered}$ Speed of A is $w=1 \mathrm{~ms}^{-1}$ Speed of B is $\sqrt{x^{2}+y^{2}}=14 \mathrm{~ms}^{-1}$	$\begin{array}{ll}\text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } & \\ & 8\end{array}$	Conservation of momentum Restitution equation Obtaining w or x

(ii)	When displaced distance x from equilibrium, Tension in $P X$ is $T_{1}=\frac{60}{0.4} x \quad(=150 x)$ Compression in $X Q$ is $T_{2}=\frac{45}{0.5} x \quad(=90 x)$ $\begin{aligned} -T_{1}-T_{2} & =m \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}} \\ \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}} & =-\frac{240}{m} x, \text { hence motion is } \mathrm{SHM} \end{aligned}$	M1 A1 A1 M1 A1	Using $\frac{\lambda x}{l}$
	$\begin{aligned} & \text { Period is } 2 \pi \sqrt{\frac{m}{240}} \\ & 2 \pi \sqrt{\frac{m}{240}}=0.48 \Rightarrow m=1.40 \end{aligned}$	B1 ft M1A1	ft from eqn of form $\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=-\omega^{2} x+k$
	$\begin{aligned} & \text { OR } \quad \omega=\frac{2 \pi}{0.48} \\ & \quad \frac{2 \pi}{0.48}=\sqrt{\frac{240}{m}} \Rightarrow m=1.40 \end{aligned}$ M1A1		
5 (i)	Moments about B for $B C$ $\begin{aligned} & H(1.2 \cos 60)-18(0.6 \sin 60)=0 \\ & H=15.6 \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Moments equation for $B C$ Correct moments equation
(ii)	Horizontal component $=H=15.6 \mathrm{~N}$ (to right) Vertical component $=V=18 \mathrm{~N}$ (downwards)	$\begin{array}{\|ll\|} \hline \text { B1 ft } \\ \text { B1 } \end{array}$	Directions must be clear If B 0 , give B 1 for $15.6(\mathrm{ft})$ and 18
(iii)	$\begin{aligned} & \text { Moments about } A \text { for } A B \\ & H(1.6 \cos \theta)-V(1.6 \sin \theta)-24(0.8 \sin \theta)=0 \\ & \theta=27.5^{\circ} \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { A2 } & \\ \text { A1 } & \\ \hline \end{array}$	$\begin{aligned} & \text { Moments equation for } A B \text { (or } A B C \text {) } \\ & \text { Give A1 if one error } \end{aligned}$

6 (i)	$\begin{aligned} & 0.1 \times 9.8-0.02 v=0.1 \frac{\mathrm{~d} v}{\mathrm{~d} t} \\ & t=\int \frac{1}{9.8-0.2 v} \mathrm{~d} v \\ & =-5 \ln (9.8-0.2 v)+C \\ & v=6 \text { when } t=0 \Rightarrow C=5 \ln 8.6 \\ & t=-5 \ln (9.8-0.2 v)+5 \ln 8.6 \\ & \mathrm{e}^{0.2 t}=\frac{8.6}{9.8-0.2 v} \\ & 9.8-0.2 v=8.6 \mathrm{e}^{-0.2 t} \\ & v=49-43 \mathrm{e}^{-0.2 t} \end{aligned}$	M1 A1 M1 A1 M1 M1 A1 (ag)	Using N2L to obtain a diff eqn separation of variables $+C$ not required Must be correctly obtained
(ii)	$\begin{aligned} s & =\int_{0}^{2.5} v \mathrm{~d} t=\left[49 t+215 \mathrm{e}^{-0.2 t}\right]_{0}^{2.5} \\ & =(122.5+130.4)-(215) \\ & =37.9 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ M1 A1	Integrating v For $49 t+215 \mathrm{e}^{-0.2 t}$ Using both limits (or finding constant of integration, then putting $t=2.5$) Accept 38 m
7 (i)	Length of each string is $\sqrt{1.2^{2}+0.35^{2}}=1.25$ Tension $T=\frac{112 \times 0.45}{0.8} \quad(=63)$ $2 T \cos \theta=m g$ where $\cos \theta=\frac{0.35}{1.25}$ $m=\frac{2 \times 63 \times 0.28}{9.8}=3.6$	B1 M1 M1 A1 (ag)	Must be correctly obtained
(ii)	Initial EE is $2 \times \frac{112 \times 0.45^{2}}{2 \times 0.8} \quad(=28.35)$ Final EE is $2 \times \frac{112 \times 0.4^{2}}{2 \times 0.8} \quad(=22.4)$ By conservation of energy $\begin{aligned} & \frac{1}{2} \times 3.6\left(3^{2}-v^{2}\right)+(28.35-22.4)=3.6 \times 9.8 \times 0.35 \\ & \quad v=2.33 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Using $\frac{\lambda x^{2}}{2 l}$ (Award A1A1 for elastic energies if only one string is considered) Equation involving EE, KE and PE
(iii)	e.g. Brick is a particle No air resistance Strings are light Strings obey Hooke's law or No energy is lost in the strings	B1B1B1	For three assumptions

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
1. (i) \\
(ii)
\end{tabular} \& \[
\begin{aligned}
\& 0.3 \times 0.37 \\
\& 0.111 \\
\& \\
\& 0.7 \times 0.23+0.3 \times 0.63 \\
\& 0.35
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& 2
2 \& \begin{tabular}{l}
Multiplying probs \\
Both HM and MH
\end{tabular} \\
\hline \begin{tabular}{l}
2. (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\({ }^{22} \mathrm{C}_{11}\) seen or attempt with factorials 705432 \\
\({ }^{11} \mathrm{C}_{6}\) and \({ }^{11} \mathrm{C}_{5}\) seen \\
Multiplied \\
213444/705432 \\
0.3025... \\
0.3025... \\
ALITER 2(ii)
\[
\frac{11}{6!5!} \times\left(\frac{11}{22} \times \frac{10}{21} \times \frac{9}{20} \times \frac{8}{19} \times \frac{7}{18} \times \frac{6}{17}\right) \times\left(\frac{11}{16} \times \frac{10}{15} \times \frac{9}{14} \times \frac{8}{13} \times \frac{7}{12}\right)
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
M1 \\
M1 \\
A1 \\
M1 \\
M1 \\
M1 \\
A1
\end{tabular} \& 2

4 \& | (Their ${ }^{11} \mathrm{C}_{6} \mathrm{X}{ }^{11} \mathrm{C}_{5}$)/their (i) |
| :--- |
| allow 2541k/8398k |
| Both 5 and 6 term probabilities seen. Both 5 and 6 term probabilities multiplied Fully correct method including 11!/(6!5!) |
| 0.303 or equiv. |

\hline | 3. (i) |
| :--- |
| (ii) |
| (iii) | \& | $\begin{aligned} & \hline \text { Use } \mathrm{B}(18,0.35) \text { table } \\ & 0.9788-0.3550 \\ & 0.6238,0.624 \\ & { }^{22} \mathrm{C}_{10}(0.35){ }^{10}(0.65)^{13} \\ & \\ & 0.11668,0.117 \end{aligned}$ |
| :--- |
| e.g. May be biased sample, Residences may not be indep. | \& M1

M1
A1
M1
M1
A1

B1 \& 3
3

1 \& | Or probs,at least one correct. fully correct method |
| :--- |
| allow p,q muddle fully correct method |
| any relevant reason |

\hline | 4. (i) |
| :--- |
| (ii) |
| (iii) | \& | Student 123456 |
| :--- |
| Rank mean2 35461 |
| Rank grade 243561 $\begin{aligned} & \sum d^{2}=6 \\ & r=1-(6 \times 6) /(6 x(36-1)) \\ & 29 / 35 \text { or } 0.829 \end{aligned}$ |
| Use Mathematics grade Greater correlation |
| e.g.Sample too small to generalise | \& \[

$$
\begin{aligned}
& \text { B1 } \\
& \text { M1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { B1ft } \\
& \text { B1 } \\
& \text { B1 }
\end{aligned}
$$
\] \& 4

2

1 \& | correct ranks (or reversed) |
| :--- |
| from ranked data. fully correct method (their sum of d^{2}) |
| any relevant reason |

\hline 5.(i) \& $$
\begin{aligned}
& \hline \text { t } 0.51 .5358 \\
& \text { f } 8 \quad 20502418 \\
& \text { mean }=448 / 120 \\
& 3.73(33 \ldots . . .)
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \hline \text { B1 } \\
& \text { B1 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$
\] \& 4 \& from their f,t

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
1 (i) \\
(ii) \\
(iii)
\end{tabular} \& ```
Twice number of arcs = sum of orders of vertices
\(A B\)
8
``` \& \[
\begin{array}{ll}
\hline \text { B1 } \& \\
\& \mathbf{1} \\
\text { B1 } \& \\
\& \mathbf{1} \\
\text { B1 } \& 1
\end{array}
\] \& \begin{tabular}{l}
\[
2 \times 16=3+3+6+4+4+4+4+4
\] \\
Total \(=3\)
\end{tabular} \& 1 C
1 E
1 E \\
\hline 2 (i)

(ii) \& | Using algorithm to get as far as $A-B-C-E-D$ Route: $A-B-C-E-D-A$ |
| :--- |
| Length $=31$ miles |
| Minimum connector of remaining vertices $A B, A D, D E=16$ (miles) |
| Add two shortest arcs from $C$ $16+6+7=29 \text { (miles) }$ | \& \[

$$
\begin{array}{ll}
\hline \text { M1 } & \\
\text { A1 } & \\
\text { B1 } & \\
& 3 \\
\text { M1 } & \\
& \\
& \\
\text { A1 } & \\
& 2 \\
\hline
\end{array}
$$

\] \& | Allow M mark if they have used algorithm correctly starting at another node 31 cao can be implied from $3+5+8$ |
| :--- |
| NOT $16+12$ $\text { Total }=5$ | \& 3 E

2 C <br>
\hline 3 (i)

(ii)

(iii) \& | Decreasing order: 87655542 |
| :--- |
| From 1 ${ }^{\text {st }}$ roll: $\quad \begin{array}{lll}7.5 & 1.5\end{array}$ |
| From 2 ${ }^{\text {nd }}$ roll: $\quad 6.5 \quad 3.5$ |
| From ${ }^{\text {rd }}$ roll: $\quad 5.5 \quad 4.5$ |
| From 4 ${ }^{\text {th }}$ roll: 4.54 .5 |
| Sum of lengths $=38$ metres, so rolls must be at least 13 metres long. |
| From 1 ${ }^{\text {st }}$ roll: 7.55 .5 |
| From 2 ${ }^{\text {nd }}$ roll: $\quad 6.54 .5 \quad 1.5$ |
| From $3^{\text {rd }}$ roll: 4.54 .53 .5 | \& \[

$$
\begin{array}{cr}
\text { M1 } & \\
& \\
& \\
\text { A1 } & \\
& 2 \\
\text { M1 } & \\
& \\
\text { A1 } & \\
& 2 \\
\text { B1 } & \\
\text { M1 } & \\
\hline & \\
\text { A1 } & \\
\hline
\end{array}
$$

\] \& | Cutting from 5 rolls |
| :--- |
| cao for first-fit decreasing |
| Attempt to show a suitable cutting from 4 rolls not in excess of 10 |
| In any order |
| Cutting from 3 rolls |
| cao in any order $\text { Total }=7$ | \& 2 E

2C

3 C <br>
\hline
\end{tabular}



(iv)


| 3 (i) | Dummy is needed to make a square matrix. |
| :--- | :--- |

(ii)

|  | $\mathbf{V}$ | $\mathbf{W}$ | $\mathbf{X}$ | $\mathbf{Y}$ | $\mathbf{Z}$ |
| :--- | :---: | :---: | :---: | ---: | :---: |
| $\mathbf{Q}$ | 25 | 25 | 25 | 25 | 25 |
| $\mathbf{R}$ | 21 | 17 | 11 | 10 | 20 |
| $\mathbf{S}$ | 10 | 12 | 7 | 12 | 11 |
| $\mathbf{T}$ | 18 | 10 | 6 | 6 | 12 |
| $\mathbf{U}$ | 8 | 12 | 5 | 10 | 11 |

Reduce rows

| 0 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | ---: |
| 11 | 7 | 1 | 0 | 10 |
| 3 | 5 | 0 | 5 | 4 |
| 12 | 4 | 0 | 0 | 6 |
| 3 | 7 | 0 | 5 | 6 |

Columns are then reduced too
Covering shows this is an incomplete matching

|  | 0 |  |
| :---: | :---: | :---: |
| 11 | 7 | 10 |
| 3 | 5 | 4 |
| 12 | 4 | 6 |
| 3 | 7 | 6 |

Augment by 3

| 0 | 0 | 3 | 3 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 8 | 4 | 1 | 0 | 7 |
| 0 | 2 | 0 | 5 | 1 |
| 9 | 1 | 0 | 0 | 3 |
| 0 | 4 | 0 | 5 | 3 |

Covering shows this is still an incomplete matching


Augment by 1

| 1 | 0 | 4 | 4 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 8 | 3 | 1 | 0 | 6 |
| 0 | 1 | 0 | 5 | 0 |
| 9 | 0 | 0 | 0 | 2 |
| 0 | 3 | 0 | 5 | 2 |

Complete matching

| 1 | 0 | 4 | 4 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 8 | 3 | 1 | 0 | 6 |
| 0 | 1 | 0 | 5 | 0 |
| 9 | 0 | 0 | 0 | 2 |
| 0 | 3 | 0 | 5 | 2 |

R-Y, S-Z, T-X, U-V
(with or without dummy)
Cost $=35$
stated
stated

B1 To give a 'person' for the fifth task.

M1 Correct method for reducing matrix
If columns are reduced first, but otherwise correct, award method mark only here then follow through
(ie M1, A0)

Correct values in matrix after reducing both ways

Follow through from their reduced matrix
Correct method for augmenting by 3 in one step

A1 Correct values in matrix after one augmentation

Follow through from their matrix after first augmentation

M1 Correct final matrix eventually reached
A1 Correct matching for their final matrix

| 1 | 0 | 4 | 4 | 0 | 1 | 0 | 4 | 4 | 0 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 8 | 3 | 1 | 0 | 6 | or | 8 | 3 | 1 | 0 | 6 |
| 0 | 1 | 0 | 5 | 0 |  | 0 | 1 | 0 | 5 | 0 |
| 9 | 0 | 0 | 0 | 2 |  | 9 | 0 | 0 | 0 | 2 |
| 0 | 3 | 0 | 5 | 2 |  | 0 | 3 | 0 | 5 | 2 |

B1 R-Y, S-X, T-W, U-V or R-Y,S-V,T-W,U-X
B1 (accept $£ 35$ or equivalent)
8




| 1 (i) | $11^{-2}=\frac{1}{121}$ |  | $\frac{1}{121} \quad\left(\frac{1}{11^{2}}=B 0\right)$ |
| :---: | :---: | :---: | :---: |
| (ii) | $100^{\frac{3}{2}}=1000$ | $\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$ | Square rooting or cubing soi $1000$ |
| (iii) | $\sqrt{50}+\frac{6}{\sqrt{3}}$ | B1 | $5 \sqrt{2} \quad \text { (allow } \pm)$ |
|  | $\begin{aligned} & =5 \sqrt{2}+\frac{6 \sqrt{3}}{3} \\ & =5 \sqrt{2}+2 \sqrt{3} \end{aligned}$ | M1 <br> A1 3 | Attempt to rationalise $\frac{6}{\sqrt{3}}$ cao |
| 2 | $q=2$ | B1 | (allow embedded values) |
|  | $r=3$ |  |  |
|  |  | M1 | $q r^{2}+10=p$ or other correct method |
|  | $p=28$ | $\begin{aligned} & \mathrm{A} 1 \sqrt{ } \\ & 4 \end{aligned}$ |  |
|  |  | 4 |  |
| 3(i) | $y=5 \sqrt{2 x}$ |  | $\sqrt{2 x} \text { or } \sqrt{\frac{x}{2}} \text { seen }$ |
|  |  | A1 2 | $y=5 \sqrt{2 x}$ |
| (ii) | Translation $\binom{0}{-3}$ | B1 | Translation |
|  |  | $\text { B1 } 2$ | $\binom{0}{-3}$ o.e. |


| 4 | Either $\begin{aligned} & y=2 x+1 \\ & \text { or } y=\frac{x^{2}+11}{3} \\ & x^{2}-6 x+8=0 \\ & (x-2)(x-4)=0 \\ & x=2 \quad x=4 \\ & y=5 \quad y=9 \end{aligned}$ <br> OR $\begin{aligned} & x=\frac{y-1}{2} \\ & \frac{(y-1)^{2}}{4}-3 y+11=0 \\ & y^{2}-14 y+45=0 \\ & (y-5)(y-9)=0 \\ & y=5 \quad y=9 \\ & x=2 \quad x=4 \end{aligned}$ | M1 <br> A1 <br> M1 <br> A1 <br> A1 | Substitute for $\mathrm{x} / \mathrm{y}$ or attempt to get an equation in 1 variable only <br> Obtain correct 3 term quadratic <br> Correct method to solve 3 term quadratic <br> or <br> one correct pair of values B1 <br> second correct pair of values B1 <br> c.a.o <br> SR <br> If solution by graphical methods: setting out to draw a parabola and a line M1 both correct reading off of coordinates at intersection point(s) M1 one correct pair A1 second correct pair <br> OR <br> No working shown: one correct pair B1 second correct pair B1 full justification that these are the only solutions B3 |
| :---: | :---: | :---: | :---: |


| $\begin{aligned} & 5 \\ & \text { (i) } \end{aligned}$ |  | B1 | Correct curve in +ve quadrant |
| :---: | :---: | :---: | :---: |
|  |  | B1 2 | in -ve quadrant |
| (ii) |  | M1 | Positive cubic with clearly seen max and min points |
|  |  | A1 | $(-1,0)(0,0)(1,0)$ <br> Any one point stated or marked on sketch |
|  | $(-1,0)(0,0)(1,0)$ | A1 3 | Curve passes through all 3 points and no extras stated or marked on sketch |
| (iii) |  | B1 | Graph only in bottom right hand quadrant |
|  |  | B1 2 | Correct graph, passing through origin |
|  |  | 7 |  |


| 6 (i) | $49-4 \times-2 \times 3=73$ | M1 | Uses $b^{2}-4 a c$ |
| :---: | :---: | :---: | :---: |
|  | 2 real roots | A1 | 73 |
|  |  | B1 $\sqrt{ } 3$ | 2 real roots ( ft from their value) |
| (ii) | $(p+1)^{2}-64=0$ <br> or $2\left[\left(x+\frac{p+1}{4}\right)^{2}-\frac{(p+1)^{2}}{16}+4\right]=0$ | M1 | Attempts $b^{2}-4 a c=0$ (involving p ) or attempts to complete square (involving p) |
|  |  | A1 | $(p+1)^{2}-64=0$ aef |
|  | $p=-9,7$ | B1 | $p=-9$ |
|  |  | B1 4 | $\mathrm{p}=7$ |
|  |  | 7 |  |


| 7 (i) | $\frac{\mathrm{d} y}{\mathrm{dx}}=2 x^{3}-3$ | B1 | 1 term correct |
| :---: | :---: | :---: | :---: |
|  |  | B1 2 | Completely correct ( +c is an error, but only penalise once) |
| (ii) | $\begin{aligned} & y=2 x^{3}+2 x^{2}+3 x+3 \\ & \frac{\mathrm{~d} y}{\mathrm{dx}}=6 x^{2}+4 x+3 \end{aligned}$ | M1 | Attempt to expand brackets |
|  |  | A1 | $2 x^{3}+2 x^{2}+3 x+3$ |
|  |  |  | 2 terms correct |
|  |  | A1 4 | Completely correct |
|  |  |  | SR |
|  |  |  | Recognisable attempt at product rule M1 one part correct A1 second part correct A1 final simplified answer A1 |
| (iii) | $\begin{aligned} & y=x^{\frac{1}{5}} \\ & \frac{\mathrm{~d} y}{\mathrm{dx}}=\frac{1}{5} x^{-\frac{4}{5}} \end{aligned}$ | B1 | $x^{\frac{1}{5}}$ soi |
|  |  | B1 | $\frac{1}{5} x^{c}$ |
|  |  | B1 3 |  |
|  |  | $\underline{9}$ |  |
| 8(i) | $2[10+x+x]>64$ | B1 1 | $20+4 x>64$ o.e. |
| (ii) | $\begin{aligned} & x(x+10)<299 \\ & x^{2}+10 x-299<0 \\ & (x-13)(x+23)<0 \end{aligned}$ | B1 | $x(x+10)<299$ |
|  |  |  |  |
|  |  | B1 2 | Correctly shows $(x-13)(x+23)<0 \quad \text { AG }$ |
|  |  |  | SR Complete proof worked backward |
| (iii) | $\begin{aligned} & x>11 \\ & (x-13)(x+23)<0 \end{aligned}$ | $\begin{aligned} & \mathrm{B} 1 \sqrt{ } \\ & \mathrm{M} 2 \end{aligned}$ | $x>11 \quad \mathrm{ft}$ from their (i) Correct method to solve $(x-13)(x+23)<0 \quad$ eg graph |
|  | $-23<x<13$ |  | $-23<x<13$ seen in this form or as number line SR if seen with no working B1 |
|  | $\therefore 11<x<13$ | B1 5 |  |
|  |  |  |  |


| 9(i) | $\frac{\mathrm{d} y}{\mathrm{~d} x}=4 x$ | B1 | $4 x$ |
| :---: | :---: | :---: | :---: |
|  | $\text { At } x=3, \frac{\mathrm{~d} y}{\mathrm{~d} x}=12$ | B1 2 | 12 |
| (ii) | Gradient of tangent $=-8$ | M1 | $\frac{\mathrm{d} y}{\mathrm{~d} x}=-8$ |
|  | $\begin{aligned} & 4 x=-8 \\ & x=-2 \end{aligned}$ | A1 | $x=-2$ |
|  | $y=8$ | A1 3 | $y=8$ |
| (iii) | Gradient $=6$ | B1 1 | Gradient = or approaches 6 |
| (iv) | $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 k x$ | M1 | $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 k x$ |
|  | $x=1$ | M1 | $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 k$ |
|  | $\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=2 k \\ & k=3 \end{aligned}$ | A1 $\sqrt{ } 3$ | $k=3$ <br> CWO |
|  |  | $\underline{9}$ |  |


| 10(i) | $\text { Gradient DE }=-\frac{1}{2}$ | B1 1 | $\begin{gathered} -\frac{1}{2} \quad \text { (any working seen } \\ \text { must be correct) } \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| (ii) | $y-3=-\frac{1}{2}(x-2)$ | M1 A1 | Correct equation for straight line, any gradient, passing through F $y-3=-\frac{1}{2}(x-2)$ aef |
| (iii) | $x+2 y-8=0$ <br> Gradient EF $=\frac{4}{2}=2$ $-\frac{1}{2} \times 2=-1$ | A1 3 | $x+2 y-8=0$ <br> ( this form but can have fractional coefficients e.g. $1 / 2 x+y-4=0$ |
|  |  | B1 B1 2 | Correct supporting working must be seen Attempt to show that product of their gradients $=-1$ o.e. |
| (iv) | $D F=\sqrt{4^{2}+3^{2}}=5$ | M1 <br> A1 2 | $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ used 5 |
| (v) | DF is a diameter as angle DEF is a right angle. <br> Mid-point of DF or centre of circle is $\left(0,1 \frac{1}{2}\right)$ <br> Radius $=2.5$ $\begin{aligned} & x^{2}+\left(y-\left(\frac{3}{2}\right)^{2}\right)=\left(\frac{5}{2}\right)^{2} \\ & x^{2}+y^{2}-3 y+\frac{9}{4}=\frac{25}{4} \\ & x^{2}+y^{2}-3 y-4=0 \end{aligned}$ | B1 | Justification that DF is a diameter |
|  |  | B1 | Mid-point of DF or centre of circle is $\left(0,1 \frac{1}{2}\right)$ |
|  |  | B1 | Radius $=2.5$ |
|  |  | B1 $\sqrt{ }$ | $x^{2}+\left(y-\left(\frac{3}{2}\right)^{2}\right)=\left(\frac{5}{2}\right)^{2}$ |
|  |  | B1 5 | $x^{2}+y^{2}-3 y-4=0$ <br> obtained correctly with at least one line of intermediate working. <br> SR <br> For working that only shows $x^{2}+y^{2}-3 y-4=0$ is equation for a circle with centre ( $0,1 \frac{1}{2}$ ) <br> radius 2.5 |
|  |  | 13 |  |

$1 \quad(3+2 x)^{3}=27+54 x+36 x^{2}+8 x^{3}$
$(3-2 x)^{3}=27-54 x+36 x^{2}-8 x^{3}$
Hence $(3+2 x)^{3}-(3-2 x)^{3}=108 x+16 x^{3}$

M1 For recognisable binomial expansion attempt
A1 For any two terms correct, possibly unsimplified
A1 For all four terms correct and simplified
B1 $\sqrt{ } \quad$ For changing the appropriate signs
A1 5 For answer $108 x+16 x^{3}$ or $4 x\left(27+4 x^{2}\right)$

## 5

2 (i) $u_{2}=-1, u_{3}=\frac{1}{2}, u_{4}=2, u_{5}=-1$

> (i) $u_{2}=-1, u_{3}=\frac{1}{2}, u_{4}=2, u_{5}$
> (ii) $u_{1}, u_{4}, u_{7}$, etc all have the value 2
> Hence $u_{199}=2$, giving $u_{200}=-1$

B1 For correct value -1 for $u_{2}$
B1 $\sqrt{ } \quad$ For correct $u_{3}$ from their $u_{2}$
B1 $\sqrt{ } \quad 3$ For correct $u_{4}$ and $u_{5}$ from their $u_{3}$ and $u_{4}$
(SR - Answer only is B1)

B1 For recognising the repeating property
M1 For division by 3, or equivalent
A1 For correctly linking relevant term to a term already found
A1 4 For the correct answer -1

## 7

3


4
(i) $\frac{16}{1^{2}}=16$ and $16=17-1^{2}$ stated
$1=\frac{16}{4^{2}}$ and $1=17-4^{2}$ stated
B1 $\quad 1$ For complete verification for both points
(ii) Area is $\int_{1}^{4}\left(17-x^{2}-\frac{16}{x^{2}}\right) \mathrm{d} x$

M1 For appropriate subtraction (at any stage) - correct order

$$
=\left[17 x-\frac{1}{3} x^{3}+\frac{16}{x}\right]_{1}^{4}
$$

*M1 For integration attempt with any one term OK
A1 For $17 x-\frac{1}{3} x^{3}$ completely correct
M1 For correct form $k x^{-1}$ for third term
A1 For correct $k$, for their stage of working
M1dep*M For use of limits - correct order
A1 $\quad 7$ For correct answer 18
(i) $\sin \theta \tan \theta=\sin \theta \times \frac{\sin \theta}{\cos \theta}=\frac{1-\cos ^{2} \theta}{\cos \theta}$

Hence $1-\cos ^{2} \theta=\cos \theta(\cos \theta+1)$,
i.e. $2 \cos ^{2} \theta+\cos \theta-1=0$, or equiv
(ii) $(2 \cos \theta-1)(\cos \theta+1)=0$

Hence $\cos \theta=\frac{1}{2}$ or -1
So $\theta=60^{\circ}, 300^{\circ}, 180^{\circ}$

M1 For use of $\tan \theta=\frac{\sin \theta}{\cos \theta}$
M1 $\quad$ For use of $\cos ^{2} \theta+\sin ^{2} \theta=1$

A1 3 For showing given equation correctly

A1 For both values of $\cos \theta$ correct
A1 For correct answer $60^{\circ}$
A1 For correct answer $180^{\circ}$
A1 $\sqrt{ } 5$ For a correct non-principal-value answer, following their value of $\cos \theta$ (excluding $\cos \theta=-1,0,1$ ) and no other values for $\theta$.

6 (a) $\int\left(x^{3}+2 x\right) \mathrm{d} x=\frac{1}{4} x^{4}+x^{2}+c$
M1
A1 For $\frac{1}{4} x^{4}+x^{2}$ correct
B1 3 For addition of an arbitrary constant (this mark can be given in (b)(i) if not earned here), and no d $x$ in either
(b) (i) $\int x^{-\frac{1}{2}} \mathrm{~d} x=2 x^{\frac{1}{2}}+c$

B1 $\quad$ For use of $\frac{1}{\sqrt{x}}=x^{-\frac{1}{2}}$

|  | M1 |  | For integral of the form $k x^{\frac{1}{2}}$ |
| :---: | :---: | :---: | :---: |
|  | A1 | 3 | For correct term $2 x^{\frac{1}{2}}$ |
| (ii) $0=2 \sqrt{4}+c \Rightarrow c=-4$ | M1 |  | For use of $x=4, y=0$ to evaluate $c$ |
|  | A1t |  | For correct $c$ from their answer in (b)(i) |
| Hence curve is $y=2 x^{\frac{1}{2}}-4$ | A1t | 3 | For equation of the curve correctly stated |

## 9

7
(i) Length of $O D$ is $6 \mathrm{~cm} \quad \mathrm{~B} 1$ Angle $D O E$ is $\frac{1}{3} \pi / 1.047^{\mathrm{c}} / 60^{\circ} / \frac{1}{6}$ of circle Hence arc length $D E$ is $2 \pi \mathrm{~cm}$ (allow 6.28 cm ) Area is $\frac{1}{2} \times 6^{2} \times \frac{1}{3} \pi=6 \pi \mathrm{~cm}^{2}\left(\right.$ or $\left.\frac{60}{360} \times \pi \times 6^{2}\right)$

For stating or using the correct value of $r$
For stating or using the correct angle
B1 For correct use of $s=r \theta$ or equiv in degrees
Area is $\frac{1}{2} \times 6^{2} \times \frac{1}{3} \pi=6 \pi \mathrm{~cm}^{2}$ (or $\frac{60}{360} \times \pi \times 6^{2}$ ) B1 4 For obtaining the given answer $6 \pi$ correctly
(ii) Area of small triangle is $\frac{1}{2} \times 6^{2} \times \frac{1}{2} \sqrt{3}=9 \sqrt{3} \quad * \mathrm{M} 1 \quad$ For use of $\Delta=\frac{1}{2} a b \sin C$, or equivalent

Area of segment is $6 \pi-9 \sqrt{3}$
Hence shaded area is $(18 \sqrt{3}-6 \pi) \mathrm{cm}^{2}$

A1 For correct value $9 \sqrt{3}$, or equiv
M1dep*M For relevant use of (sector - triangle)
A1 4 For correct answer $18 \sqrt{3}-6 \pi$, or exact equiv

## Scheme for alternative approaches:

*M1 Attempt area of big triangle / rhombus / segment, using $\Delta=\frac{1}{2} a b \sin C$, or equivalent
A1 Correct area
M1dep*M Relevant subtraction
A1 For correct answer $18 \sqrt{3}-6 \pi$

8
(i) (a) Sketch showing exponential growth

M1 $\quad$ For correct shape in at least $1^{\text {st }}$ quadrant Intersection with $y$-axis is $(0,1) \quad \mathrm{A} 1$

2 For 1st and 2nd quadrants, and $y$-coordinate 1 stated
(b) Sketch showing exponential decay M1 For correct shape in at least $1^{\text {st }}$ quadrant Intersection with $y$-axis is $(0,2) \quad \mathrm{A} 1$

2 For 1 st and 2 nd quadrants, and $y$-coordinate 2 stated
(ii) $a^{x}=2 b^{x}$

B1 For stating the equation in $x$
Hence $x \log _{2} a=\log _{2} 2+x \log _{2} b$
M1
For taking logs (any base)
M1 For use of one log law
M1 For use of a second log law
i.e. $x=\frac{1}{\log _{2} a-\log _{2} b}$

A1 5 For showing the given answer correctly

9
9


Final mark scheme
Nikki Adams 16/01/2005

| 1 | (i) | $R=W \cos \alpha$ <br> Magnitude is 96 N |  |  | For resolving forces perpendicular to the plane |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | (ii) | Magnitude is 24 N | B1 | 1 | AG From correct work. |
|  | (iii) | $\begin{aligned} & P=100 \times 0.28-24 \\ & P=100 \times 0.28+24 \end{aligned}$ <br> (a) $P=4$ <br> (b) $P=52$ | M1 <br> A1 <br> A1 | 3 | For resolving 3 forces parallel to the plane (either case) |


| 2 | (i) | Momentum of $A$ and $B$ before collision $=0.4 \times 6-1.2 \times 2$ <br> Momentum of $A$ and $B$ after collision $=0.4 v+1.2 \times 1$ $\begin{aligned} & 0.4 \times 6-1.2 \times 2=0.4 v+1.2 \times 1 \\ & (v=-3) \end{aligned}$ <br> Speed is $3 \mathrm{~ms}^{-1}$ <br> Direction is away from $B$ | B1 <br> B1 <br> M1 <br> A1 <br> A1 ft <br> 5 | Alternatively: Momentum lost by $A=0.4 \times(6-v)$ B1 <br> Momentum gained by $B$ $=1.2 \times(1+2)$ <br> For using the principle of conservation of momentum <br> Positive answer only <br> ft from $v$ |
| :---: | :---: | :---: | :---: | :---: |
|  | (ii) | $1.2 \times 1-4 m=-1.2 \times 0.5+2 m$ $\text { or } 1.2 \times 1+1.2 \times 0.5=4 m+2 m$ $m=0.3$ | $\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$ | For momentum equation :- <br> with lhs correct <br> with rhs correct |
|  |  |  |  | SR If mgv used for momentum instead of mv, then <br> (i) Speed is $3 \mathrm{~ms}^{-1} \quad$ B1 <br> Direction is away from $B \quad \mathrm{~B} 1 \mathrm{ft}$ <br> (ii) $\mathrm{m}=0.3 \quad \mathrm{~B} 1$ |


| 3 | (i)(a) | $\begin{aligned} & X=2 \times 8 \cos 30^{\circ}-5 \sin 40^{\circ} \\ & \text { Component is } 10.6 \mathrm{~N} \end{aligned}$ | M1 <br> A1 <br> A1 ft | For resolving 3 forces parallel to the $x$-axis ft for 4.17 from sin/cos mix only |
| :---: | :---: | :---: | :---: | :---: |
|  | (i)(b) | $Y=5 \cos 40^{\circ}$ <br> Component is 3.83 N | $\begin{aligned} & \text { B1 } \\ & \text { B1 ft } \end{aligned}$ | ft for 3.21 from $\sin / \cos$ mix only |
|  | (ii) | $R^{2}=10.64^{2}+3.83^{2}$ <br> Magnitude is 11.3 N <br> $\tan \theta=3.83 / 10.64$ <br> Direction is $19.8^{\circ}$ anticlockwise from + ve $x$-axis | M1 <br> A1 ft <br> M1 <br> A1 ft 4 | For using $R^{2}=X^{2}+Y^{2}$ <br> For using $\tan \theta=Y / X$ |


| 4 | (i) | Acceleration is $1+0.2 t$ | $\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \quad 2 \\ & \hline \end{aligned}$ | For using $a=\dot{v}(t)$ |
| :---: | :---: | :---: | :---: | :---: |
|  | (ii) | $t=9$ $\begin{aligned} & s(9)=9^{2} \div 2+9^{3} \div 30-(0+0) \\ & (=40.5+24.3) \end{aligned}$ <br> Distance is 64.8 m | M1 <br> A1 <br> M1* <br> A1 <br> A1 <br> dep*M1 <br> A1 ft 7 | For solving $a(t)=2.8$ for $t$ <br> For integrating $v(t)$ to find $s(t)$ <br> For $t^{2} \div 2$ correct in $s(t)$ <br> For $t^{3} \div 30$ correct in $s(t)$ <br> For correct use of limits or equivalent <br> ft their $a=\dot{v}(t)$ from (i) |



| 6 | (i) | Accelerating for 4 s | $\begin{aligned} & \hline \text { M1 } \\ & \\ & \text { A1 } \end{aligned}$ | For using the idea that the gradient represents acceleration or for using $v=u+a t$ |
| :---: | :---: | :---: | :---: | :---: |
|  | (ii) | $A B=1 / 2(16+20) 8$ <br> Distance is 144 m | A1ft <br> A1 $3$ | For using the idea that the distance is represented by the area of the trapezium or using suitable formulae for the two stages of the journey |
|  | (iii) |  | B1 B1 $2$ | Graph is single valued and continuous and consists of two straight line segments with one segment from the origin and the other parallel to the $t$ axis Graph for $Q$ is the reflection of the graph for $P$ in the $t$ axis |
|  | (iv) |  | B1 <br> B1 <br> B1 <br> 3 | Graph is single valued and continuous and consists of two parts, one of which is a straight line segment, with $x$ increasing from 0 for the interval $0<t<20$ $x_{\mathrm{P}}(20)$ appears to be equal to $x_{\mathrm{Q}}(0)$ Graph for $P$ appears to be the reflection in $x=$ ans(ii) $\div 2$ of graph for $Q$ |
|  | (v) | $\begin{aligned} & \mathrm{t}=20-(1 / 2144 \div 8) \\ & \text { or } 16+8(\mathrm{t}-4)=128-8(\mathrm{t}-4) \text { or } \\ & \text { equivalent } \\ & \text { Value of } t \text { is } 11 \end{aligned}$ | M1 $\text { A2 } 3$ | For complete method of finding the required time |


| 7 | (i) | $\begin{aligned} & T-F=0.3 a \\ & 0.2 g \sin 70^{\circ}-T=0.2 a \\ & R=0.3 g \\ & F=0.4(0.3 g) \\ & 0.2 g \sin 70^{\circ}-0.4(0.3 g)=0.5 a \\ & \text { Acceleration is } 1.33 \mathrm{~ms}^{-2} \\ & \text { Tension is } 1.58 \mathrm{~N} \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$ |  | For applying Newton's second law to either particle <br> For using $F=\mu R$ <br> For eliminating $F$ and $T$ or $a$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | (ii) | $\begin{aligned} & a=-0.4 g \\ & 0=1.5^{2}-2 \times 3.92 \mathrm{~s} \\ & \text { Distance is } 0.287 \mathrm{~m} \end{aligned}$ | $\begin{aligned} & \mathrm{B} 1 \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ |  | May be scored in (iii) <br> For using $v^{2}=u^{2}+2 a s$ with $v=0$ |
|  | (iii) | $\begin{aligned} & 0=1.5-3.92 t \\ & t=0.383(\text { may be implied }) \\ & a=g \sin 70^{\circ} \\ & s=1.5(0.383)+1 / 29.8 \sin 70^{\circ}(0.383)^{2} \\ & \qquad(=0.574+0.674) \end{aligned}$ <br> Distance is 1.25 m | M1 <br> A1f <br> A1 <br> B1 <br> M1 <br> A1 | 6 | For using $v=u+$ at or equivalent with $v=0$ for $A$ ft value of $a$ from (ii) <br> For acceleration of $B$ <br> For using $s=u t+1 / 2 a t^{2}$ or equivalent with $u \neq 0$ |


| 1 (i) | A <br> Points lie close to straight line | $\begin{array}{\|ll} \hline \text { B1 } & \\ \text { B1 } & 2 \end{array}$ | Valid reason, eg "linear". Not "strong correlation" |
| :---: | :---: | :---: | :---: |
| (ii) | C <br> Non-linear relationship | $\begin{array}{ll}  & \\ \text { B1 } & \\ \text { B1 } & 2 \end{array}$ | eg curve or quadratic |
| 2 (i) | Median 8 Quartiles 6, 24 | $\begin{array}{ll} \mathrm{B} 1 & \\ \mathrm{~B} 2 & 3 \\ \hline \end{array}$ | B1 for each Allow IQR = 24-6 |
| (ii) | Extreme values/skew distort mean or 35 mentioned | $\text { B1 } 1$ | Accept just "data skewed". Not "anomaly" |
| (iii) | Advantage: retains data values Disadv: harder to read (eg) median harder to compare distr's visual comparison harder | B1 <br> B1 $2$ | Not "Can be shown on same diag" |
| $3 \text { (i) }$ | 2341657 6547231 <br> 1234567 7654321 <br> $\Sigma d^{2}=14$  <br> $r_{s}=1-\frac{6 \Sigma d^{2}}{7\left(7^{2}-1\right)}$  <br> $r_{s}=3 / 4$  | M1  <br> M1  <br> A1  <br> M1  <br> A1 5 | Rank both sets consistently <br> Find $\Sigma d^{2}$, dep ranks attempted. Allow arith errors $\Sigma d^{2}=14$ <br> Use formula correctly, dep $2^{\text {nd }}$ M1 <br> Answer $3 / 4$ or a.r.t. 0.750 |
| (ii) | Rankings generally agree $\operatorname{dep} r_{\mathrm{s}}>0.5$ | B1f 1 | Must have "agree" or "similar" etc, Not 'rankings well correlated' If $r_{\mathrm{s}}<0.5$, "generally don't agree": B1 |
| 4 (i) | $\begin{aligned} & k=1-\left(\frac{1}{4}+\frac{1}{5}+\frac{2}{5}+\frac{1}{10}\right) \\ & 1 / 20 \end{aligned}$ | $\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & 2 \end{array}$ | $\begin{aligned} & \text { Use } \sum p=1 \\ & \text { or } 0.05 \end{aligned}$ |
| (ii) | $\begin{aligned} & \mathrm{E}(X)=\Sigma x p(x) \\ & =-1 / 10 \\ & \sum x^{2} \mathrm{p}(x)=2 \\ & \Sigma x^{2} \mathrm{p}(x)-\mu^{2} \\ & =1.99 \end{aligned}$ | $\begin{array}{ll}  & \\ \hline \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 5 \end{array}$ | Use $\Sigma x p(x)$ with a value for $k$ and correct signs $-1 / 10$ or -0.1 only <br> Attempt $\left.\Sigma x^{2} p(x)\right\}$ or $\Sigma(x-\mu)^{2} p(x)$ : M2 <br> Subtract their $\mu^{2}$ \} <br> Answer, 1.99 or $199 / 100$ |
| 5 (i) | (a) $\quad$ $\mathrm{Geo}(0.05)$ <br>  $(19 / 20)^{5}(1 / 20)$ <br>  $=0.0387$ | M1 <br> M1 <br> A1 3 | Geo(0.05) or 0.95 stated or implied $q^{5} p$ attempted <br> Answer, a.r.t. 0.0387 ISW |
|  | (b) $\begin{aligned} & (19 / 20)^{10} \\ & =0.599\end{aligned}$ | M1 <br> M1 <br> A1 3 | $\begin{aligned} & q^{10} \text { or } 1-p-p q . .-p q^{1} \\ & \text { [ } q^{9} \text { or } q^{11} \text {, or ore wrong term: M1M0] } \\ & \text { Answer, a.r.t. } 0.599 \end{aligned}$ |
| (ii) | $\begin{aligned} \text { Mean } & =1 / p \\ & =20 \end{aligned}$ | $\begin{array}{ll}  & \\ \text { M1 } & \\ \text { A1 } & 2 \\ \hline \end{array}$ | 20, cao |
| 6 (i) | $\begin{aligned} & \mathrm{B}(5,3 / 8) \\ & { }^{5} \mathrm{C}_{2}(3 / 8)^{2}(5 / 8)^{3} \\ & =562 / 16384 \text { or } 0.343 \end{aligned}$ | M1 <br> M1 3 <br> A1 | $\mathrm{B}(5,3 / 8)$ stated or $3 / 8,5 / 8$ seen and sum of powers $=5$ <br> Correct expression <br> Answer, a.r.t. 0.343 ISW |
|  | $\begin{aligned} & 1 / 2 p_{1}=3 / 8 \\ & p_{1}=3 / 4 \quad \text { AG } \end{aligned}$ | $\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & 2 \end{array}$ | or $3 / 8 / 1 / 2$ or $3 / 8 \times 2$ <br> $3 / 4$ correctly obtained. Must see explicit step. <br> Verification eg $1 / 2 x^{3} / 4=3 / 8$ or $3 / 8 /{ }^{3} / 4=1 / 2$ : M1A1 |
|  | $\begin{aligned} & 1 / 2 p_{2}=1 / 3 \\ & p_{2}=2 / 3 \end{aligned}$ | $\begin{array}{ll}  & \\ \hline \text { M1 } & \\ \text { A1 } & 2 \end{array}$ | $\text { or } 1 / 3 / 1 / 2 \text { or } 1 / 3 \times 2$ <br> Answer $2 / 3$ or a.r.t. 0.667 |


| 7 (i) Boxes are independent <br> Probability same for each box | $\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$ | Both must be in context |
| :---: | :---: | :---: |
| (ii) (a) $\mathrm{B}(8,0.1)$ <br>  (b) 0.4305 <br>   $1-\mathrm{P}(\leq 1)$ <br>   0.1869 | M1 <br> A1 <br> M1 <br> A1 4 | $\mathrm{B}(8,0.1)$ stated or $0.1,0.9$ seen and sum of powers $=8$ 0.43 [05] correct $1-0.8131$ or $1-\left(0.9^{8}+8 \times 0.9^{7} \times 0.1\right)$ correct Answer, a.r.t. 0.187 |
| (iii) $\begin{aligned} & 2 \times 0.4305 \times 0.1869 \\ & 0.16092\end{aligned}$ | $\begin{array}{ll} \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$ | $\left.\begin{array}{l} \text { (a) } \times(\mathrm{b}) \\ 2 \times(\mathrm{a}) \times(\mathrm{b}) \quad \\ \text { Answer, a.r.t. } \end{array}\right\}$ |
| $\begin{array}{lll} \hline 8 & \text { (i) } & \frac{2 \times 7!}{8!} \\ & & 1 / 4 \end{array}$ | $\begin{array}{ll} \hline \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$ | 7! and 8! used or ${ }^{7} \mathrm{P}_{7}$ and ${ }^{8} \mathrm{P}_{8}$ Correct formula, with " $2 \times$ " Answer, ${ }^{1} / 4$ or 0.25 only |
| $\begin{aligned} & \text { (ii) } \frac{1}{4} \text { or } 4!\times 4!\text { or } 3!\times 3!\text { or } 3!4! \\ & \left(\frac{1}{4}\right)^{2} \text { or } \frac{3!\times 3!}{4!\times 4!} \\ & =1 / 16 \end{aligned}$ | M1 <br> M1 <br> A1 3 | Correct expression or 0.0625 |
| (iii) Attempt subdivide, allow one error. <br> Correct subdivision into 3 or 13 cases <br> Correct expression $=\frac{13}{16}$ | M1 <br> M1 <br> M1 <br> A1 4 | By description or listing or implied by probs, $\text { eg } 1 \text { - (ii) }-\mathrm{P}(\text { sep by } 1)$ <br> All 3 or all 13 cases clearly present <br> or 0.8125 or a.r.t. 0.813 only |
| $\begin{aligned} \text { Eg correct: } & 1-3 \times \frac{1}{16} ; 1-(\mathrm{ii})-2 \times \frac{3!\times 3!}{4!\times 4!} \\ & \frac{3!\times 3!\times 13}{(4!\times 4!)} ;(3 / 4)^{2}+2 \times{ }^{1 / 4} \times{ }^{2 / 4} \end{aligned}$ |  | $\begin{aligned} \text { Eg incorrect: } & 1-\frac{3!\times 3!\times 3}{8!}: \text { M1M1M0A0 } \\ & 1-1 / 16-\frac{3!\times 3!}{4!\times 4!}: \text { M1M0M0A0 } \end{aligned}$ |
| $\begin{aligned} \hline 9 \text { (i) } \quad & \frac{264-\frac{90 \times 15}{5}}{1720-\frac{90^{2}}{5}} \end{aligned} \text { or } \frac{264-5 \times 18 \times 3}{1720-5 \times 18^{2}}$ | M1 <br> A1 <br> M1 <br> A1 4 | Formula correctly used <br> -0.06 correctly obtained or $a=15 / 5-(-0.06) \times{ }^{90} / 5$ Complete equation correct |
| (ii) Substitute $x=20.5(y=2.85)$ <br> Substitute $x=19.5(y=2.91)$ $2.91-2.85=0.06$ | M1 <br> M1 <br> A1 3 | Allow $20(y=2.88)$ or 20.49 Answer 0.06 or -0.06 , c.w.d |
| (iii) $-0.6,0.5$ | $\begin{array}{ll} \mathrm{B} 1 & \\ \mathrm{~B} 1 & 2 \end{array}$ | $\begin{aligned} & -0.6 \text { correct } \\ & 0.5 \text { correct } \end{aligned}$ |
| (iv) 1.5 Calculated equation minimises this quantity | $\begin{array}{ll} \mathrm{B} 1 & \\ \text { B1 } & 2 \end{array}$ | Not "Low value for $\Sigma e^{2}$ means points near line" |
| $\begin{array}{ll} \text { (v) } \quad & \overline{\mathrm{e}}=\Sigma e_{i} / 5 \\ & =0 \\ & \sum e_{i}^{2} / 5 \quad(- \text { her } \overline{\mathrm{e}})^{2} \\ & =0.3 \end{array}$ | M1 <br> A1 <br> M1 <br> A1 4 | $\begin{aligned} & \Sigma e_{i} / 5 \text { used } \\ & \text { Answer } 0, \text { cwd, cao } \\ & \Sigma e_{i}^{2} / 5 \\ & 0.3 \text { only, must see }-0^{2} \text { or }-0 \text { in variance. } \\ & \text { ie: No working: } \overline{\mathrm{e}}=0: \text { M1A1; Var }=0.3: \text { M1A0 } \\ & \hline \end{aligned}$ |






## Pure Mathematics

## Chief Examiner's Report

Two Pure Mathematics units for the new specification were examined for the first time in this session - Core Mathematics 1 and Core Mathematics 2 . The numbers of candidates were boosted by candidates from Year 13 taking the opportunity to switch from the legacy specification to the new specification. Both papers evidently proved accessible to the majority of candidates and much excellent work was seen.

A significant feature of Core Mathematics 1 is that candidates are not permitted the use of a calculator and it is pleasing to note that this did not, in general, seem to cause a problem to candidates. There is no intention to set questions containing awkward numerical calculations but candidates who can calculate efficiently and accurately will obviously be at an advantage.

Centres should note that there is a new booklet - Mathematical Formulae and Statistical Tables (MF1) - for use with units of the new specification. The new booklet contains several of the formulae which candidates might need in answering questions in Core Mathematics 2.

## 4721: Core Mathematics 1

## General Comments

The response to this first Core Mathematics 1 paper was encouraging. The majority of candidates made a reasonable attempt at every question and there was little evidence of problems caused by the lack of a calculator. Very many candidates scored well, with some scoring full marks although, in contrast, a sizeable minority appeared unable to cope with any question requiring knowledge beyond that of GCSE Mathematics.

Most candidates were able to demonstrate their algebraic skills at an appropriate level but even the more able candidates sometimes found it difficult to apply these techniques to the problem solving questions.

Candidates appeared to have had enough time to finish the paper.

## Comments on Individual Questions

1) Most candidates were able to make a good attempt at this question, although marks were lost in a variety of ways.
(i) The majority of candidates knew that $11^{-2}$ meant $\frac{1}{11^{2}}$ but they failed to score full marks because either they did not evaluate the denominator or they could not square 11 correctly.
(ii) Some candidates thought that they needed to square and cube root, rather than square root and cube. The wrong answer of 30 was seen rather too frequently.
(iii) Most candidates dealt with $\sqrt{ } 50$ correctly but found it more difficult to rationalise the denominator of the fraction. Some candidates multiplied the whole expression by $\sqrt{ } 3$ or by 3 .
2) There were very few fully correct solutions to this question. Most candidates successfully found $q=2$ but fewer realised that $r=3$, with $r=6$ being the most common error. Having correctly written $2(x-3)^{2}$ many candidates later stated that $r=-3$. Only the most able candidates successfully solved for $p$. The incorrect expression $2\left[(x-3)^{2}\right]-9+p$ was commonly seen. Some candidates tried to expand the right hand side of the identity, usually making at least one error, although a few had success with this method. A significant number of candidates failed to complete this question.
3) Most candidates lost marks on this question.
(i) Many candidates were unaware that the stretch factor needed to be applied to the $x$ variable before square rooting, $10 \sqrt{ } x$ being the most common answer.
(ii) Although many candidates clearly recognised the transformation and correctly stated its direction and magnitude, a mark was needlessly lost because the transformation was not defined as a 'translation'. The words 'move' and 'shift' were often seen instead.
4) There were a pleasing number of perfect solutions to this question. The need to eliminate one variable was widely understood and, although some candidates chose the more complicated route of rearranging the quadratic equation to make $y$ the subject, they were still generally successful. It was disappointing to see candidates making sign errors when expanding the expression $x^{2}-3(2 x+1)$ and also to note that a few candidates seemed unable to solve a quadratic equation.
5) Although the majority of candidates understood the meaning of the word 'sketch', they still felt that they had to use graph paper! A significant minority plotted a finite number of points and these candidates scored low marks on this question.
(i) Candidates who knew the general shape of the graph occasionally lost marks by allowing the ends of the graph to curve away from the asymptotes.
(ii) Only the ablest candidates found all 3 roots, most identifying $x=0$ and $x=1$ as the only $x$ intercepts. Of those who did realise that there were 3 roots, many drew an $x^{3}$ curve with a horizontal portion incorporating all 3 intercepts. It was disappointing to see so many parabolas for this part of the question.
(iii) There were some good curves drawn, although many candidates repeated their curve in a second quadrant.
6) This question was answered well by many candidates.
(i) Some candidates failed to deal correctly with the double negative, ending up with 25 , from which they followed on correctly for the number of real roots.
(i) Weaker candidates struggled with this part. Although many candidates knew
that the discriminant must be zero for equal roots, having got as far as $(p+1)^{2}-64=0$, they failed to solve the quadratic equation correctly. Some abandoned the question. A different approach of trying to work out $p$ by inspection of the original equation rarely gained more than the 1 mark for $p=7$.
7) Even the weakest candidates scored well on this question, demonstrating a good command of differentiation. Very many candidates scored all 9 marks.
(ii) It was widely understood that the brackets had to be expanded first and only a very few errors were seen here.
(iii) This part was more demanding but the only candidates who failed to score any marks were those who were unable to recognise that ${ }^{5} \sqrt{x}$ can be written as $x^{\frac{1}{5}}$.
8) Very few candidates scored full marks on this question. In a few cases, candidates confused perimeter and area. A few papers also showed failed attempts to multiply 13 by 23 correctly.
(i) This part was understood by most candidates although a few seemed unable to interpret the wording.
(ii) Some concise proofs were seen but a large number of candidates started with the given inequality and worked backwards. They often stopped at $x^{2}+10 x<299$, presumably thinking it self-evident that the area was $x^{2}+10 x$. However, this was unacceptable in a question requiring a proof.
(iii) Most candidates solved the linear inequality correctly but appeared to struggle with the quadratic inequality. Many candidates failed to demonstrate a clear method and simply stated that $x<13$ and/or $x<-23$. Others stated that, as a length could not be negative, $x<13$. The solutions scoring well almost always involved a sketch graph. Candidates who tried to use an algebraic method usually made an error in their working.
9) (i) A sound understanding of differentiation was again in evidence in this part of the question, although weaker candidates often evaluated $y$ and then used gradient $=\frac{y}{x}$.
(ii) A significant minority used a gradient of $\frac{1}{8}$, instead of -8 .

Successful solutions to parts (iii) and (iv) were strongly linked. Few candidates understood the meaning of part (iii) and many just left out the last two parts of this question. Of those that did try part (iii), 6.003 or 'less than 6.03 ' were common wrong answers.
(iv) This part was usually done well by candidates who answered part (iii) correctly. Others tried the differentiation approach but were hampered by their lack of a value for the gradient. Some candidates started with one of the given chords, attempted to express the $y$ coordinates in terms of $k$ and hence calculated the value for $k$. However, this method proved successful only for the stronger candidates.
10) The first four parts of this question were well done by most, with many perfect scores.

The proof in the final part proved more demanding, although most of those who attempted it scored some marks.
(i) The negative numbers involved again caused a problem for weaker candidates. There was a sizeable minority whose working showed $\frac{-1}{-2}=\frac{1}{2}$, as they attempted to correct their original gradient after doing part (iii).
(ii) This part was well done but the final mark was too often lost because of mistakes when rearranging, usually omitting to multiply the 4 by 2 .
(iii) Most candidates showed clearly how they knew that the lines were perpendicular, although a few simply stated that they were. A few candidates chose to find the lengths of all 3 sides of the triangle and then apply Pythagoras' theorem to show that the triangle was right angled, which was acceptable.
(iv) This was competently done with only a very few candidates adding the coordinates instead of subtracting them.
(v) There were many alternative methods in evidence in this part and some interesting and unexpected solutions seen. Many candidates failed to gain the first mark by assuming that $D F$ was the diameter without justifying this in any way. Candidates who first wrote down the radius and centre and then used $(x-a)^{2}+(y-b)^{2}=r^{2}$ were generally successful. However, many candidates started with the given equation and worked backwards. This method tended to lose marks if the candidate did not link their rearranged equation to the points $D, E$ and $F$ in any way. Others, having used the given equation and identified the centre of the circle, went on to show that $D, E$ and $F$ were equidistant from it. A few candidates, mostly from the same small number of centres, used the formula for a circle linking the ends of the diameter. This gave a neat and concise proof. Weaker candidates merely showed that the coordinates of the 3 points fitted the given equation without any reference to a circle. Only a very small number of candidates appeared to run out of time during this last part.

## 4722: Core Mathematics 2

## General Comments

This paper was accessible to the majority of candidates and the standard was generally good. There were very few candidates scoring low marks overall. There were a number of straightforward questions where candidates who had mastered routine concepts could pick up a number of marks. These included questions on the binomial theorem, the sine and cosine rules and simple integration. Some questions had more challenging aspects, which only the most able candidates were successful at answering. This was particularly true of parts of Qs 3 , 8 and 9 . Many candidates were reluctant to work with exact values, including surds, and this was obvious in Q7 in particular. Whilst some scripts contained clear and explicit methods, on others the presentation was poor making it difficult to follow methods used and to decipher answers given. On questions where the answer has been given, candidates must ensure that they provide enough detail to be convincing.

## Comments on Individual Questions

1) This question was generally well answered, with the majority of candidates able to make a reasonable attempt at the question. Some candidates did use the binomial theorem, generally accurately, though there were a few instances of $3^{3}$ becoming 9 not 27. Another common error was lack of brackets leading to only the $x$ and not the 2 being squared and/or cubed. Some centres had obviously stressed the importance of clear presentation, including brackets, and their candidates generally produced accurate answers. A surprising number of candidates elected to expand the brackets rather than using the binomial theorem. There were some errors, but this method was often successful. Less successful were the candidates who attempted to expand all three brackets simultaneously - this was rarely, if ever, accurate and often resulted in a quadratic not a cubic. Only the most able candidates realised the connection between the two brackets and could change the relevant signs. The vast majority embarked on a second expansion, often with the same errors as before. This could still earn candidates the B1 mark.
2) (i) This part of the question was generally done well, with few errors. However, a small number of students did not understand the meaning of a recursive sequence and instead used $u_{n+1}={ }^{1} /_{(1-n)}$, possibly misled by $u_{2}$ being given by $1 /(1-2)$.
(ii) A number of candidates could state the correct value for $u_{200}$, but struggled to express their reasoning clearly. For examiners to award full marks there had to be a convincing and detailed explanation. Many candidates could identify the repeating sequence, but a surprising number thought that the period was 4 or even 5. A number of candidates attempted division by 3, but some still struggled to use this idea to decide which of the three terms $u_{200}$ would be.
3) (i) The vast majority of candidates could use the sine rule accurately to find one, or usually both, of $L A$ and $L B$. However, most then simply compared their answers and stated that $L B$ was the shorter distance. In order to be certain that this was the shortest side, some candidates even found the length of $L C$ at this stage as well. Only the most able candidates could identify the perpendicular from $L$ to $A B$ as being the shortest distance, but this was subsequently calculated accurately in virtually all solutions.
(ii) This part of the question was generally done well, with candidates being familiar with the cosine rule and able to apply it accurately. The majority considered triangle $\angle B C$, though some made sign errors when evaluating the expression because of $\cos 100^{\circ}$ giving a negative value. Some of the more able candidates, having found the shortest distance of 311 m in part (i), then successfully used Pythagoras' Theorem in the relevant right-angled triangle. Full marks were awarded to those candidates who had used the cosine rule in part (i), and candidates who hadn't felt the need to use the sine rule in part (i) also gained credit if it then appeared as part of the solution in part (ii).
4) (i) To gain this mark, candidates had to verify both points in both equations, which a number failed to do. The alternative approach, which was seen fairly frequently, was to equate the two equations and then solve. For those who eliminated $y$, this resulted in a quartic equation and it was pleasing to see this being solved successfully on a number of occasions.
(ii) Virtually all candidates appreciated the need for integration and could make a reasonable attempt at doing so. Both expressions were usually integrated correctly, though there were a few slips on integrating $16 x^{-2}$. Limits were usually used correctly, though a few candidates used 1 and 16, or substituted the wrong way round. The main problem for some candidates was deciding in which order to subtract the two curves. There were often errors if this was done as a first step, but it was always correct if done at the end of the question with two numerical areas. Candidates who did find a negative solution should have been able to appreciate from the question that this was impossible. A few candidates attempted an inappropriate manipulation of the two equations before integrating, usually resulting in a product or the quartic equation from part (i). Subsequent work with such expressions gained no credit.
5) (i) The majority of candidates could quote the appropriate identities, and usually attempted substitution at a relevant point. A surprising number of candidates found the algebraic manipulation difficult, especially when multiplying through by the $\cos \theta$ introduced as the denominator of $\tan \theta$. However, a large number of concise and accurate solutions were seen.
(ii) This part of the question was also usually done well. The majority of candidates could identify that a quadratic technique would be appropriate and could attempt the solution of the equation, usually correctly. They could then identify the two principal values, and many had no difficulty in finding the third value of $\theta$ as well. A few gave $330^{\circ}$ as the final angle, and another error was to give further, incorrect, values for $\theta$ often as additional solutions to $\cos \theta=-1$.
6) (a) This question was generally very well done. Virtually all candidates appreciated the need to expand the brackets and could then attempt the subsequent integration. This was nearly always done successfully, though a few candidates failed to gain the final mark by omitting +c , or by leaving $\int$ or $\mathrm{d} x$ as part of their final answer.
(b)(i) This was also usually well done, though weaker candidates struggled to rewrite the expression using the correct power. If this was done successfully, most could then integrate to get an expression of the correct form, but the coefficient sometimes caused problems.
(ii) The more able candidates appreciated the relevance of the previous integration, simply substituted the point $(4,0)$ and provided an elegant and concise solution. A few candidates failed to express their answer as an equation and hence lost the final mark. However, many candidates saw this as a question on the equation of a straight line and proceeded accordingly, using a gradient of $1 / 2$, coming from ${ }^{\mathrm{dy}} / \mathrm{dx}$. For candidates who made an error in part (i), full marks were available if they subsequently used their answer correctly.
7) (i) This part of the question was generally done well, with candidates able to identify the radius and angle in the sector, and then apply relevant formulae. The length of the arc was often given as a decimal, but many candidates could then provide convincing working for the exact value of the area of the sector. A few found the decimal area and then tried to argue that this was equal to $6 \pi$, which gained no credit. Some candidates worked in degrees, either successfully by using fractions of a circle or unsuccessfully by attempting to apply radian formulae.
(ii) It was pleasing to see that most candidates could attempt an appropriate method to find the required area, but the majority of candidates did not appreciate the need for an exact answer, or were not confident in attempting to do so, and gained only two marks of the four available. Candidates who found the area of a triangle by using Pythagoras were more likely to provide exact values, whereas those who used $1 / 2 a b \sin C$ rarely converted $\sin \pi / 3$ to an exact value and went straight to a decimal equivalent. A minority of candidates could not even make a reasonable attempt at the area of a triangle or the rhombus.
8) (i) There was a disappointing response to this question, with only the most able candidates gaining full marks. Often the graphs seen were not of the correct shape, and many existed only in the first quadrant. Even those candidates who drew correct graphs often omitted to state the coordinates of the points of intersection, gave answers involving a or $b$, or drew both graphs through ( 0,1 ). On some occasions, the correct graphs appeared to come from selecting particular values for $a$ and $b$, an approach that was condoned by examiners.
(ii) Whilst some excellent solutions were seen to this question they were unfortunately in the minority. Many could state the initial equation of $a^{x}=2 b^{x}$, and realised the need to take logs. Most then tried to do too many steps at once, resulting in a second line of $x \operatorname{loga}=x \log 2 b$. A common error was for $\log 2 b$ to then become $\log _{2} b$, which meant that the method mark available for use of loga $+\log b=\log a b$ was rarely awarded. Most candidates gained at least one mark from this question, but this was obviously an area of weakness for many candidates.
9) (i) This question produced a very varied response, with a number of candidates not even attempting the question or struggling to form the initial equation. However, there were also a number of candidates who could make a correct statement and hence show the required equation.
(ii) This was generally very well done, with the majority of candidates able to make a good attempt at finding the quadratic factor, a number doing so simply by inspection. Of the other methods used, equating coefficients was generally more successful than algebraic division, where sign errors were common. Most candidates showed that ( $r-1$ ) was a factor by finding $f(1)$, but a number of candidates did not attempt this. Those who used division, had to make it explicit that there was no remainder in order to gain the mark.
(iii) This part was well done, with the majority of candidates successfully finding the roots of their quadratic factor from part (ii). Subsequent manipulation of a correct answer betrayed insecurity when dealing with surds.
(iv) Most candidates gained one mark by substituting one of their values into the correct formula for $S_{\infty}$, though some could not quote the correct formula despite it being given in the formula book. Very few candidates could identify the required value of $r$, and only the more able candidates appreciated the need to rationalise the denominator and could do so appropriately.

## 2631: Pure Mathematics 1

## General Comments

Most candidates produced a reasonable overall attempt at the paper, with no individual question proving unduly difficult. However, untidy work, poor setting out and many careless mistakes resulted in a substantial loss of marks in certain cases. Although a 'follow through' approach is adopted in certain situations when producing the mark scheme, candidates should be aware that most questions have at least half their marks allocated to accuracy in some form or other. Hence consistently making errors, even if the correct method is adopted, can result in a considerable reduction in a candidate's final mark.

## Comments on Individual Questions

1) (i) Common answers were $11 / 2,2 / 11,1 / 11^{2}$ and $11^{1 / 2}$.
(ii) Many candidates did not know how to rationalise $\frac{6}{\sqrt{3}}$ so $-6 \sqrt{ } 3$ was a frequent answer, as was $50 \sqrt{ } 3+6$ following multiplication by $\sqrt{ } 3$.
2) This question was done very badly. Answers of $p=-9, p=19$ and $p=-19$ were frequently seen, as was $r=-3$. Of those who obtained the correct answer many used unorthodox methods. Most of the errors arose due to the failure to deal with the sign of $2 r^{2}$ when completing the square, usually adding the term onto $p$ instead of subtracting it. Many omitted the factor 2, whilst others tried to include $p$ within the completion of the square by writing $p / 2$ inside the bracket, but then failed to return it to $p$ when expanding the bracket.
3) This question was not answered well by most candidates. Only a few candidates obtained $\sqrt{2 x}$, many having either $10 \sqrt{x}$ or $2.5 \sqrt{x}$. In addition, the constant 3 was added as many times as it was correctly subtracted. A few candidates even included the constant 3 within the square root sign.
4) (a) In many instances only one solution was given. A very common error was to change $\tan (2 x)=1$ to $\tan (x)=1 / 2$. Others believed that the answers were 67.5 and 157.5 , although usually with no working as to how these answers were obtained.
(b) Many reached $\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}$ but proceeded no further. Some decided that $\sin ^{2} \theta+\cos ^{2} \theta=1$ must enter somewhere and tried to force it into the equation as opposed to allowing it to enter naturally in the numerator following use of a common denominator.
5) The question was generally done well, although attempts to solve for $x$ with $y$ still in the equation were often seen. Some took a very round about route but succeeded in the end. The factorisation and the use of the quadratic formula were undertaken much better than in previous years. However, careless algebraic errors were still present, namely $3(2 x+1)$ becoming $-6 x+3$ or $-6 x-1$, etc. The values of $y$ were sometimes omitted.
6) (i) This was usually well done; some, however, used $\sqrt{b^{2}-4 a c}$ or $b^{2}+4 a c$.
(ii) The $p=-9$ solution was often lost and many gave the answers as inequalities, namely $p>-9$ and $p>7$ or $-9<p<7$, despite having started with the condition $b^{2}-4 a c=0$. Several candidates tried to solve for $x$.
7) (i), (ii) There were a number of candidates who had problems with signs when finding the gradients. Some used $\frac{x-x_{1}}{y-y_{1}}$ whilst others altered the rule for perpendicular lines to fit their answers!
(iii) Most candidates found this straightforward but the equation was often not arranged in the correct form.
8) (i) This was usually correct although some found the value of $y$.
(ii) Candidates often failed to find the gradient of the tangent correctly, using $1 / 8$ or 8 instead of -8 , possibly not reading the question properly.
(iii) Most had no idea what was required. Many used 'nearly' or 'close to' 6.
(iv) Those who had the correct answer for part (iii) usually obtained $k=3$. However, some avoided the need for the answer to part (iii) and instead validly employed the given gradients of the chords by using either $\left(y_{3}-y_{1}\right) /(1.1-1)=6.3$ or $\left(y_{2}-y_{1}\right) /(1.01-1)=6.03$.
9) (i) Most had no idea what a cubic graph looked like, often drawing quadratics or even quartics. They frequently failed to give the full coordinates and some had the $x$ and $y$ transposed.
(ii) Limits were often incorrect - probably because of incorrect graphs. Candidates found areas formed with the positive $x$-axis. Often results were fixed to give a positive area. However, the integration of $x^{3}-x$ was usually undertaken correctly.
10) (i) This statement was usually correct, but some only found half the perimeter or used $10 x$ for the length. Too many used $=$ or $\geq$ instead of $>$.
(ii) Many tried to work backwards but failed to complete the process.
(iii) The majority failed to show a method, such as a sketch, for the solution of the quadratic inequality. Many also failed to show $-23<x<13$ as they simply disregarded the negative value with no reason. In spite of this the majority found the correct final inequality.

## 2632: Pure Mathematics 2

## General Comments

This was a paper which enabled candidates to demonstrate their understanding and mathematical competence. No question presented widespread difficulty to candidates and there was particularly pleasing work seen on the binomial theorem, differentiation and sequences. Less convincing in general were attempts at questions involving integration and functions. Candidates seem to have had sufficient time to complete the paper and a considerable number of candidates showed confidence and ability in dealing with all the topics being assessed.

Several of the questions invited candidates to confirm given answers. Candidates usually find such given answers helpful. If their attempt seems to be correct, they can continue with confidence; if their attempt is wrong, they have the opportunity to look for their error. In exchange, candidates are expected to provide solutions which are sufficiently detailed and clear to leave no doubt that the answers have been genuinely obtained. Many candidates recognise this but others would benefit by addressing this aspect of their work.

## Comments on Individual Questions

1) Most candidates realised that the answer to part (i) involved a natural logarithm although there were a few attempts involving $x^{-2}$ or $x^{0}$. The majority of candidates provided answers to part (ii) involving $\mathrm{e}^{\frac{1}{2} x}$ but, in many cases, that answer was $2 \mathrm{e}^{\frac{1}{2} x}$. Sometimes the cause was clearly inaccurate work with fractions but, in other instances, there was uncertainty about the process of integration. On this occasion, omission of the constant of integration was not penalised.
2) Part (i) was answered well and many candidates produced efficient, accurate work. A significant number of candidates proceeded beyond the correct answer
$256+1024 x+1792 x^{2}$ to produce $1+4 x+7 x^{2}$, having divided each term by 256 . As has been noted previously, candidates were possibly misunderstanding the request to simplify coefficients.

Candidates did not answer part (ii) so well. A common error was 896, the result of failing to square $\frac{1}{2}$ in the term $1792\left(\frac{1}{2} y^{2}\right)^{2}$. Some candidates did not exploit the link with part (i) and started again with a new expansion.
3) Most candidates adopted a method for part (i) using the factor theorem to produce two simultaneous equations. There was a considerable amount of careless work in solving the equations with sign errors proliferating and $3^{3}$ becoming 9 often enough to prompt comment from several examiners. A number of candidates equated $f(-1)$ and $f(3)$; this raised some doubt about understanding but, since it does lead to the correct values of $p$ and $q$, full credit was allowed. An alternative approach involved consideration of coefficients in the identity $x^{3}+p x+q \equiv(x+1)(x-3)(A x+B)$. Some candidates managed this successfully but careless work caused problems for others.

The two marks available in part (ii) proved elusive for many candidates. In many cases there was no recognition that two factors of $f(x)$ were already known and that therefore the third factor could be written down. Attempts to solve the equation $x^{3}-7 x-6=0$ involved fresh applications of the factor theorem or, in a few cases, use
of the formula for the solution of a quadratic equation. There was considerable confusion between factors and roots with many candidates thinking they had concluded the solution when writing $(x+1)(x-3)(x+2)$.
4) It was pleasing to see many accurate solutions with appropriate use of the chain rule and correct evaluation. The differentiation of the expression in Model 1 was usually correct but there were more errors with the second expression and omission of the factor $4 t^{3}$ was the common error. The values, correct to 3 significant figures, of the derivatives in Models 1 and 2 were 19.7 and 19.8 respectively. Some candidates decided that the implication of the question was that the values should be identical when given to their chosen degree of accuracy. This led them to state a value of 19.7 in the second case, whether their differentiation had been correct or not.
5) This question was designed to assess candidates' knowledge of two topics - the trapezium rule and the use of logarithm properties. The vast majority had no difficulty in gaining the two marks allocated to the former. However, in many cases, the working was carried out using decimals with a conclusion noting that $\frac{1}{2} \ln 104$ gave the same decimal value and this approach could earn no more than the two marks. Careful detailed work was needed to earn all five marks and, whilst many could demonstrate the use of relevant properties, a final step showing how $\frac{1}{4} \ln 10816$ became $\frac{1}{2} \ln 104$ was absent in many cases.

Many attempts at part (ii) were far from convincing and explanations were often poorly expressed. The best responses involved a sketch showing the curve and the two trapezia together with a comment pointing out the two regions accounting for the discrepancy in area.
6) Parts (i) and (ii) of this question revealed considerable uncertainty about the nature of functions. Figure 1 was often wrongly identified as the answer to part (i) perhaps with a comment about a modulus or a comment to the effect that functions never behave like this. On many scripts the answer given for part (ii) - Figure 3 because one $x$ value gives more than one $y$ value - was wrong but, if it had been given as the answer to part (i), would have earned the two marks.

The vast majority of candidates correctly gave Figures 2 and 5 as the answer to part (iii). Most candidates provided an acceptable sketch for part (iv) although some lost a mark because their sketch was not sufficiently convincing as far as the shape of the reflected part was concerned. In some cases where candidates had included their attempt on a copy of the given diagram, it was not always clear how much was intended as the required answer.
7) Most candidates answered part (i) correctly although some decided the value of a was $\frac{1}{4}$. It was very disappointing to see several attempts which involved $4 y=2+\sqrt[5]{x}$ becoming $4 y^{5}=2^{5}+x$ followed by $x=4 y^{5}-2^{5}$.

The relevance of part (i) to part (ii) was missed by a number of candidates who proceeded to attempt $\int \pi y^{2} \mathrm{~d} x$. Most candidates did realise that $\int \pi\left((4 y-2)^{5}\right)^{2} \mathrm{~d} y$ was required but this often led to $\int \pi(4 y-2)^{7} \mathrm{~d} y$. Those progressing as far as $\int \pi(4 y-2)^{10} \mathrm{~d} y$ still had to integrate correctly and many did not do so. Some produced an integral involving $(4 y-2)^{9}$ and another common error was an integral involving
$\frac{1}{11}(4 y-2)^{11}$. The lower limit for the definite integral was occasionally incorrectly identified as 0 . An exact answer was requested but a considerable number of candidates ignored this and gave the answer as $46.5 \pi$ or 146.
8) Candidates generally provided sufficient justification for the result in part (i), usually starting with reference to angle $A D O$ as one of the angles of an equilateral triangle. Having been alerted in the first part to the use of radians, most candidates were able to find the length of the arc $A C$. Finding the length of the arc $B C$ proved slightly more troublesome because the size of angle $O$ had to be established. With the required answer given, necessary detail was needed and this was generally in evidence.

The formula for the area of a sector was well known and applied as required in part (iii). Two aspects prevented many candidates from recording all four marks. Finding the area of the triangle was a problem for many; $\frac{1}{2} \times 6 \times 6$ was a common error and other incorrect attempts involved $\sqrt{45}$. The second aspect concerned the requirement for the area to be exact; many candidates provided the approximate answer $22.1 \mathrm{~cm}^{2}$. Others concluded with $12 \pi-18 \sin \frac{1}{3} \pi$ but, for the award of the final mark, the replacement of $\sin \frac{1}{3} \pi$ by $\frac{1}{2} \sqrt{3}$ was needed.
9) The answer in part (i) was readily confirmed although some candidates did not provide sufficient detail. Merely identifying 37 and 1.728 , but without showing how they had been obtained, was not enough to earn both marks. There were few problems with part (ii); candidates recognised that an arithmetic progression was involved and confirmed the result accurately.

Parts (iii) and (iv) presented more problems. One common error was to interpret $v_{p}$ as the sum of $p$ terms of the geometric progression. In part (iii), the expression $1.2 \times 1.2^{p-1}$ for $v_{p}$ was frequently simplified to $1.44^{p-1}$. Although a few candidates adopted a trial and improvement method, the majority appreciated that the introduction of logarithms was an appropriate strategy. To earn the final mark in part (iii), candidates had to identify 57 as the answer but there were many answers such as $p<57.65$ and $p<58$. In part (iv) candidates were faced with a quadratic inequality and solving this was a problem for some. Using the formula for the solution of a quadratic equation did not seem to occur to them and various invalid ruses for finding $q$ were tried. Again not all candidates appreciated the need for the answer to be a positive integer.

Questions on arithmetic and geometric progressions are usually answered well and, although this question had its challenging aspects, there were many very good solutions. Indeed, some candidates who had not produced particularly convincing work elsewhere in the paper did score well on this final question.

## 2633: Pure Mathematics 3

## General Comments

Able candidates found few problems in gaining a very respectable mark on this paper, and only a minority failed to score at least half the available marks. Examiners were heartened by the degree of understanding and competence displayed by candidates; basic ideas and techniques were addressed with confidence and skill.

Only in the second question and the final two parts of the ultimate question did a large proportion of candidates find real difficulty, and in Q8(ii) (b) and (iii) most struggled to find appropriate methods of solution.

Work was invariably legible and well presented, and there was no evidence of candidates running out of time.

## Comments on Individual Questions

1) Few candidates failed to score full marks. Occasionally incorrect forms were used for the coefficients of the term(s) in $x^{2}$ and/or $x^{3}$, or errors were made in simplifying coefficients.
2) Very many candidates used $(-\theta \sin \theta)$ as the derivative of the product $x=\theta \cos \theta$. Later, the value of $-\pi^{-1} \cot \pi$ was unusually then set equal to zero or to -5.8 (approximately), when it is actually non-finite.
3) (i) Most candidates scored all three marks, though often preferring to use degrees rather than radians. A few solutions featured an approximate value of $R$, or had $\tan \alpha=3$ or $-1 / 3$ instead of $+1 / 3$.
(ii) Although most candidates obtained the correct value for one solution, many did not seek a second solution for $\theta$ or simply subtracted the first one from $2 \pi^{\circ}$.
4) (i) Several correct techniques were seen, but many candidates could not successfully address the proposition or even failed to attempt to do so.
(ii) Using the result from part (i), most candidates integrated successfully. A sizeable minority, however, integrated $x\left(x^{2}+1\right)^{-1}$ to obtain a constant multiple of $x \ln \left(x^{2}+1\right)$.
(iii) After a correct integration by parts, candidates generally used the result from part (ii), except for those whose key integrand was $x\left(x^{2}+1\right)^{-1}$ or $x^{2}\left(x^{2}+1\right)^{-1}$, instead of $x^{3}\left(x^{2}+1\right)^{-1}$.
5) (i) Only a few incorrect solutions were seen, and these were due to use of vector $O P$ or $O Q$, instead of vector $P Q$, to specify the direction of the line.
(ii) Often the ratio $Q S: P S$ or $P Q: Q S$ was found. More seriously, a few

$$
\text { candidates used }|\overrightarrow{P Q}|=|\overrightarrow{O P}| \cdot|\overrightarrow{O Q}|
$$

(iii) A minority used $\overrightarrow{O P}$ or $\overrightarrow{O Q}$, instead of $\overrightarrow{P Q}$, as one of the two vectors.

Reference was also made to $|\underline{a}| \cdot|\underline{b}|=(a+b) \cos \theta$, or $=a b \sin \theta$.
6) (i) Most candidates scored the first three marks, but the majority then re-wrote the preliminary result $y^{-1}=x^{-1}+C^{-1}$ as $y=x+C$. Weaker solutions involved $\int y^{2} d y$ instead of $\int y^{-2} d y$ or lacked a constant of integration.
(ii) An appropriate solution was obtained by almost everyone, albeit usually on a follow-through basis.
7) (i) Candidates usually noted that $\mathrm{d} x=2 x^{1 / 2} \mathrm{~d} y=2 y \mathrm{~d} y$, but some solutions then foundered through use of $\mathrm{d} x=\frac{\mathrm{d} y}{\mathrm{~d} x} \cdot \mathrm{~d} y$.
(ii) A minority of candidates wrongly attempted to express $\frac{1}{x(1+\sqrt{x})}$ in the form $\frac{A}{x}+\frac{B}{1+\sqrt{x}}$, later being unable to integrate $(1+\sqrt{x})^{-1}$. Most candidates, however, used the $y$ integral from part (i), though some forgot to change the limits from $y=4,9$ to $y=2,3$. Occasionally errors were made in simplifying the correct four-term solution into a 1 or two-term format.
8) (i) A few candidates lost a mark by using an inappropriate value for the square of the radius.
(ii)(a) Some candidates lost an accuracy mark, using $m x^{2}$ for $m^{2} x^{2}$ or by making a sign error. As in part (i), almost everyone scored both marks, however.
(b) Few candidates scored any marks. It was required to use the discriminant, a function of $m$, for the quadratic equation in $x$ from part (ii)(a), but instead attempts were made to find the two roots of the $x$-equation or to differentiate the equation, sometimes setting the derivative equal to zero. The key principle here was that, for the line to meet the circle, the discriminant, equal to $\left\{4(m+8)^{2}-4.49\left(1+m^{2}\right)\right\}$, must be greater than or equal to zero.
(iii) Only occasionally was a viable method seen. One option was to note that the values of $m$ from part (ii)(b) were the tangents of the angles $B O x$ and $A O x$. The required angle $A O B$ being the sum of the two latter angles, its tangent then follows by the usual formula. The other option, essential for those unable to solve part (ii)(b), was to show that $O C=\sqrt{65}$, and hence $O A=7$ and thus $\tan A \hat{O} C=4 / 7$, where $C$ is the centre of the circle.

## 2634: Pure Mathematics 4

## General Comments

The majority of candidates found the examination accessible, answering questions in the order set. There appeared to be little evidence of problems with time. Candidates were better prepared and able to produce good solutions to the more standard types of question asked. The first three questions gave most candidates a sound start to the paper, and candidates were able to pick up marks in most questions. The result was fewer poor scripts. However, it appeared that very high marks were seen less frequently, often as a result of a lack of precision. In particular, candidates should know that an answer given in a question must be clearly derived and not merely written down as 'obvious'.

Examiners commented on the overlong answers produced by many candidates, when an absence of accuracy or simplification led to marks being lost. Candidates continue to omit "dx" or " $\mathrm{d} \theta$ " in integrals, even when they have used a substitution in their integration. However, it was also pleasing that candidates were able to deal successfully with questions such as 6 or 7 which, although standard, were different from questions set in the past.

## Comments on Individual Questions

1) This was well answered and gave candidates a good start. The majority recognised that an integrating factor was required, and $\mathrm{e}^{-x}$ was derived in most cases. Candidates who produced $\mathrm{e}^{\mathrm{x}}$ instead were still able to gain 3 marks. Some candidates do not appear to appreciate the link with the product rule, and errors such as $-y e^{-x}=\int e^{2 x} d x$ were common. Others failed to multiply the RHS by $e^{-x}$. The most common error was to either omit the constant of integration or to put it in at the end as an afterthought. Some candidates knew and could apply the C.F./P.I method.
2) This was found to be a very straightforward question, particularly with the hint given. The vast majority produced reasonable Maclaurin series for $e^{-x}$ and $\sin 2 x$ separately, and then multiplied these together. Errors were mainly algebraic, although a surprising number of candidates omitted the cubic term in the expansion of $\sin 2 x$ at the multiplication stage. Other candidates who attempted Maclaurin on $2 \sin x \cos x$ were also successful but wasted time. Those who attempted to derive Maclaurin by differentiating $e^{-x} \sin 2 x$ repeatedly were less successful.
3) This was a standard induction question on summation, for which candidates were well prepared. Nevertheless, there was a general lack of appreciation of what constitutes a proof and a general lack of precision in presenting it. However, many candidates scored at least 4 marks. Examiners were looking for candidates to bring together the facts that it was true for $n=1$ and that if true for $n=k$, then it has been shown true for $n=k+1$. There were too many statements such as "Assume $n=k$ " or "Let $n(n+3)=1 / 3 n(n+1)(n+5)$ ". The best presented solutions often came from candidates who showed it was true for $n=1$ after the assumption and proof for $n=k$ leading to $n=k+1$. A few candidates used standard results for $\sum r$ and $\sum r^{2}$ and gained no marks.
4) (i) It was surprising how many candidates omitted the -2 in the differential, and this obviously led to problems in part (iii). The Chain Rule did not appear to be wellknown, with even the more successful candidates using a substitution to get the required result.
(ii) Many candidates had apparently not seen a substitution of this type before and did not use the $1 / 2 \sin \theta$ accurately to produce $\cos \theta$ in the denominator. Other candidates lost marks by omitting the constant of integration (a possible leadin to part (iii)), or by leaving their answer in terms of $\theta$.
(iii) With the problems experienced in the first two parts, it was difficult for candidates to do the 'hence'. The best solutions involved differentiating the given expression with $a$ as a variable and producing da/dx $=0$, leading to the given answer. Candidates using an integration approach often produced $a=0$ as either the constant of integration was omitted or $\int 0 \mathrm{~d} x$ was given as 0 . Even so, many candidates produced $a=1 / 2 \pi$ for one mark. Overall, few candidates scored more than 4 marks on this question.
5) (i) With the answer being given, candidates needed to give some numeric evidence that $r=0$ for the given $\theta$. Others solved the equation and produced the required $\theta$ as one of the solutions of the trigonometric equation. The sketch often lacked clarity, being too small and lacking the detail required, such as some idea of scale ( $r=1$ when $\theta=0$ or the tangent at $\theta=3 / 8 \pi$ ). A rough copy off a calculator gained one mark without such detail.
(ii) There were many good solutions to this part, involving a variety of methods. Only a minority recognised $\sin ^{2} 2 \theta+\cos ^{2} 2 \theta=1$, being more prepared to use the equivalent expressions in terms of $\cos 4 \theta$ for both $\sin ^{2} \theta$ and $\cos ^{2} \theta$. Even so, although time was wasted, such candidates usually gained at least 4 marks. The term in $2 \sin 2 \theta \cos 2 \theta$ produced solutions via $\sin 4 \theta$, substitution, recognition and even parts! It was pleasing to see that the question did not throw candidates, and that they could answer such a question accurately.
6) (i) Most candidates picked up the marks, although the time difference between those who used the cover-up rule and those who solved simultaneous equations after equating coefficients must have been substantial.
(ii) Again, this was generally done well, with most candidates using sufficient terms at the start and end of the summation to ensure that they could spot the correct cancelling. As this occurred every other line, candidates dealt with this situation well. Candidates were not penalised for attempting to simplify a correct expression, but often this led to a more difficult part (iii).
(iii) There was a general lack of accuracy in determining the convergence of the series where some notion of 'as $N \rightarrow \infty, 1 / N \rightarrow 0$ ' was expected. Candidates getting part (ii) wrong could still gain the marks for their sum to infinity.
7) (i) Designed so that candidates with graphical calculators did not have too much of an advantage, this part of the question produced many good solutions. The majority of candidates used the $a+i b$ approach, producing a quadratic in $a^{4}$ or $b^{4}$, whilst others used a form of De Moivre. A very small number produced correct answers with little or no working, and full credit was given. Marks were generally lost because of algebraic errors rather than a lack of knowledge.
(ii) Again, marks were lost when no evidence of scale was seen.
(iii) The word 'transformation' did not appear to be well-known. Even candidates who were aware of what was required too often transformed point $A$ to point $B$, usually as a translation. Designed to test the 'geometrical effects' of multiplying two complex numbers, candidates who recognised 'transformation' rarely equated this to an enlargement plus rotation. Marks were awarded for any two transformations which worked, as long as they were expressed exactly. These included 'reflection in $\theta=1 / 4 \pi$ ' and various shears. Those who knew the connection between the moduli and arguments of $z$ and $z^{2}$ could gain some credit if they were related to some idea of transformation.
8) (i) Candidates who expressed $y$ in partial fractions lost time. Minor algebraic errors were allowed if they led to the correct asymptotes.
(ii) With the answer to be gained given in the question, many candidates lost marks by going from $y(y+8) \geq 0$ or $y(y+8)>0$ to the answer given without any detail at all. If it was not clear that they had correctly reached the required solution, two marks were usually lost. A sketch or table of values would have been useful at the end of this part.
(iii) Most candidates selected the one correct asymptote. Minor algebraic errors and not writing the answer as a coordinate as requested led to some marks being lost. Candidates obtaining a different $y=k$ asymptote could still score 2 marks here.

## 2635: Pure Mathematics 5

## General Comments

There was a wide range of candidates with marks ranging from 60 to 11 . The majority were well prepared and had a sound knowledge of the topics tested; the level of algebraic and other manipulative techniques was pleasingly high. However, as on previous occasions, presentation was frequently scrappy and many candidates obviously felt little pride in their work. It is, of course, noticeable that, in general, those who present their work well are likely to produce more accurate sets of solutions.

## Comments on Individual Questions

1) (i) This was completed correctly by almost every candidate although there were a few who turned it into a convoluted form of manipulation.
(ii) Many candidates obtaining $y^{2}=2$ or 3 lost concentration and failed to use the negative square roots.
2) There appeared to be over-reliance on graphic calculators and some failed to give the final answer with sufficient appropriate working.
3) The substitution technique was pleasingly accomplished and no-one just substituted du for $\mathrm{d} x$. The majority used the cosh $2 u$ formula correctly and then substituted back - a few made mistakes at this final stage or left the answer in the unacceptable form of $\sinh \left(2 \sinh ^{-1} 2 x\right)$.
4) The final part of this question (use of Euler's method) was well done but parts (i) and (ii) were poorly answered. It appeared that candidates had rushed without thinking and just put down the first thing which came into their heads. The three-line statement at the beginning had often been only cursorily read and some relevant aspects were missing from their answers.
5) (i) A few wrote $(\alpha+\beta+\gamma)^{2}=\alpha^{2}+\beta^{2}+\gamma^{2}-2(\alpha \beta+\beta \gamma+\gamma \alpha)$ and some tried to produce an instant equivalence for $\alpha \beta+\beta \gamma+\gamma \alpha$ but the majority did well.
(ii) Occasionally a sign error intruded here.
(iii) This was probably one of the weakest parts of the paper. A considerable number of candidates failed to realise that the equation, found in part (ii), should be used in conjunction with the factor theorem to find the roots. Many started again, using the symmetric functions and attempted eliminations although this rarely resulted in the equation $\alpha^{3}-3 \alpha^{2}-5 \alpha-1=0$ being obtained.
6) (i) This was well answered, almost everyone realising that integration by parts was involved. It was pleasing to note that, although scrappy careless presentation was often seen elsewhere in the paper, no candidate failed to show the limits clearly on his/her 'uv' portion of the integration.
(ii) A few were unable to make use of the suggested method and did not realise that the integral should then be separated into two parts - but the majority did well.
(iii) Almost everyone evaluated $I_{2}$ satisfactorily; one or two made the expected error in finding $I_{0}$ or $I_{1}$ in that the limits of 0 and 1 in conjunction with a power of $(1-x)$ combined to produce a negative answer.
7) (i) Given the availability of graphical calculators, this part was surprisingly badly done.
(ii) Again, the substitution technique was well carried out and the given result obtained by most.
(iii) There were many cases of misreading here and the arc-length or the area of the surface of revolution were frequently attempted; those working in the correct direction generally obtained the given answer satisfactorily.
8) Part (i) was generally done well. Most candidates knew what to do in part (ii) but their work was sometimes spoiled by inaccuracies, particularly at differentiation.

## 2636: Pure Mathematics 6

## General Comments

The entry for this session was small because the majority of centres use the whole of Year 13 to prepare their candidates for this unit. A pleasing number of candidates demonstrated their ability to answer all or most of the questions in a competent manner, perhaps having started work for the unit in Year 12. However, a sizeable number were unable to make much headway with many of the questions, although they seemed to have some familiarity with the topics tested. Some of the topics in the Specification are encountered for the first time in this unit and much practice is needed in order to be able to answer questions on them. Q6, involving the sum of a complex series, was the most demanding question, but many candidates tackled it in the manner expected. The paper appeared to be of the correct length, as there was no indication that candidates had either run out of time or had much time to spare.

## Comments on Individual Questions

1) (i) The majority of candidates realised easily that the matrix $M$ represented a rotation, and most stated correctly that it was in the anticlockwise sense. But a very common error was to give the angle as $\frac{1}{3} \pi$ rather than $\frac{2}{3} \pi$; and a few answers gave two different transformations, despite the indication in the question that only one transformation was involved.
(ii) The answer to part (ii) depended on the angle given for the rotation in part (i), and this was usually answered correctly.
2) The majority of candidates answered parts (i) and (ii) correctly. Part (iii) gave a vector equation which would have been unfamiliar to many, and they were expected to use their knowledge of the vector product to understand that the points with position vector $(\mathbf{r}-\mathbf{a})$ must be parallel to the vector $\mathbf{n}$. This clearly shows that the points lie on a straight line parallel to the normal to the plane. The third mark was obtained by stating that the line passes through the point with position vector a on the plane, but only very good candidates scored full marks on this question.
3) It is pleasing to report that the ability of many candidates to understand the procedures involved in group algebra has improved since the last time this aspect was tested.
(i) Most answers showed that multiplication on the left and right by the inverses of $a$ and $b$ isolated the element $x$ and gave the solution. There were few candidates who did not know how to start.
(ii) Nearly all answers started by removing the brackets on the right hand side. As the answer was given it was necessary to demonstrate clearly that multiplication on both sides by inverse elements then gave the required result.
4) (i) Most candidates were able to demonstrate this standard result correctly.
(ii) This is an example of a question where practice in techniques is essential. In the Specification there are two types of result involving multiple angles and powers, but they require different approaches. In this part an expression for a power of $\sin \theta$ in terms of sines of multiples of $\theta$ was requested, and the neatest method is to start by expanding $\left(z-z^{-1}\right)^{5}$, as suggested by the result of part (i). Those answers which used this method were usually correct, with only the occasional algebraic error. However, some candidates used instead the expansion of $(\cos \theta+i \sin \theta)^{5}$, which is more suited to finding sines or cosines of multiples of $\theta$ in terms of powers of $\sin \theta$ or $\cos \theta$. The required result can be found by this method, and a few such answers scored full credit, but the majority who tried this approach got no further than an identity for $\sin 5 \theta$, not realising that they had to find a similar expression for $\sin 3 \theta$ as well, in order to complete the question.
5) (i) Candidates are well used to expanding a $3 \times 3$ matrix and solving the resulting equation in the case where the matrix is singular, and the first part of this question was done well.
(ii) However, the technique for solving simultaneous equations in the case when the answers have to be expressed in terms of a parameter appeared not to be well known. Frequently candidates correctly eliminated one variable between two of the equations, but were then unable to make further progress. Quite often several correct equations in two variables were found, but there seemed to be a lack of understanding that one of the variables should be changed to a parameter and the other two variables found in terms of that parameter. Some candidates clearly did appreciate the geometric aspect of the situation, as they gave their answers in the form of the cartesian equation of a straight line. Provided the resulting three fractions were put equal to a parameter, this was accepted, although the more explicit form where $x, y$ and $z$ are each found in terms of the parameter is to be preferred in this instance. The alternative method of using a vector product was not often seen.
6) (i) The expressions for $z^{2}$ and $z^{3}$ were usually found correctly, with the most common error being to omit to square and cube the modulus.
(ii) Those who answered this part correctly drew a diagram which indicated that the points were the first four points of a spiral type of locus. But in many cases there seemed to be little appreciation of the geometrical effect of adding successive powers of $z$, whose moduli decreased and whose arguments increased by equal amounts. A generous mark scheme allowed one mark to be given if there was some indication that the points lay on an anticlockwise path starting from the positive real axis, but some of the candidates who thus benefited had probably not appreciated the spiral aspect.
(iii) A good number of candidates realised that the series was geometric and the standard formula for the sum could be used. The simplification to the form given required some dexterity, but it was not difficult to apply the stages shown in the mark scheme.
(iv) It was pleasing to see that even those candidates who had been unable to do part (iii) realised that they could answer part (iv) correctly by letting $\frac{1}{2^{6 n}}$ tend to zero.
7) This question tested various vector techniques, leading to an appreciation of the fact that the shortest distance between two skew lines is the length of their common perpendicular. The points $P$ and $Q$ were, in fact, the end points of the common perpendicular, but this was not obvious until part (iv) was reached.
(i) Although nearly all candidates wrote the correct vectors $\mathbf{b}$ and $\mathbf{c}$, errors in the vector a were common, with many finding the vector joining $P$ or $Q$ to the midpoint of $P Q$.
(ii) The majority of candidates knew how to do this part and correct answers were often seen, although some arithmetical errors were made.
(iii) A common error here was to find a unit vector normal to the plane, rather than to use the position vectors of $P$ and $Q$. As $P$ and $Q$ are on the normal, the answer thus obtained may have been correct, though it was more often in the wrong sense.
(iv) The intention of this part was that it could now be seen that, because $P Q$ is in the direction of the normal, the shortest distance is simply the length of $P Q$, which had already been found in part (iii). Many candidates used instead the familiar formula for shortest distance and this was allowed, as it could be argued that they were still using a 'hence' approach. The last mark was awarded if reference was made to $P Q$ being perpendicular to both lines.
8) This question tested the properties of a group of order 6 which may already have been familiar to some candidates, but no prior knowledge of it was assumed. Most parts of the question were done well, although there were a number of elementary algebraic errors which should not occur at this level; for example, 'simplification' of $\frac{1}{1-x}$ to $\frac{1}{1}-\frac{1}{x}$ was seen on several occasions.
(i) Most answers were correct, although the required intermediate step was not always evident.
(ii) Most candidates realised that they had to show that $\mathrm{fff}(x)$ was equal to $x$, and this was often done correctly. There was some incorrect identification of $x$ with the identity, but this was not penalised.
(iii) Most answers stated the elements e and $h$, although some gave e, f and ff, which is the subgroup $F$.
(iv) There are various combinations of the given elements which lead to the last two elements of the group $H$, some requiring less manipulation than others, but any working which led legitimately to a correct answer was, of course, allowed. A few candidates wrote the answers down without showing any working and this was not penalised if the elements were correct; but it should be remembered that incorrect answers with no working score no marks.

## 4728: Mechanics 1

## General Comments

The majority of candidates displayed a good understanding of the Mechanics concepts covered in this specification. There was evidence that candidates were well prepared for the examination, many of them gaining high marks. There were few poor scripts.

## Comments on Individual Questions

1) (i) The correct answer was obtained by almost all candidates. Exceptions included those who had taken the weight of the box to be 100 g N or 10 g N .
(ii) Most candidates were aware of the need to show their method when working towards a given answer.
(iii) Inaccuracy was sometimes present as a result of unnecessarily finding the angle $\alpha$ in degrees and then rounding its value before using it in the equations for $P$. Answers in the form of inequalities did not score full marks.
2) While there were many completely correct answers, a large number of candidates had problems with signs. A diagram showing the positive direction for momentum would have been found useful. In part (i), some answers were left as $v=-3$, with the speed not given as a positive quantity.
3) (i) This was generally well answered, although there was a significant number of errors made in finding complementary angles; for example, $60^{\circ}$ instead of $50^{\circ}$ being given as the complement of $40^{\circ}$. Problems also arose as a result of confusing sine and cosine when resolving, and inconsistent expressions such as $X=2 \times 8 \sin 30^{\circ}-5 \sin 40^{\circ}$ were occasionally seen. While some candidates considered only two of the forces, attempting to find their resultant using the cosine rule, others treated the resultant as a fourth force in equilibrium with the three given forces, leading to the negative answers $X=-10.6$ and $Y=-3.83$.
(ii) The magnitude of the resultant was usually found correctly but the angle made by the resultant with the positive $x$-axis was frequently given as $19.9^{\circ}$ rather than the correct $19.8^{\circ}$. This arose as a result of using rounded values of $X$ and $Y$ from part (i). Some candidates had drawn a diagram in which the resultant was incorrectly represented by a line joining the ends of the $X$ and $Y$ components leading to an error when finding its direction. The angle made by the resultant with the $x$-axis was occasionally calculated erroneously as $\tan ^{-1}(X / Y)$.
4) This was the best attempted question with full marks being very common.
(i) The majority of candidates differentiated to find the acceleration, the main error being the loss of the first term, i.e. giving the answer as just $a=0.2 t$.
(ii) The value of $t$ when $a=2.8$ was usually correctly found and although most candidates went on to integrate the given expression to find the distance, there were a few who wrongly attempted to use equations that apply only in the case of constant acceleration.
5) (i) There was a sizeable number of incorrect expressions given for the heights above ground of $A$ and $B$ after time $t$, such as $s_{A}=7 t+1 / 2 g t^{2}, s_{B}=10.5 t+1 / 2 g t^{2}$; $s_{A}=1 / 2(7+0) t, s_{B}=1 / 2(10.5+0) t$; or even just $s_{A}=7 t$ and $s_{B}=10.5 t$ without $g$ being introduced at all.
(ii) There was a surprisingly large number of sign errors made when subtracting the expressions for the heights of $A$ and $B$ found in part (i), and the answer $3.5 t-9.8 t^{2}$ was particularly common, leading to problems later in the question.
(iii) The simplest way to find the difference in heights was to find the time when $A$ was at its maximum height and use this in the answer to part (ii). Most candidates obtained $t=0.71$ or better but sometimes this was by a circuitous route, e.g. finding $A$ 's maximum height and then solving the equation $2.5=7 t-1 / 2 g t^{2}$. An alternative method of finding the difference between the heights was to find $B$ 's height at time $t=0.714$ and subtract $A$ 's maximum height from it, thus obtaining $5-2.5=2.5$. There were quite a number of errors which could arise from an attempt at this latter method, one of which was to find the difference between $A$ 's and $B$ 's maximum heights.
(iv) The best solutions to this part were those in which candidates solved $3.5 t=3.5$, using their answer to part (ii), to obtain $t=1$. Comparison of this time with the time when $A$ was at its highest point, or calculation of $A$ 's velocity and noting a negative value, then enabled many candidates to reach the correct conclusion that $A$ was travelling downwards. Errors in answers to part (ii), however, caused significant problems here. Some candidates used a method that involved a comparison of the differences in the heights of $A$ and $B$, e.g. comparing 3.5 with the value of $h_{B}-h_{A}$ of 2.5 when $A$ was at its maximum height. An essential ingredient of the argument here should have been that the expression 3.5 for the height difference increases with time, but this was rarely stated.
(v) This part of the question was often successfully attempted.
6) There were very few errors made in the straightforward parts (i) and (ii). More problems occurred in parts (iii) and (iv), although these more challenging exercises were pleasingly well answered in many cases.
(iii) The most frequently seen wrong answers included a graph for $Q$ that was identical to that for $P$, and a graph for which the speed was constant (with $v=$ +8 ) for $0 \leq t \leq 16$, and decreasing uniformly to zero for $16<t \leq 20$.
(iv) There were many correct graphs, but those of some candidates took the form of a continuous curve instead of having a straight section and a curved section. A common wrong answer was a graph that was the reflection of Q's graph in the line $t=10$ rather than in the line $x=4$.
(v) Many candidates were under the impression that the cyclists would meet at 'half-time', after 10s. There were many good attempts at finding the correct time of 11s, either by writing down equations for $t$ or by realising that the cyclists would each have travelled 72 m , subtracting the 16 m they travelled while accelerating in the first 4 s and then calculating that the remaining distance of 56 m would take a further 7 s at a constant speed of $8 \mathrm{~ms}^{-1}$. An incorrect answer of 7 s was quite frequently seen, resulting from the failure to add on the time for the first stage of the journey.
7) This more difficult question was very pleasingly answered by a large number of candidates.
(i) There were many completely correct solutions to this part. Errors included not finding the component of B's weight down the plane, and occasionally, the omission of the frictional force on $A$. In the majority of cases when the frictional force was considered, it was nearly always correctly calculated. Some candidates preferred to use the 'complete system' method but frequently failed to use the total mass of 0.5 kg in their equation. Calculation of the value of $T$ was omitted by quite a large number of candidates.
(ii) Many candidates did not take account of the fact that the acceleration would change after the string had broken and continued to use the same value as that found in part (i).
(iii) Most candidates who made an attempt to find the distance travelled by B used the equation $s=u t+1 / 2 a t^{2}$ with the relevant time, but commonly seen errors included using their value of acceleration from part (i), or simply $g$. Some candidates wrongly assumed that $B$ would be stationary after travelling this distance and attempted to use the equation $v^{2}=u^{2}+2$ 2as with $v=0$.

## 2637: Mechanics 1

## General Comments

The level of achievement of candidates covered a wide range. There were some extremely good quality scripts seen by examiners. However, some candidates appeared to be entered before an appropriate standard had been reached.

Examiners commented that some candidates had problems expressing values less than 1 correct to 3 significant figures.

Candidates should be reminded of the need to show sufficient working when asked to obtain a required answer as in Q1(i) and Q6(iii).

## Comments on Individual Questions

1) (i) This question was generally well answered, most candidates showing a good understanding of the concept of conservation of momentum. However, there were a few who did not take into account the vector nature of velocity, or were inconsistent with the use of signs, but still managed to get the given answer.
(ii) This part was less successful for many candidates. Problems arose from an attempt to use velocity before and after the collision in constant acceleration formulae. Others did not use the relationship given in the first part to find $b$, but went back to a momentum equation, making some errors.
2) (i) Most candidates gained full marks.
(ii) This was found to be more difficult. Most errors occurred as a result of the friction being assumed to be the same as in the previous part when in fact it should have been the coefficient of friction that remains the same. Of those who made correct mechanical statements, many found the algebraic manipulation difficult in attempting to find $P$.
3) (i) This question was well answered by the majority of candidates. The major error seen was incorrect use of sine or cosine in resolving forces.
(ii) A variety of methods were used to answer this question. Use of vectors and components were the most successful. Attempts at combining two of the forces first were less successful. However, some candidates also worked out a direction when only the magnitude was required, which must have taken up valuable time. Others left the resultant force in component form, making no attempt to combine the components.
4) This question was not particularly well answered, with only a few totally correct answers seen by examiners. The use of constant acceleration formulae was disappointingly common. Some candidates who recognised integration was required in the first part used constant acceleration in the second part. Some attempted to differentiate, while others had problems dealing with the fractional indices.
(i) Many of those who used integration to solve the question either omitted a constant of integration, or did not use the fact that velocity was $60 \mathrm{~m} \mathrm{~s}^{-1}$ at time 9 s , but merely used $v=0$ at $t=0$.
(ii) Some candidates did not use a value that they had found in part (i), but assumed that this constant was now 0 . Hence it was common to see an incorrect answer of 194.
5) (i) Most candidates had the graph for the outward journey correct. However very few correct sketches were seen for the return. Most ignored the fact that the velocity on the return was negative. Although many such candidates had a correct shape, the graph was nevertheless above the $t$-axis instead of below it. Others had a sketch for the return below the $t$-axis but with the graph returning towards the $v$-axis.
(ii) The majority of candidates realised the need to find the area between the graph and the $t$-axis. Some however attempted to find the whole distance including the return. There were also a few candidates who attempted to use constant acceleration formulae with the same acceleration throughout.
(iii) Many candidates were aware of the method needed to calculate the required time but many careless errors were seen. These included solving $0.5 t=8$ to get $t=4$ for the time accelerating on the return journey, and using distance divided by speed for the whole of the return journey. Some thought that the return journey took the same time as the outward journey. It was disappointing to see some wrong answers without any working seen.
6) Although some good solutions were seen, some confusion was evident in attempting to assign consistent signs to velocities and to the acceleration due to gravity.
(i) A common error was to assume the particle was at rest after 0.8 s .
(ii) Many assumed that $A$ and $B$ had both travelled 8.864 at $t=0.8$ or that they had the same speed.
(iii) Some good attempts were seen to reach the given answer. The time for $A$ to travel to its highest point was found by most but some did not realise the time to come down again was the same, so made further calculations which in some cases led to errors. Inevitably candidates contrived to get the difference in times to be 1.5 s even from incorrect work.
7) It was interesting to observe how many candidates felt it necessary to work out $\alpha$.
(i) Two distinct methods were seen. Those who employed a whole system approach were usually less successful, omitting either the weight component of A or friction, or using an incorrect mass. Attempts at applying Newton's second law to the particles separately were better, but some thought $B$ was not accelerating and had the tension in the string to be 0.32 g . A common arithmetic errors was $0.1 a+0.32 a=0.33 a$.
(ii) Of the attempts seen, most were able to use their acceleration correctly to find a distance.
(iii) Very few correct answers were seen. Generally most either failed to calculate a new acceleration, using instead the acceleration found in part (i), or $g$. Many of those who made an attempt to find the acceleration failed to take account of the friction.

## 2638: Mechanics 2

## General Comments

The majority of candidates showed a reasonable understanding of all topics, except for resolution of forces and taking moments, which were essential to the answering of Qs 5 and 7. Candidates very rarely showed that they were short of time. There were many excellent papers and only a small percentage of the candidature appeared to be totally unprepared. As general hints, candidates must attend to the precise requirements of questions, make clear diagrams and use sensible symbols for forces. In problems which involve friction, it is useful to distinguish between the actual force of friction $(F)$ and the maximum possible frictional force (perhaps $F_{\max }$ is a good choice for this).

## Comments on individual questions

1) A straightforward first question. However, fewer than half of all candidates gained full marks. The first mark was often lost through not recognising that speed is a scalar quantity. In part (ii), many failed to take account of the change of direction, and more than a third of candidates did not give a direction for the impulse on the sphere.
2) Most candidates scored full marks in part (i). A small number of candidates confused the situation by unnecessarily calculating volumes. Part (ii) was less well answered.
3) Part (i) was well answered. Errors in part (ii) included using values of the driving force or resistance from part (i), and ignoring resistance.
4) There were many correct answers to part (i). However, a significant number of candidates did not multiply by $\cos 30^{\circ}$, or included potential energy. In part (ii) it is pleasing to note that very few candidates tackled the problem by using Newton's second law thus ignoring the request to tackle the problem by considering energy. In considering energy, common errors were to fail to multiply $R$ by the distance 25 m and/or to have sign errors in the energy equation.
5) This was the least well attempted question and many candidates failed to score any marks. However, surprisingly, some candidates were more successful in the more complicated part (ii). A very common error in part (i)(a) was $R=500 \mathrm{gcos} 15^{\circ}$ and in part (b) $R=500 \mathrm{~g}$. For the majority the combination, in part (ii), of circular motion, friction and resolution of forces was too complicated.
6) This question was generally well answered, particularly parts (i) and (ii). The impact of two spheres in part (iii) was unusual and many candidates over-complicated finding the speed of the spheres immediately after the collision. The methods used for calculating the speed and direction of motion of a sphere on hitting the ground were well understood. In only a minority of cases did candidates attempt to use displacements for finding the direction of motion on hitting the ground.
7) This question often caused difficulties. A common misconception was for the normal reaction forces at the ground and wall to be perpendicular to the ladder. There were many general problems with taking moments and with the use of sine and cosine. In part (i), there was greater success in finding the reaction at the ground, as opposed to the reaction at the wall. In part (ii), the vast majority failed to respond to the first request, 'find the frictional force at the ground'. Showing that the ladder was not in
danger of slipping was often unconvincing as candidates frequently continued to use their symbol for the reaction force at the wall. Many candidates continued to use the same reaction forces from part (i) in part (iii). Fewer than ten per cent of candidates were successful in this final part. Those candidates who were successful were usually those who scored more than 50 marks for the whole paper.

## 2639: Mechanics 3

## General Comments

The many good scripts seen demonstrated the high level of skill and mathematical understanding of the majority of candidates. Nearly all scripts contained answers to every question, and many answers were entirely correct. Reference is made below to the most common errors that were seen. As will be seen, far more marks were lost through inaccurate work than through ignorance of the subject matter.

Where the question paper contained given answers, candidates were expected to refer clearly to the underlying physical principles involved, and carry out algebraic and arithmetic manipulations without ambiguity. In questions where there was no printed result, examiners could accept a less rigorous presentation of a candidate's work.

## Comments on Individual Questions

1) Candidates who used a momentum or velocity triangle together with the cosine rule had the greatest success with this question. This was the most succinct approach, with fewest opportunities for error.

Solutions that analysed the problem in terms of components tended to include some mistake such as the omission of mass from one or more terms, or have sign errors when calculating momentum change. Taking components parallel and perpendicular to the impulse (rather than the initial velocity) appeared to be the more successful choice with this method.

The most effective method to find speed from components of velocity is the use of Pythagoras' theorem. However, finding the direction of motion and then working with a velocity component was commonly seen, and gave more scope for error. (This comment applies equally to Q3.)
2) (i) In a number of cases, candidates simply asserted that the acceleration was equal to $g$, from which the result swiftly followed, but full credit was not given. In other cases, the formula $m v^{2} / a=R-m g \cos \theta$ was quoted without justification, accompanied by the statements $\theta=180^{\circ}$ and $R=0$.
(ii) In this more substantial part of the question, the candidates produced more convincing explanations. The energy change was clearly presented, and Newton's second law was generally used explicitly.
3) Most candidates understood this topic very well, and many excellent solutions were seen. Sign errors in the momentum and restitution equations were rare, and where marks were lost this was usually the result of errors in algebra or arithmetic. As in Q1, a significant number of candidates calculated the direction of motion of $B$ and then deduced the speed of the sphere. Simple use of Pythagoras' theorem would have been adequate, and more convincing in those cases where a component of velocity was negative.
4) (i) This question was unusual in requiring the summation of the magnitudes of two forces, one tension, the other compression. The more common scenario, involving the calculation of the difference of two tensions, was clearly present in the minds of many candidates, for whom this was their sole error.
(ii) Virtually all candidates were able to continue successfully with their solution to part (i).
5) (i) Though many correct answers were seen, solutions often contained errors such as using the same trigonometric ratios in both terms of the moments equation, or omitting a distance from one of the terms.
(ii) A common problem for both candidate and examiner was the use of a diagram that showed four arrows attached to a single point $B$, like four compass points. The ambiguity could lose marks in part (ii), but also created confusion in many candidates' minds when working on part (iii).
(iii) Diagrams which showed clearly the magnitude and direction of forces at $B$ on the rod $A B$ alone were usually accompanied by the correct working. However, a significant number of candidates chose to take moments about $A$ for the entire system, and these more complex expressions were easily marred by minor errors, or the consequences of premature approximation.
6) (i) The basic mechanical principles and calculus techniques needed to answer this question were well understood. The candidates who simplified their initial equations by eliminating decimal numbers and working with integers produced fluent solutions culminating in the printed result. Solutions worked with decimals contained much evidence of amending earlier steps after the printed answer had failed to emerge.
(ii) Though the majority of candidates knew how to proceed by integrating the printed result, answers were often wrong. Sometimes this was because the value of the integral was assumed to be zero when $t=0$. However, many scripts showed candidates unable to evaluate $e^{-0.2 \times 2.5}$.

Answers based on the use of constant acceleration formulae were frequently seen, and some candidates re-worked the problem using the $v \mathrm{~d} v / \mathrm{d} x$ formula for acceleration.
7) (i) Though candidates understood well how to find the mass required, at times their work was imprecise. The ' 3.6 ' in the question paper indicates an exact value, and numerically accurate working is needed. If an approximate value of 3.60 was intended it would have been clearly stated.
(ii) Nearly all candidates knew how to calculate the energy stored in an elastic string, and how to set up the energy balance equation. There were many instances of incorrect answers arising from the calculation of the energy for a single string. There were very few attempts, none successful, at a solution based on variable acceleration.
(iii) The most commonly overlooked assumption was that the strings were light. Some candidates scored only one mark by claiming both that there was 'no air resistance' and that 'energy is conserved'. Examiners regarded these statements as essentially equivalent.

## Probability and Statistics

## Chief Examiner's Report

On all statistics units much excellent work was seen. As usual questions requiring verbal answers and explanation tend to be the least well answered. Although these units are part of a Mathematics specification Statistics is meaningless without application to the real world. The number of candidates who state modelling conditions and the conclusions to hypothesis tests in the context of the question (as opposed to repeating standard slogans such as 'they are independent') is also increasing. On the other hand there is some evidence that there is always a substantial minority of candidates who lose marks by forgetting aspects of the subject that are not explicitly in the specification but are part of assumed knowledge - for instance many still think that ' 0.77 ' is an answer correct to 3 significant figures.

## 4732: Probability and Statistics 1

## General Comments

Almost all candidates found opportunities to display their knowledge and understanding and there were a large number of very good scripts.

In some cases, the written answers were less satisfactory than the calculations. Some candidates quoted, parrot-fashion, general statements making no reference to the context. These scored no marks. Other candidates wrote unnecessarily long explanations. Adequate written answers, in context, can always be given in a very few words.

A few candidates gave numerical answers without working. Perhaps they used the statistical functions on their calculator. In these cases, wrong answers automatically scored 0. Candidates should be encouraged to check twice every calculation carried out using these functions. In cases where the answer is given in the question, then the use of statistical functions, without written working, scores no marks.

Some candidates used the less convenient versions of formulae from the formulae booklet, e.g. $\left.\sum x-\mu\right)^{2} p$ and $\sum(x-\bar{x})(y-\bar{y})$. Many candidates appeared to make no use of the formulae booklet, but preferred to use formulae of their own devising, usually incorrect.

There was evidence of some confusion between $\sum x / n$ and $\sum x$.
A small number of candidates appeared to have rushed the last question or omitted parts of it, suggesting that they had run out of time.

A few candidates ignored the instruction on page 1 and rounded their answer to fewer than three significant figures.

## Comments on Individual Questions

1) (i) The correct answer, $A$, was often supported by inadequate explanations such as 'strong correlation' or incorrect explanations such as 'because the points are close together'. Reference to near-linearity was required. A few candidates thought that a poor fit to a straight line implies a high value of $r$ and so chose $C$. Others thought that the correlation is highest where the line of best fit is the steepest, and chose $B$.
(ii) A few candidates chose $B$, stating that the points follow no particular pattern. Many correctly chose $C$, but failed to note the clear correlation that exists but is not linear.
2) (i) Some candidates used $15 / 2$ etc. rather than $16 / 2$ etc., and gave answers such as 7.5 instead of 8 for the median. Others found the median at the $8^{\text {th }}$ data point, but then went on to find $Q_{1}$ at the $(8+1) / 4^{\text {th }}$ data point. This happens to give the correct answer for $Q_{1}$, but a similar method for $Q_{2}$ at the $11.5^{\text {th }}$ data point, gives $Q_{2}=(12+24) / 2=18$. Another common error was $Q_{2}=26$, presumably from counting along the penultimate row in the wrong order.
(ii) Mention of 'outliers' or 'extreme values' (not 'anomalies') was required. Some unacceptable explanations as to why the median is preferable were: because of the wide range of the data; because it is easier to calculate; because there are equal numbers of boys and girls; because the mean is not an integer and because the mean is not one of the original data.
(iii) Most candidates understood the main point here. However in some cases, when a particular advantage was described, the answer did not make clear which type of diagram had this advantage. A few candidates wrongly stated that a box and whisker plot shows the 'trend' of the data. Answers such as 'it is easier to draw' were not accepted. A few candidates gave unacceptably imprecise answers such as 'a box and whisker plot shows the spread of the data better'. Another answer which was not accepted was that a box and whisker plot shows the skewness of the data better.

It was clear that to a few candidates the idea of statistical diagrams having advantages and disadvantages was new. They had to use their initiative and generally did not score marks.
3) (i) Most candidates succeeded in finding $r_{s}$ correctly although a few found differences using the original data rather than ranks.
(ii) Answers such as 'good correlation' or 'good rank correlation' did not score. Mention of 'agreement' or 'similar' or equivalent was required. A common error was to state that the commentators agree on $75 \%$ of the marks.
4) (i) Most candidates knew how to find $k$, although a few made arithmetical errors.
(ii) Arithmetical errors were not uncommon in this part also. A few candidates divided by 5 . Some candidates did not understand the notation $\sum x^{2} p$ and found $\sum(x p)^{2}$ or $\sum x p^{2}$. Others failed to subtract $\mu^{2}$. Some thought that $-(-0.1)^{2}=+0.01$. A few candidates used their own incorrect version of the formula for variance, apparently unaware of those given in the formulae booklet.
5) (i) Some candidates used a binomial method in part (a) which is incorrect. In part (b), common incorrect solutions were: $(19 / 20)^{9},(19 / 20)^{11}, 1-(19 / 2)^{10},(19 / 20)^{10} \times 1 / 20$.

Some candidates used the very long method of $1-\mathrm{P}(1 \leq X \leq 10)$. A few candidates used $B(10,1 / 20)$ which in this part is a correct alternative to $G(1 / 20)$.
(ii) Almost all candidates gave the correct answer. A few understood 'expected' to mean that they should try to find, by trial and error, which number of people was the most likely.
6)
(i) A few candidates omitted the binomial coefficient. Others just found $3 / 8 \times 5 / 8$.
(ii) Some candidates stated $1 / 2 \times p=3 / 8 \Rightarrow p=3 / 4$ without an intermediate step. This was inadequate because the answer of $3 / 4$ was given in the question. For full marks a step such as $p=3 / 8 \div 1 / 2$ was required.
(iii) This part was answered well on the whole.
7) (i) Many candidates gave a description of some or all of the conditions which give rise to a binomial distribution (fixed number of trials, only two outcomes, constant probability of success). Others stated that the values of $n$ and $p$ need to be known. Others gave correct conditions, but not in context (trials are independent, probability of success is constant). No marks were awarded unless the conditions were given in context. A common incorrect answer was 'boxes are selected at random'.
(ii) The majority of candidates used the formula rather than tables in both parts (a) and (b). Most did so correctly, but a few used $p=10 / 42$ or $1 / 42$. In part (b) common incorrect methods were $\mathrm{P}(\mathrm{Y}<2), \mathrm{P}(\leq 2)$ and $\mathrm{P}(\mathrm{Y}>2)$. Sometimes the coefficient was omitted.
(iii) The most common error was to omit ' $\times 2$ '. Some candidates added their answers from part (i). Many failed to use their answers from part (i) but started again. Some candidates used their answer to parts (a) or (b) as the value of $p$ in a new binomial distribution. A few used $n=16$.
8) (i) Much calculation with 8! and either 6! or 7! was seen. Some candidates failed to multiply by 2 . Some had a numerator of $2 \times 7$ instead of $2 \times 7$ !. A few candidates calculated only the number of arrangements, without proceeding to the probability.

In parts (ii) and (iii) candidates who used direct probability methods rather than arrangements produced much more efficient solutions, which were often correct.
(ii) The denominator of 4! $\times 4$ ! was frequently correct although 8 ! was common. Incorrect numerators such as $2 \times 3$ ! or $1 \times 1$ or just 2 were common. Others added 4 ! +4 ! and/or 3 ! +3 !. Only a few candidates avoided all the above confusion about arrangements and used a direct probability method, $(1 / 4)^{2}$.
(iii) Some candidates identified the three cases which were not required, sometimes correctly finding (ii) $+2 x$ (ii) even if (ii) was wrong. Some candidates listed the 13 required cases correctly, but then calculated $13 / 4 \times 4$ ! . Others listed the categories as 'separated by 2 or by 3 or by 4 etc.', but then just counted these without reference to the different numbers of arrangements which give rise to them. Only very few candidates realised that by considering probabilities directly, only the positions of the two relevant questions need to be considered and the other six questions can be ignored.
9) (i) Some candidates calculated $S_{y y}$ or even $r$. The summary data given in the question was intended to make the calculation of $b$ simple, using $S_{x x}=\sum x^{2}-\left(\sum x\right)^{2} / n$ etc. Many candidates ignored this help and used $\sum(x-\bar{x})^{2}$ etc. Some candidates thought that $\sum(x-\bar{x})^{2}$ meant $\left(\sum x-\bar{x}\right)^{2}$, i.e. $(90-18)^{2}$. Others used $\left(\sum x\right)^{2}-\left(\sum x\right)^{2} / n$. Some candidates who made an error in finding $b$ persisted in using their value rather than the given value in the rest of the question. A common error was losing the sign of $b$ when substituting to find $a$.

A few candidates showed no working. Since the value 0.06 was given in the question, they scored no marks for finding this value, but they could still gain partial credit for the final equation.
(ii) Common errors were to substitute 20 or 20.4 or 20.49 or 13 and 23 .

In parts (iii), (iv) and (v) it appeared that most candidates just did what they were asked mechanically, without realising that the $e$ values are the residuals.
(iii) Candidates who arrived at huge values for $e_{4}$ and $e_{5}$ appeared unmoved by the discrepancy between these values and the given values of $e_{1}$ etc.
(iv) Some candidates calculated $\sum e$. Hardly any candidates stated that the line of regression minimises the value of $\sum e^{2}$ Some candidates stated that if $\sum e^{2}$ is small then correlation is good - which does not answer the question.
(v) Few candidates realised that è must be 0 because of the definition of the line of regression. In finding the variance, some candidates squared their value of $\sum e^{2}$ found in part (iv). Others used incorrect formulae such as $\sum e^{2}-\left(\sum \mathrm{e}\right)^{2}$.

A few candidates (even after finding ē correctly), tried to use $\sum x p$ and $\sum x^{2} p$ for variance and calculated $1 \times e_{1}+2 \times e_{2}+3 \times e_{3}$ etc. and $1 \times e_{1}+2^{2} \times e_{2}+3^{2}$ $x e_{3}$ etc.

## 2641: Probability and Statistics 1

## General Comments

The overall standard of the candidates on this paper seemed to be quite good. However there were fewer outstanding candidates than usual. This may be due to there being an unusually large number of parts of questions requiring written answers. These were generally answered less well than numerical parts. Many candidates are still not giving written answers in context. Few candidates seemed to run out of time.

## Comments on Individual Questions

1) (i) This question was answered correctly by most candidates from across the ability range. Some careless arithmetical errors were seen, e.g. 1-0.63=0.27.
(ii) Again, this part was usually answered correctly. Those who lost marks made mistakes in one of the probabilities to be added. A few multiplied the two correct probabilities. Although time-consuming, tree diagrams helped many candidates to answer both parts correctly.
2) (i) This question was answered correctly by most candidates. ${ }^{22} \mathrm{P}_{11}$ was the most common incorrect answer.
(ii) This question was answered correctly by many candidates. However, many candidates considered only ${ }^{11} \mathrm{C}_{6}$ or ${ }^{11} \mathrm{C}_{5}$. If they did consider both, many added them. Some produced ${ }^{11} \mathrm{C}_{6} \mathrm{x}{ }^{11} \mathrm{C}_{5}$, but did not divide by their answer to part (i). Those using a probability method usually scored two marks for (11/22x...x6/17)x(11/16x...x7/12). Very few realised that this needed to be multiplied by $11!/(6!5!)$.
3) (i) Many did not use probability tables. Of these, many considered the five correct probabilities, but premature approximation cost them the final accuracy mark. Of those who did use tables, $F(10)-F(6)$ was a very common error. Others used $F(10)-(1-F(5$ or 6$))$.
(ii) Most candidates answered this part correctly. Only a few left out ${ }^{23} \mathrm{C}_{10}$.
(iii) Few gave a valid reason in context.
4) (i) Most answered this part correctly. A few ranked the two sets of data in opposite directions. Some ranked only one set of data and compared with the student numbers.
(ii) Most answered this question correctly. This part produced the best written answers on the paper.
(iii) Few gave a valid reason. The obvious 'six is a very small sample' was rarely seen.
5) (i) Most, but by no means all, produced the correct frequencies. This is surprising, as the $3^{\text {rd }}$ frequency, 50 , was given. Far fewer produced and used the correct mid-points. Some used upper class boundaries, far more the class widths.
(ii) There was much confusion about the sum of $\mathrm{ft}^{2}$. $(\mathrm{ft})^{2}$ was a common error. Most knew that the square of the mean should be subtracted. A few forgot to take the square root. Premature approximation cost many the final accuracy mark. A significant number split the final class into two, viz 6-8 and 8-10, each with a frequency of 9 . This produced the correct answer in (i), but produced an inaccurate s.d.
6) (i) The given answer produced the usual crop of spurious answers. The correct method had to be based on $(1+1+4) / 16$. Some who were on the right lines did not consider all four cases of HT matchings.
(ii) Most realised that the distribution was Geometric. Better candidates used $\mathrm{q}^{2}$. Those trying 1-P(2 or less) often included $\mathrm{P}(3)$ as well.
(iii) Most produced $8 / 3$. Less than half mentioned mean or average to score the final mark.
7) (i) Most obtained the median correctly. A variety of methods for finding the quartiles were used, and allowed, even though they produced answers as diverse as 1.4 and 2.4. A minority produced the quartiles but did not subtract them.
(ii) Almost all candidates used graph paper, and usually scored full marks.
(iii) Most scored the marks available for a comment on variability, but fewer considered skewness. Of these, most scored the mark, but some confused positive and negative skew.
8) (i) This question was answered correctly by many candidates. Most candidates realised that they had to try to solve the simultaneous equations, but some of the algebra seen was confused. Some attempted to use the answer given in part (ii).
(ii) All candidates who answered part (i) correctly scored this mark as well.
(iii) This question was answered correctly by most candidates.
(iv) Most used $y$ on $x$ and produced the correct answer. Many did not score the mark for justification of choice of line by stating that $x$ was a controlled variable.
(v) Most realised that their estimate was unreliable due to the low value of $r$.

## 2642: Probability and Statistics 2

## General Comments

This paper contained several hard questions, while the easier ones were found very accessible. There was no indication that candidates were short of time.

Two errors seemed more widespread than in the past: in significance tests it is important to use the theoretical value as the null hypothesis and in calculations, rather than the data value; and hypotheses were often stated poorly. These are not merely pedantic points; the whole theoretical basis of significance testing depends on the correct selection and use of hypotheses. It is not insisted that parameters used in statements of hypotheses are defined, but if they are not (as is usually the case), the standard notation is required.

Candidates tend to reveal limited thought processes in their answers to verbal questions. Such questions generally require understanding and overview, rather than manipulation of numbers or expressions; many candidates seem unable to think about such questions except at a numerical level.

## Comments on Individual Questions

1) Most found this an easy start, apart from the many who wrote $P(>3)=1-P(\leq 2)$. Quite a number calculated probabilities by hand instead of using the tables.
2) The most important reason why the results obtained from a self-selecting sample are biased is of course that only those who feel strongly about a subject are likely to fill in a questionnaire about it. The Radio Times did exactly this some years ago and duly reported that about $90 \%$ of their readers were seriously interested in environmental issues.

Some centres have noted that the specification requires knowledge of exactly one type of sampling, namely simple random sampling from a sampling frame using random numbers. Many have not, and a large number of scripts showed no more than a rough idea of what is meant by random sampling. It is again emphasised that selecting from a hat, or equivalent, is not acceptable. In this context, as the most important reason for the original method being biased was that only those who were interested would be likely to respond, it was a pity that more candidates did not include an attempt to overcome this problem, such as contacting each member of the sample personally.
3) The first part of this question was generally very well answered, although the rider was not. As in the general comment above, far too many try to think in terms of whether calculations are possible or 'accurate', instead of considering the shape of the distribution - which is essentially what modelling questions are about.
4) This was probably the least well-answered question. First, there was the usual high proportion of candidates who do not seem to have learnt how to do hypothesis tests for discrete distributions and invariably reach for the normal distribution (which is not valid here as $n q=4$ ). Some used the correct distribution, but found $P(=10)$ rather than $P(\leq 10)$. The words 'at least three-quarters' caused difficulties for many candidates who were unsure whether to consider a left-hand tail, a right-hand tail or both. And, as noted in the General Comments, there were many who took $\mathrm{H}_{0}$ to be $p=10 / 16$ and found the probability of 12 or more.
5) Most answered part (i) correctly. However, in part (ii) there were many who calculated $\mathrm{P}(Y<22)$ or $\mathrm{P}(Y \leq 22.5)$ instead of $\mathrm{P}(21.5 \leq Y \leq 22.5)$, and there was the usual large number of errors with continuity corrections.

Many had forgotten how to calculate a percentage error.
6) Most could explain what was meant by a Type I error (though it is not a 'probability'). However, the scenario for part (ii) confused many candidates, who usually attempted to bring in the value $\mu=25$. Only the better candidates realised that the key to whether or not the outcomes of the tests had to be independent was to be found in the use of a binomial distribution.
7) Those who knew what to do had no difficulty in finding $q$ in part (i), and many excellent solutions were seen. Others were way off target.

Part (ii) showed that candidates struggle to combine the demands of curve-sketching with the requirements of a probability density function. Some drew the curve going below the $x$-axis; few drew curves that plainly had the same area as that of $f_{1}(x)$. A large majority of those who recognised the curve as a sad parabola drew it with its vertex well to the right of the $y$-axis; they may have done too many questions where the pdf is of the form $k x(2-x)$, or they may have thought that the $k$ factor was equivalent to an $x$-factor in requiring the curve to go through the origin. Explanations in both parts (ii) and (iii) again showed widespread misunderstanding of the meaning of the pdf; weaker candidates reached for the familiar techniques of integration.
8) The first two parts of this question were often found straightforward by competent candidates, although there were the usual omissions of the $\sqrt{ } n$ factor, and here again many attempted to work with null hypothesis $\mu=36.6$. This can give an equivalent set of calculations but is not acceptable.

The last part was intentionally testing. Only the best candidates were able to produce a clear answer in terms of the scientists' intentions; most were limited to vague comments such as 'they want to be more accurate'.

## 2643: Probability and Statistics 3

## General Comments

The entry for this paper was significantly larger than in January 2004 but most candidates were able to approach most of the questions with accuracy and confidence.

Presentation was generally good and in only a few cases was handwriting very difficult to decipher.

It is worth reiterating that, when candidates are asked to explain an answer which is given on a paper (Qs 6 and 7 (iii)), sufficient detail must be provided. This was not always seen.

The questions on hypothesis testing were generally well answered but sometimes candidates are overassertive in stating their conclusions. Many do state 'Accept H1', 'there is evidence that $\mu<3.5$ ', but often something like 'Reject H0, so $\mu<3.5$ ' appears. The former is preferable.

## Comments on Individual Questions

1) Many were able to earn full marks for the question but some reversed the hypotheses and others miscalculated the number of degrees of freedom. It is hoped that in hypotheses tests a statement will be given as to why the null hypothesis is rejected, in this case $X^{2}>5.991$. This was usually seen but some candidates merely give the critical value.
2) (i) This was generally well-answered. The binomial distributions were mostly recognised and candidates could proceed successfully to $E(F)$.
(ii) Most candidates then approximated the two binomial distributions to Poisson distributions leading to a $\mathrm{Po}(5)$.
3) The general performance was very high on this question. Most could negotiate the integrals in part (i) successfully and the relevance of the answer to part (ii) was usually seen. Some did, however, successfully carry out the long integration.
4) The procedure for the confidence interval was usually known but some did not know the correct formula for $\hat{\sigma}^{2}$. It does appear, as $S^{2}$, in the formulae booklet, but in two parts.

The symbol $\mu$ was sometimes used instead of $\bar{x}$ which caused some difficulty.and some candidates used a $t$ rather than $z$ critical value. This was acceptable if the value used was between the two relevant tabular values.

The reason for the use of the CLT in part (iii) was that the normality of the population was not given. Many stated that $n$ was large or that the variance was unknown and there were often misconceptions about the CLT.

The final part was mostly answered correctly.
5) As was expected, this proved to be a testing question, but most candidates could score some marks. For part (ii) it was hoped that $F(1.5)$ would be compared with 0.5 but many obtained a cubic equation for the median. Some then either solved the equation using their graphical calculator, or obtained a suitable interval. This was a lot of work for 2 marks maximum.

Only the most able could obtain the result in part (iii) which required correct use of $V$ and $v$.

Parts (iv) and (v) could be done by those who scored little in the previous parts.
6) (i) Many candidates could fit the Geo( $1 / 2$ ) and carry out the requisite $X^{2}$ test. Some candidates had E-values which totalled 127.5 but this made little difference to the test statistic. It was gratifying to see that most candidates knew to combine classes which were too small.

Several candidates attempted a z-test of $\mu_{x}=2$ against $\mu_{x}>2$, but this requires a normal population and is not a goodness of fit test.
(ii) Some appealed to the results in part (iii) but a majority considered the $O$ and $E$ values to decide that the coin was biased towards a tail.
(iii) The answers being given, the two values 304 and 128 needed convincing reasons, which were not always forthcoming.
(iv) The method for finding the confidence interval was usually known but variance estimate of $\hat{p}$ was often incorrect.
7) (i) This was a straightforward question and often well carried out. Some candidates gave the critical region as $|t|>2.015$, rather than $t<-2.015$. The former is incorrect and can lead to an incorrect test conclusion.
(ii) Many knew that the population variances should be equal, but some thought independent samples were required. It is not easy to conceive how the given samples could be otherwise, so this (without the common variance) was not accepted. The formula for pooled variance is given in the formulae booklet but it requires unbiased estimate of the population variances. These are most easily obtained from the SD mode of a calculator.
(iii) Most candidates realised that 0.5 was well inside the confidence interval and so the data is consistent with the given statement.

## 4736: Decision Mathematics 1

## General Comments

A good spread of marks was achieved. There were only a few exceptionally good scripts, but equally there were few exceptionally poor scripts. Most candidates were able to complete the examination in the time allowed, although a few wasted time copying out the diagrams or tables from the insert.

In general, the quality of the presentation of the candidates' answers was good. A few candidates submitted messy work that was poorly organised; invariably these candidates were unable to read their own working and incurred a consequent loss of marks.

## Comments on Individual Questions

1) This was a straightforward start for most candidates, although a few candidates used bubble sort instead of shuttle sort. Some candidates did not clearly identify the list resulting from each pass, as instructed in the question, and several of these did not show that the second pass caused no change.
2) (i) Some candidates were able to present an argument based on the sum of the orders at the vertices being twice the number of arcs. Rather more candidates chose to draw a specific example of a graph with the required properties, and a few tried to apply Euler's theorem to a specific example of a graph with the required properties.
(ii) Allowing for spelling errors, nearly all the candidates were able to state that the graph was semi-Eulerian because it had exactly two odd vertices.
(iii) Only the better candidates were able to explain, in the general case, why such a graph is connected. Many candidates seemed to assume that the specific example that they had drawn was the only possibility and essentially said that the diagram showed that the graph was connected. Others calculated the minimum number of arcs required for a connected graph and assumed that since the number of arcs in this graph was greater the graph must be connected. The best answers were those where the candidate argued that in a simple graph a vertex of order 4 must connect five of the vertices and that the sixth vertex did not have order 0 so it must also be connected. A few candidates were able to explain that if the graph were not connected then it could have at most 10 arcs and hence this graph must be connected, or that the complete graph on six vertices would have 15 arcs and that only removing four of these could not cause the graph to become disconnected.
3) (i) Answered well. A few candidates found the length of the minimum spanning tree for the reduced network but did not join $U$ back in again, and some candidates insisted on finding a cycle in the reduced network.
(ii) Many good answers. Some candidates needed to try out each vertex as a potential starting point and a small, but significant, minority just wrote down cycles without using nearest neighbour.
4) (i) Answered well. For many of the weaker candidates this was where they gained most of their marks.
(ii) Answered well, with nearly all the candidates scoring both marks. A few candidates drew their minimum spanning tree from part (i) instead of showing the whole network.
(iii) Candidates' explanations often assumed that a specific route was being used. Essentially, if arc $A C$ is used then it is not possible to visit both $B$ and $D$ without repeating a vertex.
(iv) Candidates often assumed that $E$ had been reached before $F$, rather than arguing generally.
(v) Answered well. Only a few candidates gave routes that did not fit the requirements. Most candidates were able to identify the quicker route, even with minor arithmetic errors.
5) (i) Some candidates had difficulty in finding the equations of the lines drawn on the diagram in the question or, having found the equations, in getting the inequality signs the right way round.
(ii) Most candidates were able to identify $(3,0),(0,1)$ and $(0.9,2.8)$, but several omitted the origin. Some candidates only found $(0.9,2.8)$ and some candidates swapped over the $x$ and $y$ coordinates. Candidates who used a sliding 'line of constant profit' often overlooked the instruction in the question to 'obtain the coordinates of the vertices of the feasible region'. Some candidates assumed that the maximum value of $P$ occurred at $(0.9,2.8)$ but most were able to calculate that the maximum value was 15 and that this occurred at $x=3, y=0$.
(iii) Only the better candidates were able to make progress with this part. Some calculated the gradients of the boundary lines for the feasible region, but most of the candidates who attempted this part calculated algebraic expressions for the objective and deduced the value of $a$ that would make $Q=3$. Several of these candidates achieved the values $a=1$ and $a=-6$, but only a very small number of candidates were able to state that $Q=3$ for all values of $a$ that are less than or equal to -6.
6) (i) Most candidates were able to write down the constraints as equations, often adding that $s$ and $t$ needed to be non-negative.
(ii) Many correct answers. Some candidates went on to give a second iteration, and subsequently repeated the work in part (iii). Candidates who gave the objective row as $2,-5,-1$ instead of $-2,5,1$ often went on to choose the pivot from the wrong column. Most candidates applied appropriate pivoting operations accurately but a few candidates just combined arbitrary linear combinations of the rows rather than using 'pivot row $\div$ pivot value' and 'current row $\pm$ multiple of pivot row'.
(iii) Several candidates stopped after one iteration and just read the values resulting from the table at this stage. Others insisted on writing down the equations from the table and did not seem to understand that they could read the values directly from the table.
(iv) Despite being told that the pivot changes, some candidates insisted that the pivoting was as before. The best candidates showed the result of the first iteration, using algebraic expressions where necessary, and then deduced the effect on the value of $y$.
7) (a)(i) Many good answers. Only a few candidates wrote down 'extra' temporary labels; there is no need to record a temporary label if it is larger than the current temporary labels at a vertex. Some candidates appeared to have tried to use common sense and then 'fiddled' the values in the boxes to make it look like Dijkstra. Almost without exception, these candidates lost the value 9 at $E$.
(ii) Most candidates were able to either write down the correct route and its length or to combine their answers from part (i) appropriately.
(iii) Some candidates said that, since $G$ and $H$ were close to each other, the shortest route would just be the arc GH. Most candidates realised that the question was asking about the shortest route between $G$ and $H$ that passed through every vertex, although some of these candidates thought that the shortest route from $A$ to $H$ passed through $G$. By writing down the route from (ii) with the end vertices removed, it was clear that the route from $G$ to $H$ would leave out $E$ and $J$.
(b) Several candidates found the six odd vertices but did not exclude $A$ and $E$ as being the end points (and therefore needing to be odd). Sometimes these candidates went on to fill half a page with calculations of shortest pairings, but often they just gave the value $12(A C+D F+E G)$. Many candidates then added the total weight of the arcs, or their calculation of the total weight, but few gave a completely correct answer with the units correct. The shortest route was of length $(10+147) \times 100$ metres $=15700$ metres.

## 2645: Discrete Mathematics 1

## General Comments

Candidates who had learnt the standard algorithms were usually able to score well on the paper. Most candidates were able to score some marks on every question and few candidates scored less than 20 marks out of the maximum possible of 60 . The standard of work produced by the best candidates was impressive. All candidates appeared to have ample time to complete the paper.

## Comments on Individual Questions

1) Most candidates were able to answer the last two parts to this question correctly.
(i) This question was answered poorly by many candidates. A lot of candidates simply referred to nodes being of even or odd order, or attempted to use Euler's relationship, failing to make the connection between the sum of the orders equalling twice the number of arcs correctly.
(ii) Most candidates identified arc $A B$ correctly.
(iii) Most candidates answered this question correctly. Where candidates did make errors the majority thought the answer was equal to $n-1$ and therefore 7 .
2) This question was generally answered well, with many candidates scoring full marks. If errors did occur it was usually on part (ii).
(i) Generally well answered with many fully correct answers seen. Most candidates were able to use the nearest neighbour algorithm to give the correct cycle and appropriate length. Some drew a graph to represent the route.
(ii) This question was less well answered. Some candidates did not know how to find the lower bound correctly and merely used the nearest neighbour algorithm again to give a cycle without node $C$.
3) Most candidates were able to make a reasonable attempt at this question and gained some marks on each part of the question. Some candidates, however, did overlook the word decreasing from the first-fit decreasing algorithm.
(i) Most candidates were able to use the first-fit algorithm correctly but some failed to put the numbers in decreasing order first.
(ii) Most candidates answered this part correctly.
(iii) Some candidates failed to use the lengths for plain paper and calculated $42 \div 3=14 \mathrm{~m}$ as the length of roll required. Candidates who correctly worked out $38 \div 3=12.66 \ldots$ and identified 13 m as the required length generally gained full marks.
4) Most candidates drew the correct graph and were therefore able to answer the rest of the question well. Where errors did occur it was sometimes due to candidates placing weights in ambiguous places close to two different arcs, or not realising that giving the shortest route means listing nodes.
(i) Most candidates were able to draw the required network diagram and write the correct weights on the correct arcs.
(ii) Most candidates appeared to know how to use Dijkstra's algorithm correctly. Some candidates failed to update their temporary labels correctly and had missing values at nodes E or F. Some candidates failed to list the shortest route the algorithm gave and merely stated the shortest length.
(iii) This question was generally answered well by candidates.
5) Most candidates were able to gain several marks on this question but few managed to get the whole question correct.
(i) Most candidates were able to write down the constraints $x \geq 0$ and $y \geq 0$, but some candidates found difficulty in formulating all the constraints correctly. Some had inequality signs the wrong way round or were unable to calculate the equations of the lines correctly.
(ii) The majority of candidates successfully identified (3,0), ( 0,1 ) and $(0.9,2.8)$ as vertices of the region but some candidates failed to give the vertex $(0,0)$. Candidates who failed to identify $(0.9,2.8)$ correctly had often used simultaneous equations instead of the graph to find this vertex.

Having successfully found any vertex most candidates were able to calculate the corresponding value of the objective function at their point or points correctly. However, some candidates then incorrectly identified ( $0.9,2.8$ ) and $P=12.9$ as the maximum point. Other candidates failed to clearly state the maximum value of $P$ as 15 at $(3,0)$ as required.
(iii) Many candidates found this question difficult and scored no marks. Those candidates who did well, successfully calculated $Q$ at their vertices and often gained values for $a$ of 1 and -6 but in most cases then failed to give $a \leq-6$ as the required set of values. There was little evidence of candidates considering the gradient of the profit line $Q$ and the gradients of the boundary lines to solve this question.
6) Most candidates were able to work through the flow chart, although some failed to appreciate how the output related to the input.
(i) This question was generally answered well, with a lot of candidates gaining full marks. Errors that did occur were often caused by candidates not being able to work through the flow chart correctly, or by giving a larger factor than the smallest prime factor as the output.
(ii) Most candidates were able to give a valid reason as to why 6 or 9 would not be output by the flowchart. Clear and concise responses were a rarity however.
(ii) Some candidates failed to give a full definition as to the relationship between the output and input. A common omission made by candidates was stating that the output was merely the lowest factor of the input with no reference to excluding 1 or the number being prime. A number of candidates stated that the output was a multiple of the input instead of a factor.
(iii) Many candidates successfully referred to the condition that eventually D would increase until $D^{2}>N$. Many candidates, however, failed to refer to the stopping conditions prior to this when a prime factor is found and the algorithm jumps to step 4 or 5 .
7) There were many good answers to parts (i) and (ii) of this question. Most candidates were able to set up and apply the Simplex algorithm, but a few candidates could not read off their solution from their final tableau.
(i) A few candidates left the inequality signs in the constraints even after adding slack variables.
(ii) Many good answers, but some candidates made arithmetic errors or failed to ensure that there were two basis columns in their tableau, other than $P$.
(iii) Many candidates failed to gain marks on this question because they failed to recognise that the pivot point changed as a result of $c<6$. The few candidates who did recognise this and used algebraic entries often gained full marks. The candidates who substituted a numerical value for $c<6$ into their tableau, in most cases gained the method mark but did not always give their results for $x$ and $P$ in terms of $c$.

## 2646: Discrete Mathematics 2

## General Comments

A good spread of marks was achieved and most candidates were able to complete the examination in the time allowed.

In general, the quality of the presentation of the candidates' answers was good. A few candidates submitted messy diagrams that invariably led to a loss of accuracy and a consequent loss of marks.

## Comments on Individual Questions

1) (i) Almost all the candidates were able to draw the correct bipartite graph.
(ii) Only a tiny number of candidates did not follow the instruction to draw a second diagram showing the incomplete matching.
(iii) Some candidates superimposed their alternating path on the answer to part (ii), and many used the Dijkstra method starting their path from $D$ instead of $M$, as instructed in the question.
(iv) Most candidates found the complete matching, but a few gave it only in list form or drew it on the same diagram as they had used in part (iii).
2) (i) Most candidates did seem to be trying to find a flow, but some made arithmetic errors resulting in vertices for which the flow in did not equal the flow out. A few candidates did not make it clear what was happening on arcs that were either saturated or empty.
(ii) Almost all the candidates who attempted this question were able to mark the cut appropriately on the diagram. The majority were also able to calculate the capacity of the cut as being 28 but, inevitably, a few tried to include the capacity of the arc CF and gave an answer of 36 .
(iii) Some candidates opted out of the latter parts of this question, but those who had answered part (i) correctly were usually able to add 10 to the flow to give the maximum flow.
(iv) Only a few of the candidates who attempted this part failed to find a feasible flow in which the given arcs were saturated. The majority of these gave a flow that was also maximal.
3) (i) Answered well, virtually all the candidates were able to say in some way or another that the matrix needs to be square.
(ii) Apart from a few candidates who augmented in steps of one unit at a time, and some who reduced columns first instead of rows, this was generally done quite well. Several candidates failed to gain full marks through arithmetic mistakes, through not stating the matching or its cost, or through including the dummy in the final costing.
4) (i) Candidates' explanations were usually muddled, or just repeated the wording from the question. Candidates needed to explain why the minimum width on each route needed to be identified and then explain that the maximum of these route minima would give the width of the widest load that could pass through.
(ii) Only a few candidates were able to set up the stage, state and action columns correctly. The state column was often labelled with (stage; state) variables. The action values should be the state label of the vertex being moved into. The candidates who remembered that this was a maximin problem, and not a maximum problem, were generally able to complete the dynamic programming tabulation and to read off the route from their completed table. Most of the candidates realised that the widest load that could pass was 5 , but only a few gave the answer as 5 metres.
5) (i) The majority of the activity networks were structurally incorrect, usually due to insufficient dummy activities resulting in activity I following not just $C$ and $H$ but also $B$. Other candidates gave far too many dummy activities. Many candidates lost marks for not stating either the minimum completion time or the critical activities, or both. Centres should note that the new specification requires the activity on arc formulation.
(ii) Many candidates gave up on the latter parts of this question. Those who persevered were usually able to complete a correct schedule, provided they realised that more than one activity could happen at a time.
(iii) The candidates who had given a valid schedule in part (ii) were usually able to realise that activity I needed to start earlier so that activity J could come forwards. Some candidates said that activity E needed to be split over two sessions, but this would not have left enough room for activity $F$ to be completed in time whilst still preserving the precedences. The only way to complete the project with these restrictions was to split activity $F$.
(iv) Despite the question requesting that the graph was to be drawn on graph paper, some candidates gave freehand diagrams in their answer booklet. Often these were too inaccurate to be of any real use. Some candidates did not use a continuous time axis, but instead split the diagram into three separate histograms.
6) (i) Most candidates were able to correctly identify the play-safe strategies and explain how they knew that the game has a stable solution. Only a few candidates were able to describe what playing safe would mean for the farmer, in context ('leave the field resting and, at worst, make no profit').
(ii) Most candidates were able to show that state $C$ dominates state $F$, although a few just described what dominance means without actually showing it. Again, several candidates did not interpret the consequence of this in context ('never grow flax').
(iii) Most candidates were able to find the three equations correctly.
(iv) Most candidates were able to graph their equations, although some of the graphs were far too inaccurate to be useful. Several candidates lost a mark for not calculating all three pay-offs, as asked in the question.
(v) Only a few candidates attempted this part, those who did were usually able to give a correct expression and to realise that it was maximised when $p$ took the value 1.

7840, 7842, 7844, 3840, 3841, 3842, 3843, 3844 AS and A2 Mathematics January 2005 Assessment Session

Unit Threshold Marks

| Unit |  | Maximum <br> Mark | A | B | C | D | E | $\mathbf{U}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| All units | UMS | 100 | 80 | 70 | 60 | 50 | 40 | 0 |
| 2631 | Raw | 60 | 47 | 41 | 35 | 29 | 23 | 0 |
| 2632 | Raw | 60 | 47 | 41 | 35 | 30 | 25 | 0 |
| 2633 | Raw | 60 | 45 | 39 | 33 | 28 | 23 | 0 |
| 2634 | Raw | 60 | 45 | 40 | 35 | 30 | 25 | 0 |
| 2635 | Raw | 60 | 48 | 41 | 35 | 29 | 23 | 0 |
| 2636 | Raw | 60 | 46 | 40 | 34 | 29 | 24 | 0 |
| 2637 | Raw | 60 | 45 | 39 | 33 | 28 | 23 | 0 |
| 2638 | Raw | 60 | 41 | 36 | 31 | 26 | 21 | 0 |
| 2639 | Raw | 60 | 50 | 43 | 36 | 30 | 24 | 0 |
| 2641 | Raw | 60 | 47 | 41 | 35 | 29 | 24 | 0 |
| 2642 | Raw | 60 | 46 | 40 | 34 | 29 | 24 | 0 |
| 2643 | Raw | 60 | 46 | 40 | 34 | 29 | 24 | 0 |
| 2645 | Raw | 60 | 47 | 41 | 36 | 31 | 26 | 0 |
| 2646 | Raw | 60 | 43 | 38 | 33 | 28 | 23 | 0 |
| 2647 | Raw | 60 | 48 | 42 | 36 | 30 | 24 | 0 |

## Specification Aggregation Results

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

|  | Maximum <br> Mark | A | B | C | D | E | U |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{7 8 4 0}$ | 600 | 480 | 420 | 360 | 300 | 240 | 0 |
| $\mathbf{7 8 4 2}$ | 600 | 480 | 420 | 360 | 300 | 240 | 0 |
| $\mathbf{7 8 4 4}$ | 600 | 480 | 420 | 360 | 300 | 240 | 0 |
| $\mathbf{3 8 4 0}$ | 300 | 240 | 210 | 180 | 150 | 120 | 0 |
| $\mathbf{3 8 4 1}$ | 300 | 240 | 210 | 180 | 150 | 120 | 0 |
| $\mathbf{3 8 4 2}$ | 300 | 240 | 210 | 180 | 150 | 120 | 0 |
| $\mathbf{3 8 4 3}$ | 300 | 240 | 210 | 180 | 150 | 120 | 0 |
| $\mathbf{3 8 4 4}$ | 300 | 240 | 210 | 180 | 150 | 120 | 0 |

The cumulative percentage of candidates awarded each grade was as follows:

|  | A | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ | $\mathbf{U}$ | Total Number of <br> Candidates |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 6 3 1}$ | 23.2 | 39.4 | 53.7 | 67.5 | 79.6 | 100.0 | 1364 |
| $\mathbf{2 6 3 2}$ | 31.7 | 50.4 | 66.8 | 76.1 | 83.6 | 100.0 | 4455 |
| $\mathbf{2 6 3 3}$ | 31.8 | 49.5 | 65.0 | 74.5 | 81.5 | 100.0 | 1461 |
| $\mathbf{2 6 3 4}$ | 35.3 | 54.3 | 68.3 | 79.4 | 86.3 | 100.0 | 983 |
| $\mathbf{2 6 3 5}$ | 49.1 | 72.7 | 85.5 | 90.9 | 92.7 | 100.0 | 55 |
| $\mathbf{2 6 3 6}$ | 22.2 | 39.7 | 46.0 | 60.3 | 76.2 | 100.0 | 60 |
| $\mathbf{2 6 3 7}$ | 27.9 | 44.4 | 60.2 | 73.6 | 83.1 | 100.0 | 1789 |
| $\mathbf{2 6 3 8}$ | 33.4 | 46.3 | 59.9 | 73.3 | 83.6 | 100.0 | 1173 |
| $\mathbf{2 6 3 9}$ | 42.6 | 66.0 | 79.4 | 85.1 | 89.0 | 100.0 | 282 |
| $\mathbf{2 6 4 1}$ | 25.9 | 42.2 | 57.9 | 73.3 | 83.9 | 100.0 | 1164 |
| $\mathbf{2 6 4 2}$ | 33.4 | 50.7 | 62.9 | 74.1 | 84.1 | 100.0 | 1241 |
| $\mathbf{2 6 4 3}$ | 38.8 | 56.2 | 66.1 | 76.5 | 89.7 | 100.0 | 242 |
| $\mathbf{2 6 4 5}$ | 40.3 | 63.9 | 77.6 | 87.8 | 95.0 | 100.0 | 833 |
| $\mathbf{2 6 4 6}$ | 35.7 | 55.3 | 72.7 | 83.9 | 90.0 | 100.0 | 311 |
| $\mathbf{2 6 4 7}$ | 0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 1 |

3890 AS Mathematics
January 2005 Assessment Session

Unit Threshold Marks

| Unit | Maximum <br> Mark | A | B | C | D | E | U |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| All units | UMS | 100 | 80 | 70 | 60 | 50 | 40 | 0 |
| 4721 | Raw | 72 | 56 | 49 | 42 | 35 | 28 | 0 |
| 4722 | Raw | 72 | 54 | 47 | 40 | 33 | 27 | 0 |
| 4728 | Raw | 72 | 57 | 49 | 42 | 35 | 28 | 0 |
| 4732 | Raw | 72 | 54 | 47 | 40 | 34 | 28 | 0 |
| 4736 | Raw | 72 | 54 | 47 | 40 | 34 | 28 | 0 |

Specification Aggregation Results
Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

|  | Maximum <br> Mark | A | B | C | D | E | U |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3890 | 300 | 240 | 210 | 180 | 150 | 120 | 0 |

The cumulative percentage of candidates awarded each grade was as follows:

|  | A | B | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ | $\mathbf{U}$ | Total Number of <br> Candidates |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4721 | 34.2 | 49.8 | 64.0 | 75.5 | 84.9 | 100.0 | 8885 |
| 4722 | 38.4 | 55.3 | 69.7 | 81.7 | 89.0 | 100.0 | 2210 |
| 4728 | 51.6 | 68.5 | 79.1 | 87.0 | 91.5 | 100.0 | 708 |
| 4732 | 36.1 | 51.9 | 66.0 | 75.8 | 85.0 | 100.0 | 1718 |
| 4736 | 20.0 | 42.8 | 65.5 | 80.4 | 89.0 | 100.0 | 1285 |

